關鍵詞:機器學習;農田土壤污染;污染識別;材料篩選;修復機理;風險評估 中圖分類號:X53;X820.4 文獻標志碼:A 文章編號:2095-6819(2025)05-1125-15 doi:10.13254/j.jare.2024.0776
Applicationofmachine learning inidentification,remediation,andriskassssmentoffarmland soil polltion: areview
LI Xingzhen1,LINHansen’, QIU Shaojian2,LINQingq i1,3,4* ,YELong5,MAI Yuebang5,WUPeihao5,NI Zhuobiao1,3,4, QIURongliang1,3,4,6 (1.CollegeofNaturalResourcesandEnvironment,SouthhinaAgriculturalUniversityGuangzhou50642,China;2.olegeof MathematicsandIfoation,SouthinaAgriculturalUniversityuangzou564China;3.GuangdongProvincialKeybtoyf AgriculturalandRuralPolutionontrolandEnvironmentalSafetyGuangzhou51O642,China;4.GuangdongLboratoryforLingnan ModernAgriculture,Guangzhou510642,China;5.GuangdongProvincialAcademyofBuildingResearchGoupCo.,Ltd.Guangzhou 510510,China;6.SchoolofEnvironmental ScienceandEnginering,SunYat-sen University,Guangzhou510o6,China)
Abstract:Faadsroteedldoueofatesiablyaedticlalpuooetyd health.Consequentlynvestgatingtesoilpolutionstatusoffarmlandisofsignificantimportanceforensuringfodqualityand safeguardngfarmlandresources.Traditionalresearchonfarmlandsoilpolutionhaveprimarilyfocusedonindividualscenarios,specific polutants,orsingularexpermentalonditios,hchomplicates tesolutionofcreasinglyomplexeoetalisus.Withthe adventofthebigdataera,machinelearinghasbeenincreasinglyappiedinthefieldoffarmlandsoilenvironmentalprotection, demonstratigidaasieiitycucydfidressplesaedtllii andremediationThispaperoutlinedthecommonlyusedmachinelearningprocesses,methods,algorihms,andprformanceevaluation indicatorsformodels.ThroughastatisticalanalysisonrelevantliteraturesfromtheWebofScienceandChinaNationalKnowledge Infrastructure(CNKI)databasecoveringtheperiodfrom2O11toO23,itreviewedtheapplicationofmachinelearinginthefeldacros threaspects:edenifaioofflandsoiloltio,tesreingandmehansmeseachofmediationmaterals,doloical riskassessnt,illsosuseditsdanagsdlitatio.nallhpartipatedfutueevelopentsinasch enhancingdataingcesingodelitepeabilitydlgoeltodslikeasringtproveoel.
Keywordsmacleang;farandsoilpltio;lutiodntitio;materalreenmdiatiomansist
農田土壤污染是一個嚴重的環境問題。隨著農業科技的進步和產業化進程的不斷深入,農田土壤生態環境受到不同程度的污染,土壤的質量和生產率下降,已經嚴重威脅到人類健康1。日益加劇的農田土壤污染問題威脅著糧食生產與質量,阻礙著聯合國多項可持續發展愿景的實現。科學界和政策制定者必須采取行動,研發針對性的技術與法規,阻止農田土壤污染進一步惡化。為此,形成涵蓋污染識別、調查評價、管控/修復、風險評估等全過程的農田土壤污染防治體系尤為重要。然而,傳統的農田土壤污染研究手段高度依賴人為操作,存在耗時耗力、成本高、誤差大等缺點,已無法滿足當前農田土壤污染研究和治理的需求。
農田是一個敏感的區域,涉及食品安全、人類健康、社會穩定等特殊功能。在農田土壤污染研究中,研究者需要考慮包括修復效率、食品安全、成本效益、農業可持續性等眾多問題,這為農田的污染修復和安全再利用帶來了巨大的挑戰。隨著大數據技術的興起,農田土壤污染研究迎來了新的機遇與前景。由于大數據技術強大的數據采集、存儲和應用能力,土壤數據變得多維度、高復雜、不確定性強,簡單地依靠人力或傳統統計工具對土壤相關數據進行挖掘、篩選、分析、利用的技術手段已經跟不上經濟社會發展的腳步。……