999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

微納材料在氫分子醫(yī)療中的應(yīng)用

2025-04-30 00:00:00李東林展樂(lè)馮璟師進(jìn)孫成珍張浩余澤佳陳斌王國(guó)祥周致富姚亮鄭玉萍王慧淵高寧

摘要:自2007年首次發(fā)現(xiàn)氫分子具有選擇性抗氧化特性以來(lái),氫分子迅速成為現(xiàn)代醫(yī)學(xué)研究的熱點(diǎn),多項(xiàng)研究已證實(shí)其在多種動(dòng)物模型和人類疾病中發(fā)揮著積極作用。針對(duì)傳統(tǒng)氫分子給藥(如吸入氫氣、飲用富氫水和注射氫鹽水等)存在的利用率低、釋放難以控制和靶向性不足等問(wèn)題,微納材料給出了新的解決方案。從微納材料的釋氫原理出發(fā),綜述了吸附載氫與原位釋氫兩種主要策略,以及它們?cè)趨f(xié)同治療中的前沿應(yīng)用。吸附載氫依靠物理或化學(xué)吸附儲(chǔ)存氫氣,通過(guò)溫度、壓力等外部調(diào)控實(shí)現(xiàn)釋放;原位釋氫則利用化學(xué)反應(yīng)、光熱催化或生物手段在特定病理環(huán)境中生成氫氣,可通過(guò)內(nèi)源響應(yīng)或外源調(diào)控達(dá)到更高的靶向性和可控性。以微納材料為媒介,結(jié)合氫分子的抗炎、抗腫瘤等功能,氫分子還可通過(guò)與化療藥物、光熱療法及光動(dòng)力療法的協(xié)同作用,顯著增強(qiáng)對(duì)腫瘤疾病的治療效果。同時(shí),還總結(jié)了當(dāng)前面臨的生物安全性、靶向性及規(guī)模化生產(chǎn)等挑戰(zhàn),并提出未來(lái)需通過(guò)設(shè)計(jì)智能響應(yīng)材料及氫分子多模式協(xié)同治療相結(jié)合,進(jìn)一步提高治療效果與精準(zhǔn)性,為后續(xù)基于微納材料的氫分子醫(yī)學(xué)提供了指導(dǎo)。

關(guān)鍵詞:氫分子;微納材料;吸附載氫;原位釋氫;協(xié)同治療

中圖分類號(hào):R318 文獻(xiàn)標(biāo)志碼:A

DOI:10.7652/xjtuxb202505004 文章編號(hào):0253-987X(2025)05-0030-14

Review on the Research Progress of Micro-Nano Materials in

Hydrogen Molecular Medicine

LI Dong1, LIN Zhanle1, FENG Jing1, SHI Jinwen1, SUN Chengzhen1, ZHANG Hao1, YU Zejia1, CHEN Bin1, WANG Guoxiang2, ZHOU Zhifu1, YAO Liang3, ZHENG Yuping3, WANG Huiyuan3, GAO Ning4

(1. State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China;2. Department of Mechanical Engineering, The University of Akron, Akron, OH 44325, USA; 3. The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China;4. The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China)

Abstract:Since the selective antioxidant properties of hydrogen molecules were first discovered in 2007, hydrogen molecules has rapidly become a research focus in modern medicine. In numerous studies, its positive effects in various animal models and human diseases have been demonstrated. In response to the issues of low utilization, difficulty in controlling release, and insufficient targeting associated with traditional hydrogen molecule delivery methods (such as inhaling hydrogen gas, drinking hydrogen-rich water, and injecting hydrogen saline), micro-nano materials offer new solutions. Starting from the hydrogen release mechanism of micro-nano materials, two main strategies are discussed in this review: hydrogen adsorption and in situ hydrogen release, as well as their cutting-edge applications in synergistic therapies. Hydrogen adsorption relies on physical or chemical adsorption for hydrogen storage, with release controlled by external stimuli such as temperature and pressure. In contrast, in situ hydrogen release utilizes chemical reactions, photothermal catalysis, or biological mechanisms to generate hydrogen in specific pathological environments, achieving higher targeting and controllability through endogenous responses or exogenous regulation. Utilizing micro-nano materials as a medium, and combining the anti-inflammatory and anti-tumor functions of hydrogen molecules, hydrogen molecules can significantly enhance the therapeutic effect on tumor diseases through synergistic interactions with chemotherapy drugs, photothermal therapy, and photodynamic therapy. In this review, current challenges, including issues of biosafety, targeting, and scalable production are also summarized, and future directions such as the design of smart responsive materials combined with multimodal synergistic therapy using hydrogen molecules are proposed, to further improve therapeutic precision and efficacy. This provides guidance for subsequent advancements in hydrogen molecular medicine based on micro-nano materials.

Keywords:hydrogen molecules; micro/nanomaterials; hydrogen adsorption; in situ hydrogen release; synergistic therapy

氫分子自2007年被發(fā)現(xiàn)具有選擇性抗氧化特性以來(lái)[1,逐漸成為醫(yī)學(xué)研究的熱點(diǎn)。氫分子以其體積小、非極性、擴(kuò)散性強(qiáng)等特點(diǎn),能夠穿透細(xì)胞膜并擴(kuò)散至線粒體和細(xì)胞核中[2,參與多種生理活動(dòng)。在疾病治療中,氫氣表現(xiàn)出多種生物醫(yī)學(xué)效應(yīng),尤其在抗氧化1,3-15、抗炎7,16-21等方面的研究不斷深入。傳統(tǒng)的氫分子給藥方式包括吸入氫氣22-29、飲用富含氫水30-36、注射氫鹽水37-41等,這些方式雖有一定效果,但仍存在氫分子利用率低、針對(duì)性不強(qiáng)等局限性。微納材料作為一種新型氫分子載體,能夠有效控制氫氣釋放,并針對(duì)性地在病變部位發(fā)揮作用。研究表明,通過(guò)負(fù)載氫氣或在體內(nèi)原位產(chǎn)氫的微納材料可以提高氫分子的治療效果,特別是在炎癥相關(guān)疾病和癌癥治療中表現(xiàn)出顯著的優(yōu)勢(shì)[42

本文從不同微納材料的氫氣釋出原理出發(fā),探討包括吸附載氫的微納釋氫策略、原位釋氫策略等微納材料在氫分子給藥中的應(yīng)用,并重點(diǎn)介紹微納釋氫材料在協(xié)同治療中的作用。

1 基于微納材料的氫吸附及釋放方法

現(xiàn)階段利用微納材料產(chǎn)氫原理有兩種,一種是通過(guò)微納材料負(fù)載氫氣進(jìn)入人體進(jìn)行釋放,即吸附載氫手段;另一種是通過(guò)微納材料在體內(nèi)原位反應(yīng)生成氫氣,即原位產(chǎn)氫手段。

微納材料載氫手段通常依賴于物質(zhì)的吸附作用,如物理吸附和化學(xué)吸附。物理吸附依賴材料的孔隙結(jié)構(gòu)和表面積,主要通過(guò)范德華力將氫分子吸附在材料表面或孔隙中,具有低能耗和可逆性強(qiáng)的優(yōu)點(diǎn)[43-44。比表面積和孔徑是影響材料物理吸附氫氣的關(guān)鍵參數(shù),更高的比表面積能夠提供更多的吸附位點(diǎn),而適中的孔徑可以優(yōu)化分子擴(kuò)散效率,從而提高氫氣存儲(chǔ)和釋放能力。例如,金屬有機(jī)框架(MOF)結(jié)構(gòu)因其大比表面積和可調(diào)控孔徑,展現(xiàn)了優(yōu)異的儲(chǔ)氫性能[45。化學(xué)吸附則通過(guò)化學(xué)鍵將氫原子結(jié)合在材料中,例如金屬氫化物和復(fù)合氫化物,儲(chǔ)氫量更大,但需要更高的能量激發(fā)釋放46

相比之下,原位釋氫手段更加豐富,可分為化學(xué)、物理及生物手段。化學(xué)手段可以依據(jù)體液的酸堿度變化從而激發(fā)特定材料進(jìn)行釋氫,也可利用電化學(xué)原理進(jìn)行可控的響應(yīng)釋放氫氣。物理手段則關(guān)注于光催化產(chǎn)氫,配合體外光源實(shí)現(xiàn)原位產(chǎn)氫效果。生物手段則利用微生物氫化酶或仿生結(jié)構(gòu)實(shí)現(xiàn)氫氣的持續(xù)生成,展現(xiàn)出長(zhǎng)效釋氫的潛力。

2 吸附載氫的微納材料

吸附載氫通過(guò)物理或化學(xué)吸附儲(chǔ)存氫氣,其釋放依賴材料的吸附特性以及溫度、壓力等外界條件變化。例如,金屬鈀通過(guò)催化吸附氫分子,將其分解為氫原子并滲透至晶格內(nèi)形成鈀氫化物,完成氫氣的儲(chǔ)存與輸送。依托于金屬有機(jī)框架(MOF)的高度有序多孔結(jié)構(gòu),氫分子可通過(guò)物理吸附進(jìn)入MOF孔隙并擴(kuò)散至氫化鈀顆粒,形成PdH-MOF復(fù)合材料,其物理和化學(xué)吸附協(xié)同作用可顯著提升儲(chǔ)氫容量。

這些材料可通過(guò)光熱激發(fā)實(shí)現(xiàn)原位釋氫,用于疾病治療,如圖1所示。例如,Zhao等[47開發(fā)了氫化鈀納米顆粒(PdH0.2),在808 nm近紅外光(NIR)照下通過(guò)光熱效應(yīng)釋放氫氣,并利用光聲成像實(shí)現(xiàn)腫瘤靶向遞送,提供了一種可視化的腫瘤氫氣治療策略。Zhou等[48合成了新型鈀-卟啉框架納米材料(PdH-MOF),通過(guò)光熱作用引發(fā)氫鍵斷裂持續(xù)釋氫,用于氫熱協(xié)同腫瘤治療。該材料尺寸均勻(粒徑小于100 nm)、溶解性良好、光熱轉(zhuǎn)化率(44.2%)高,在較低激光能量下展現(xiàn)了顯著的釋氫及腫瘤抑制效果。這些吸附載氫材料結(jié)合光熱控制釋氫,為氫分子的對(duì)癥治療提供了新方案。

3 原位釋氫的微納材料

3.1 化學(xué)手段原位釋氫

化學(xué)手段原位釋氫可以采用與體液直接反應(yīng)的方法。這種治療方法往往需要在特定部位注射微納材料,進(jìn)行持續(xù)的釋氫治療,可以治療多種慢性炎癥。然而,由于眾多微納產(chǎn)氫材料的活潑性能,直接注射后反應(yīng)迅速,這導(dǎo)致一方面難以實(shí)現(xiàn)持續(xù)的氫氣緩釋,從而降低治療效果;另一方面局部劇烈的反應(yīng)會(huì)產(chǎn)生具有危險(xiǎn)性的氫氣泡,致使組織損傷。故與體液反應(yīng)的化學(xué)原位釋氫方式需要對(duì)微納材料進(jìn)行一系列的修飾再進(jìn)行注射治療。

骨關(guān)節(jié)炎是一種慢性退行性疾病,隨著時(shí)間推移逐漸惡化,亟需要原位持續(xù)釋氫的治療手段。金屬鎂因其高產(chǎn)氫效率成為研究熱點(diǎn),但由于其活性較強(qiáng),降解過(guò)快,難以實(shí)現(xiàn)長(zhǎng)期釋氫。為解決這一問(wèn)題,可通過(guò)材料包覆調(diào)控氫氣釋放速率。如圖2(a)、2(b)所示,Kong等[49通過(guò)St?ber改良法,在鎂微粒表面包覆不同厚度的介孔二氧化硅納米殼(Mg@p-SiO2),以實(shí)現(xiàn)氫氣的緩釋。在細(xì)胞實(shí)驗(yàn)中,未修飾的鎂微粒僅能在2 h內(nèi)保護(hù)PC12細(xì)胞,而Mg@p-SiO2可持續(xù)釋氫,保護(hù)長(zhǎng)達(dá)6 h,顯示了其長(zhǎng)效釋氫性能。

此外,圖2(c)、2(d)中Wan等[50通過(guò)將鎂粉末包埋于聚乳酸-羥基乙酸共聚物(PLGA)微顆粒中得到Mg@PLGA,PLGA通過(guò)限制水分進(jìn)入,從而控制氫氣釋放速率。小鼠骨關(guān)節(jié)炎模型相關(guān)研究表明,在注射10 mg/mL濃度的Mg@PLGA后,釋氫濃度顯著超過(guò)治療閾值1.2 μmol/L,穩(wěn)定在約2.5 μmol/L 氫氣,可以顯著緩解炎癥,降低促炎性因子水平,并保護(hù)軟骨,展現(xiàn)了良好的治療效果。

圖2(e)、2(f)展示了利用水凝膠平臺(tái)達(dá)到緩釋效果的給藥手段。Zhang等[51設(shè)計(jì)了一種負(fù)載CaB6納米片的CBN@GelDA水凝膠,不僅具備良好的水解釋氫能力,還可持續(xù)釋放氫氣超過(guò)一周。在小鼠骨關(guān)節(jié)炎模型中,該水凝膠顯著緩解軟骨變形,降低炎性因子表達(dá),并抑制軟骨細(xì)胞凋亡,顯示出良好的生物相容性和治療效果。這些研究表明,材料包覆和給藥形態(tài)的優(yōu)化是實(shí)現(xiàn)持續(xù)釋氫治療的重要策略。

除了直接注射微納材料實(shí)現(xiàn)原位釋氫外,還可以基于病理或生理?xiàng)l件設(shè)計(jì)pH值響應(yīng)性釋氫策略。在酸性病理環(huán)境下(如腫瘤組織,pH值在6.5~6.9[52),通過(guò)特定材料觸發(fā)釋氫反應(yīng),可實(shí)現(xiàn)高選擇性的靶向治療。如圖3(a)所示,Yang等[53通過(guò)將氨硼烷(AB)負(fù)載在介孔二氧化硅(MSN)中,開發(fā)了AB@MSN納米藥物。在圖3(b)中,當(dāng)介孔二氧化硅的特殊多孔結(jié)構(gòu)在中性條件下會(huì)抑制氨硼烷的水解反應(yīng),當(dāng)達(dá)到酸性環(huán)境中,氨硼烷進(jìn)行水解進(jìn)而釋放氫氣,以增強(qiáng)給藥的靶向性。動(dòng)物實(shí)驗(yàn)表明,在 HeLa腫瘤荷瘤小鼠模型的治療中,通過(guò)腫瘤內(nèi)注 AB@MSN 納米藥物可顯著抑制腫瘤生長(zhǎng),而對(duì)健康細(xì)胞無(wú)明顯毒性,從而達(dá)到選擇性抗癌效果。在炎癥環(huán)境(如椎間盤退行性病變)中,pH值常低于正常水平[54。圖3(c)中,Ji等[55開發(fā)了智能氫氣納米發(fā)生器Fe@HP-OD,由Fe@CMC(鐵納米粒子和羧甲基纖維素)納米顆粒結(jié)合酸響應(yīng)性水凝膠(由氧化魔芋葡甘聚糖-多巴胺[OKGM-DA]和透明質(zhì)酸-苯硼酸[HA-PBA]組成)而成。圖3(d)表明,該雙響應(yīng)性水凝膠在酸性和高氧化應(yīng)激環(huán)境中逐步釋放氫氣。動(dòng)物實(shí)驗(yàn)表明,F(xiàn)e@HP-OD治療組的大鼠椎間盤高度和軟骨成分明顯恢復(fù),組織再生效果顯著。

在腸道疾病治療中,傳統(tǒng)釋氫制劑(如MgH2)在

胃酸中易分解,難以靶向腸道。如圖3所示,Liu等[56開發(fā)了腸道靶向釋氫微膠囊(MgH2@EC@ES),利用乙基纖維素(EC)和Eudragit S100涂層阻隔胃酸分解,實(shí)現(xiàn)腸道靶向釋氫。動(dòng)物實(shí)驗(yàn)顯示,該微膠囊在結(jié)腸炎小鼠模型中表現(xiàn)出顯著療效,不僅能減少炎性細(xì)胞因子,還優(yōu)于一線治療藥物5-ASA(5-氨基水楊酸)在結(jié)腸組織修復(fù)方面的表現(xiàn)。這是首例腸道靶向的原位釋氫膠囊,為腸道靶向的原位釋氫材料設(shè)計(jì)提供了新思路。

在pH值響應(yīng)釋氫的基礎(chǔ)上,針對(duì)特定疾病可通過(guò)調(diào)控微納材料的釋氫時(shí)間窗口,實(shí)現(xiàn)可控釋氫,從而優(yōu)化治療。圖4(a)顯示,Liu等[57基于電化學(xué)原理設(shè)計(jì)了一種鋅鐵原電池用于2型糖尿病(T2D)治療。T2D是由胰島素抵抗引起的慢性代謝性疾病,全身系統(tǒng)性炎癥是其重要誘因,肝臟、脂肪組織和骨骼肌等炎癥會(huì)抑制胰島素信號(hào)傳導(dǎo),導(dǎo)致局部胰島素抵抗[58。雖然口服富氫水能夠改善T2D患者的葡萄糖代謝,但由于氫氣遞送效率低,難以滿足長(zhǎng)效治療需求。現(xiàn)有的口服氫分子藥物在胃酸環(huán)境中釋氫速率過(guò)快(如Mg、MgH2、CaH2)或過(guò)慢(如Fe和Zn),無(wú)法與胃排空時(shí)間(人類約4 h[59、小鼠約3 h [60)相匹配。

如圖4(b)所示,針對(duì)上述鋅鐵原電池可通過(guò)調(diào)控鋅鐵比例以控制釋氫速率和持續(xù)時(shí)間,從而實(shí)現(xiàn)釋氫與小鼠胃代謝時(shí)間窗口(3 h)的匹配。動(dòng)物實(shí)驗(yàn)表明,鋅鐵原電池可在胃酸環(huán)境下原位釋放氫氣,氫氣隨后積聚于肝臟、脂肪組織和骨骼肌等胰島素抵抗相關(guān)組織。在針對(duì)肥胖糖尿病小鼠模型的治療中,每日口服一次鋅鐵原電池顯著改善了小鼠的慢性炎癥和胰島素抵抗,展現(xiàn)出微納釋氫材料在T2D治療中的應(yīng)用潛力。

3.2 物理手段原位釋放氫氣

物理手段通常利用外源激發(fā)實(shí)現(xiàn)原位釋氫,其中光源激發(fā)備受關(guān)注。如圖5(a)所示,Wan等設(shè)計(jì)了一種能夠原位光合成氫氣的脂質(zhì)體納米反應(yīng)器(Lip NR)[61,該系統(tǒng)由葉綠素a(Chl a)、抗壞血酸(AA)和金納米粒子(AuNPs)組成。在660 nm激光照射下,葉綠素a吸收光子后激發(fā)產(chǎn)生電子-空穴,空穴從抗壞血酸獲取電子后使葉綠a回到基態(tài),金納米粒子作為催化劑將電子和質(zhì)子結(jié)合生成氫氣。脂質(zhì)體將反應(yīng)限制在納米尺度內(nèi),提高了光催化效率。動(dòng)物實(shí)驗(yàn)表明,將Lip NR注射到脂多糖誘導(dǎo)的炎癥小鼠后,經(jīng)激光照射,可顯著降低炎癥部位活性氧(ROS)水平,緩解炎癥反應(yīng)。圖5(b)中,Zhang等開展了以半導(dǎo)體聚合物點(diǎn)(Pdots)為光催化劑的原位光催化制氫治療小鼠足底炎癥的研究[62。Pdots具有可調(diào)控的光學(xué)帶隙和高電子轉(zhuǎn)移效率,在寬光譜范圍內(nèi)表現(xiàn)出更高的氫氣產(chǎn)量。實(shí)驗(yàn)顯示,Pdots產(chǎn)生的氫氣表明穿過(guò)脂質(zhì)雙層到達(dá)病變組織,清除活性氧,展現(xiàn)了優(yōu)異的抗炎性能。這些研究為光催化釋氫治療提供了重要依據(jù)。

然而,脂質(zhì)體的電子供體負(fù)載能力有限,且紫外/可見光的穿透性差、光毒性強(qiáng),限制了其實(shí)際應(yīng)用。相比之下,近紅外光因其更深的組織穿透性和更低的光散射性,成為光催化釋氫的光源首選[63。圖5(c)中,Zhao等研制出Z型結(jié)構(gòu)的SnS1.68-WO2.41納米催化劑,在808 nm波長(zhǎng)近紅外光下表現(xiàn)出優(yōu)異性能[64;圖5(d)中,Xu等通過(guò)雜質(zhì)摻雜成功合成新色型紅聚合碳氮材料RPCN,在850~1 000 nm的近紅外波段內(nèi)展現(xiàn)了高效的光催化能力[65。二者都為氫氣的原位醫(yī)療提供了可行的方案,這些材料都可在近紅外光照射下原位產(chǎn)氫,破壞腫瘤組織的氧化還原平衡,并消耗腫瘤微環(huán)境中的谷胱甘肽(GSH),從而實(shí)現(xiàn)對(duì)腫瘤的治療。

除利用外界能量激發(fā)外,還可通過(guò)調(diào)控微納材料的微觀形貌,降低反應(yīng)能壘,實(shí)現(xiàn)原位自發(fā)持續(xù)產(chǎn)氫。硅是地殼中第二豐富的元素,具有成本低、環(huán)境友好、生物相容性高、理論釋氫量大的優(yōu)點(diǎn)[66。然而,純硅水解釋氫速率較慢且會(huì)生成固體二氧化硅副產(chǎn)物,限制了其給藥應(yīng)用。You等受到二維納米材料結(jié)構(gòu)的啟發(fā),構(gòu)建了圖6所示的超薄二維硅烯納米片[67,其厚度僅為原子級(jí),具有高比表面積和豐富的活性位點(diǎn),可顯著改善反應(yīng)動(dòng)力學(xué),實(shí)現(xiàn)高效釋氫。硅烯表面的氫化懸垂鍵與水發(fā)生反應(yīng),快速釋氫,清除活性氧,緩解氧化應(yīng)激和炎癥。在急性炎性動(dòng)物模型中,小鼠耳廓腫脹模型的實(shí)驗(yàn)結(jié)果表明,注射硅烯納米片顯著降低炎性細(xì)胞因子水平,抑制因氧化應(yīng)激導(dǎo)致的炎癥組織損傷。該材料可通過(guò)貼劑或注射方式實(shí)現(xiàn)原位釋氫,為炎癥治療提供了新的可行性方案。

3.3 生物手段原位釋氫

上述原位產(chǎn)氫的物理手段中,往往采用光催化材料利用光源能量進(jìn)行持續(xù)原位產(chǎn)氫,這在生物手段中也有體現(xiàn),如圖7(a)所示,Chen等[68研發(fā)了一種由小球藻和地衣芽孢桿菌組成的細(xì)菌葉綠體系統(tǒng)Bac-Chl產(chǎn)氫水凝膠,利用藻類的無(wú)氧光合作用原位產(chǎn)氫以治療糖尿病足潰瘍。在光照條件下,地衣芽孢桿菌通過(guò)呼吸作用消耗氧氣,為小球藻提供無(wú)氧環(huán)境,使其能夠進(jìn)行無(wú)氧光合作用并產(chǎn)生氫氣。在日光照射下,該水凝膠貼劑可以持續(xù)產(chǎn)氫60 h以上,選擇性地清除高反應(yīng)性自由基,緩解氧化應(yīng)激,促進(jìn)糖尿病足潰瘍的愈合。動(dòng)物實(shí)驗(yàn)顯示,使用該微生物水凝膠敷料3 d后,糖尿病大鼠足潰瘍的創(chuàng)面愈合率接近50%,為糖尿病的治療提供了長(zhǎng)期、非侵入式的治療方案。

此外,仿生氫化代謝也是一種原位產(chǎn)氫的有效策略。微生物產(chǎn)氫主要源于其體內(nèi)的氫化酶,如[FeFe]-氫化酶,這是一種存在于多種微生物體中的金屬酶69,它具有極寬的吸光波段,能夠利用光能將質(zhì)子可逆地還原為氫氣。Sun等設(shè)計(jì)了圖7(b)所示基于氫化酶的產(chǎn)氫納米裝置,通過(guò)模擬[FeFe]-氫化酶的活性位點(diǎn),合成了[FeFe]TPP,并與氟化殼聚糖(FCS)和化療藥物吉西他濱(GEM)自組裝形成[FeFe]TPP/GEM/FCS納米顆粒,用于膀胱癌治療[70。在660 nm激光照射下,納米顆粒原位釋氫,通過(guò)癌細(xì)胞抑制線粒體的功能阻礙ATP的生成,并抑制癌細(xì)胞中P-糖蛋白(P-gp),提高細(xì)胞內(nèi)抗癌藥物濃度。這種方法為癌癥治療提供了新的化療策略,并展現(xiàn)出廣闊的發(fā)展?jié)摿Α?/p>

4 微納釋氫在協(xié)同治療中的應(yīng)用

協(xié)同治療是指通過(guò)兩種或多種治療手段(如藥物、物理治療等),從而實(shí)現(xiàn)治療效果的增強(qiáng)。這一方面能夠?qū)崿F(xiàn)互補(bǔ),如一種藥物攻擊病原體,另一種藥物干擾病原體的代謝,結(jié)合后更好地滅殺病原體;另一方面能夠同時(shí)攻擊病原體或腫瘤細(xì)胞的多個(gè)靶點(diǎn),使其難以適應(yīng)或是變異,從而減少耐藥性。氫分子由于其抗氧化、抗炎等能力在對(duì)腫瘤的治療中效果卓越,往往能夠配合多種化療藥物或是多種療法實(shí)現(xiàn)對(duì)腫瘤疾病的協(xié)同治療。

使用氫分子與化療藥物協(xié)同是一種有效的治療癌癥手段,如圖8(a)所示,Yao等[71設(shè)計(jì)了一種新型的卟啉-鐵金屬有機(jī)骨架(Fe-MOF)納米晶體,其多孔結(jié)構(gòu)可裝載化療藥物多柔比星(DOX)形成DOX@Fe-MOF納米晶體。在正常體液環(huán)境中,該晶體穩(wěn)定存在,而在腫瘤酸性環(huán)境中,其結(jié)構(gòu)降解,釋放DOX和氫氣。氫氣通過(guò)下調(diào)多藥耐藥細(xì)胞中P-糖蛋白的表達(dá),降低藥物外排,同時(shí)有利于DOX在腫瘤細(xì)胞中的累積,增加對(duì)腫瘤DNA的損傷。此外,氫氣激活M1型巨噬細(xì)胞,下調(diào)基質(zhì)金屬蛋白酶-2(MMP-2)的表達(dá),抑制腫瘤轉(zhuǎn)移。圖8(b)表明,DOX@Fe-MOF納米晶體在小鼠腫瘤模型中能有效抑制腫瘤生長(zhǎng)并防止轉(zhuǎn)移,展示了協(xié)同治療的潛力,其中***表示p小于0.001。

鈣離子在多個(gè)細(xì)胞進(jìn)程中扮演著重要的角色,過(guò)高的鈣離子濃度會(huì)使癌細(xì)胞因鈣過(guò)載而死亡,依此Gong等[72通過(guò)液相剝離法合成了直徑達(dá)8 nm的CaH2納米顆粒,實(shí)現(xiàn)鈣氫化物的納米化(見圖8(c))。這些納米顆粒在水中可快速生成氫氣、氫氧根以及鈣離子,氫氧根中和腫瘤酸性環(huán)境,鈣離子誘導(dǎo)腫瘤細(xì)胞鈣超負(fù)荷,而氫氣通過(guò)抗炎和抗腫瘤特性進(jìn)一步抑制癌細(xì)胞生長(zhǎng)。在體內(nèi)實(shí)驗(yàn)中,CaH2納米顆粒局部注射后對(duì)腫瘤生長(zhǎng)有明顯抑制作用,同時(shí)激活免疫系統(tǒng),促進(jìn)免疫細(xì)胞浸潤(rùn)腫瘤組織,顯示了其良好的治療潛力。在小鼠腫瘤模型中,直接將CaH2納米顆粒注射至腫瘤內(nèi)部,如圖8(d)所示,與對(duì)照組和CaO組相比,CaH2納米顆粒顯著抑制了腫瘤的生長(zhǎng),表明其具有強(qiáng)效的抗腫瘤能力,并且CaH2納米顆粒的降解產(chǎn)物Ca2+與氫氣不會(huì)對(duì)身體產(chǎn)生長(zhǎng)期傷害,這為癌癥的協(xié)同治療提供了更優(yōu)的選擇。

除了與藥物進(jìn)行協(xié)同,氫分子與其他療法也能對(duì)腫瘤產(chǎn)生很好的協(xié)同療效見圖9。如圖9(a)所示,Chen等通過(guò)設(shè)計(jì)了PCN-224@Pd/H2納米系統(tǒng),將鈀納米晶體與MOF結(jié)構(gòu)結(jié)合,實(shí)現(xiàn)了腫瘤微環(huán)境下的緩釋氫氣利用氫分子協(xié)同增強(qiáng)光動(dòng)力治療(PDT)療效[73。在腫瘤治療過(guò)程中,氫分子一方面通過(guò)選擇性清除自由基來(lái)維持正常細(xì)胞內(nèi)的ROS平衡,從而減少PDT對(duì)健康細(xì)胞的損傷;另一方面,氫分子能夠降低腫瘤細(xì)胞內(nèi)的ROS水平,削弱其抗氧化防御系統(tǒng)的功能,為腫瘤細(xì)胞的進(jìn)一步抑制創(chuàng)造有利條件。圖9(b)結(jié)果表明,在針對(duì)MDA-MB-231腫瘤負(fù)荷小鼠模型的對(duì)照實(shí)驗(yàn)中,協(xié)同治療組(PCN-224@Pd/H2+激光)表現(xiàn)出最佳的腫瘤抑制效果,該組腫瘤質(zhì)量顯著降低,腫瘤抑制率達(dá)到84.8%,遠(yuǎn)超于單一療法氫療法的53.8%與PDT組的67.2%,其中*表示p小于0.05。

光熱療法(PTT)是通過(guò)光熱劑(PTA)吸收近紅外光的光能,轉(zhuǎn)化為熱能,進(jìn)而產(chǎn)生高溫,誘導(dǎo)癌細(xì)胞凋亡的一種極具前景的腫瘤治療方法[75-76。Yuan等[74開發(fā)了酸響應(yīng)性的原位氫氣納米發(fā)生器AB@MPDA-PEG,即將氨基硼烷(AB)作為產(chǎn)氫前藥裝載到介孔聚多巴胺納米顆粒(MPDA NPs)上。如圖9(c)所示,AB@MPDA-PEG納米顆粒在腫瘤組織中展現(xiàn)出高滲透性和滯留效應(yīng),能夠在腫瘤組織中積累,并在酸性腫瘤微環(huán)境響應(yīng)性水解產(chǎn)氫。氫分子一方面通過(guò)選擇性清除正常細(xì)胞中的ROS,來(lái)減輕光熱療法對(duì)正常細(xì)胞的損傷;另一方面氫分子可以清除腫瘤細(xì)胞中的ROS,從而減弱其抗氧化防御,增強(qiáng)其對(duì)光熱療法的敏感性。圖9(d)動(dòng)物實(shí)驗(yàn)表明,在經(jīng)過(guò)24 d的治療后,協(xié)同治療組的腫瘤幾乎完全消失,單一治療組的小鼠腫瘤質(zhì)量明顯高于協(xié)同治療組,進(jìn)一步驗(yàn)證了氫分子與光熱療法聯(lián)合應(yīng)用的顯著療效。

5 總結(jié)與展望

氫分子醫(yī)學(xué)逐漸成為現(xiàn)代醫(yī)學(xué)領(lǐng)域中的前沿方向,在氫分子的多種給藥手段中,依托于微納材料的釋氫手段逐漸成為研究的熱點(diǎn)方向。不同的釋氫方式(吸附載氫、原位釋氫)展示了多樣化的給氫應(yīng)用前景,相較于通過(guò)吸附載氫的微納材料,原位釋氫的微納材料更具優(yōu)勢(shì),其具有更加可控的釋氫能力及在靶向部位生成氫氣的特性。在化學(xué)手段的原位釋氫中,可以根據(jù)人體內(nèi)部環(huán)境的pH值進(jìn)而調(diào)控釋放,提高了氫分子醫(yī)療的靶向性,同時(shí)可以通過(guò)包被材料、原電池配比等手段進(jìn)行調(diào)控釋氫速率,以實(shí)現(xiàn)更好的對(duì)癥治療。在物理手段及生物手段的原位釋氫中,常采用外部光源進(jìn)行激發(fā),具有空間靶向性,對(duì)特定組織和病變區(qū)域進(jìn)行治療,減少對(duì)正常組織的侵入,同時(shí)外源相較于內(nèi)源pH值的變化更加易于控制,這也意味著釋氫手段更加方便、快捷。對(duì)于內(nèi)外源的把控是后續(xù)原位產(chǎn)氫方案設(shè)計(jì)的一大重點(diǎn),針對(duì)內(nèi)源(pH值、低氧、高ROS)的設(shè)計(jì)能夠使得產(chǎn)氫材料智能響應(yīng),自主調(diào)節(jié)氫氣釋放,與病灶匹配;通過(guò)對(duì)外源(光、磁場(chǎng)、超聲)響應(yīng),局部地多次治療,提高治療靈活性,這是后續(xù)原位氫醫(yī)療的發(fā)展方向。

在氫分子協(xié)同治療腫瘤疾病方面,氫分子憑借其抗氧化、抗炎和調(diào)節(jié)細(xì)胞信號(hào)傳導(dǎo)等特性,是現(xiàn)階段多模態(tài)治療的理想選擇。通過(guò)將氫分子與化療藥物、多種療法協(xié)同,不僅能夠增強(qiáng)療效,還能有效降低治療的毒副作用,實(shí)現(xiàn)精準(zhǔn)靶向治療。盡管如此,氫分子在與協(xié)同治療中的實(shí)際應(yīng)用仍面臨若干挑戰(zhàn)。微納材料在治療中的長(zhǎng)時(shí)間生物相容性尚需驗(yàn)證,對(duì)于長(zhǎng)期腫瘤疾病的治療,材料的降解產(chǎn)物后續(xù)是否會(huì)引發(fā)免疫反應(yīng)仍存疑點(diǎn)。其次,如何確保不同病灶處實(shí)現(xiàn)氫氣的精準(zhǔn)釋放,尤其是在復(fù)雜的病理環(huán)境中,保持材料在正常區(qū)域的穩(wěn)定性與病理區(qū)域的反應(yīng)性,是未來(lái)研究的重點(diǎn)。此外,微納材料的制備工藝復(fù)雜且成本較高,如何在確保療效的前提下實(shí)現(xiàn)規(guī)模化生產(chǎn),是推動(dòng)其臨床轉(zhuǎn)化的關(guān)鍵。

未來(lái)的發(fā)展方向?qū)⒕劢褂谠O(shè)計(jì)具有智能響應(yīng)特性、可控釋氫的微納材料,通過(guò)與其他治療模式的協(xié)同,進(jìn)一步提高治療的靶向性與有效性。同時(shí),隨著生物醫(yī)學(xué)和材料科學(xué)的深入交叉,氫氣治療有望在腫瘤疾病領(lǐng)域取得新的突破。在政策支持和技術(shù)革新的推動(dòng)下,微納材料在氫氣釋放和協(xié)同治療中的應(yīng)用前景廣闊,有望成為醫(yī)學(xué)治療的新興領(lǐng)域,為人類疾病的預(yù)防和治療提供全新路徑。

參考文獻(xiàn):

[1]OHSAWA I, ISHIKAWA M, TAKAHASHI K, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals [J]. Nature Medicine, 2007, 13(6): 688-694.

[2]OHTA S. Molecular hydrogen as a novel antioxidant: overview of the advantages of hydrogen for medical applications [J]. Methods in Enzymology, 2015, 555: 289-317.

[3]SETSUKINAI K I, URANO Y, KAKINUMA K, et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species [J]. Journal of Biological Chemistry, 2003, 278(5): 3170-3175.

[4]IGARASHI T, OHSAWA I, KOBAYASHI M, et al. Hydrogen prevents corneal endothelial damage in phacoemulsification cataract surgery [J]. Scientific Reports, 2016, 6(1): 31190.

[5]CHENG Danyu, LONG Jiangang, ZHAO Lin, et al. Hydrogen: a rising star in gas medicine as a mitochondria-targeting nutrient via activating Keap1-Nrf2 antioxidant system [J]. Antioxidants, 2023, 12(12): 2062.

[6]ZHANG Hongqiao, DAVIES K J A, FORMAN H J. Oxidative stress response and Nrf2 signaling in aging [J]. Free Radical Biology and Medicine, 2015, 88(Part B): 314-336.

[7]GHARIB B, HANNA S, ABDALLAHI O M, et al. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation [J]. Comptes Rendus de l'Académie des Sciences: Series Ⅲ

Sciences de la Vie, 2001, 324(8): 719-724.

[8]YU Jianhua, ZHANG Weiguang, ZHANG Rongguo, et al. Molecular hydrogen attenuates hypoxia/reoxygenation injury of intrahepatic cholangiocytes by activating Nrf2 expression [J]. Toxicology Letters, 2015, 238(3): 11-19.

[9]XIE Keliang, ZHANG Yang, WANG Yaoqi, et al. Hydrogen attenuates sepsis-associated encephalopathy by NRF2 mediated NLRP3 pathway inactivation [J]. Inflammation Research, 2020, 69(7): 697-710.

[10]YU Yang, YANG Yongyan, YANG Man, et al. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway [J]. International Immunopharmacology, 2019, 69: 11-18.

[11]CAI Wenwen, ZHANG Minghua, YU Yongsheng, et al. Treatment with hydrogen molecule alleviates TNFα-induced cell injury in osteoblast [J]. Molecular and Cellular Biochemistry, 2013, 373(1/2): 1-9.

[12]JIN Zhaokui, ZHAO Penghe, GONG Wanjun, et al. Fe-porphyrin: a redox-related biosensor of hydrogen molecule [J]. Nano Research, 2023, 16(2): 2020-2025.

[13]陶鴿如, 秦樹存. 氫生物醫(yī)學(xué)效應(yīng)在疏解自由基氧化應(yīng)激的分子機(jī)制 [J]. 生物技術(shù)進(jìn)展, 2022, 12(4): 490-496.

TAO Geru, QIN Shucun. Molecular mechanism of hydrogen biomedicine in relieving free radical oxidative stress [J]. Current Biotechnology, 2022, 12(4): 490-496.

[14]趙敏, 秦樹存. 氫氣生物醫(yī)學(xué)效應(yīng)的發(fā)現(xiàn)、研究與應(yīng)用 [J]. 山東第一醫(yī)科大學(xué)(山東省醫(yī)學(xué)科學(xué)院)學(xué)報(bào), 2021, 42(5): 339-346.

ZHAO Min, QIN Shucun. Discovery, research and application of hydrogen biomedical effects [J]. Journal of Shandong First Medical University amp; Shandong Academy of Medical Sciences, 2021, 42(5): 339-346.

[15]江雪, 劉伯言, 吳逢霖, 等. 氫分子應(yīng)用于疾病治療的臨床研究進(jìn)展 [J]. 山東第一醫(yī)科大學(xué)(山東省醫(yī)學(xué)科學(xué)院)學(xué)報(bào), 2023, 44(7): 552-560.

JIANG Xue, LIU Boyan, WU Fenglin, et al. Progress in clinical research on the use of hydrogen molecules in the treatment of diseases [J]. Journal of Shandong First Medical University amp; Shandong Academy of Medical Sciences, 2023, 44(7): 552-560.

[16]SHI Qiao, LIAO Kangshu, ZHAO Kailiang, et al. Hydrogen-rich saline attenuates acute renal injury in sodium taurocholate-induced severe acute pancreatitis by inhibiting ROS and NF-κB pathway [J]. Mediators of Inflammation, 2015, 2015(1): 685043.

[17]SHAO Anwen, WU Haijian, HONG Yuan, et al. Hydrogen-rich saline attenuated subarachnoid hemorrhage-induced early brain injury in rats by suppressing inflammatory response: possible involvement of NF-κB pathway and NLRP3 inflammasome [J]. Molecular Neurobiology, 2016, 53(5): 3462-3476.

[18]QIN Zhexue, YU Pan, QIAN Dehui, et al. Hydrogen-rich saline prevents neointima formation after carotid balloon injury by suppressing ROS and the TNF-α/NF-κB pathway [J]. Atherosclerosis, 2012, 220(2): 343-350.

[19]ZHANG Guangchao, LI Zhe, MENG Chao, et al. The anti-inflammatory effect of hydrogen on lung transplantation model of pulmonary microvascular endothelial cells during cold storage period [J]. Transplantation, 2018, 102(8): 1253-1261.

[20]CHEN Meihong, ZHANG Jie, CHEN Yun, et al. Hydrogen protects lung from hypoxia/re-oxygenation injury by reducing hydroxyl radical production and inhibiting inflammatory responses [J]. Scientific Reports, 2018, 8(1): 8004.

[21]RADYUK S N. Mechanisms underlying the biological effects of molecular hydrogen [J]. Current Pharmaceutical Design, 2021, 27(5): 626-735.

[22]ONO H, NISHIJIMA Y, ADACHI N, et al. A basic study on molecular hydrogen (H2) inhalation in acute cerebral ischemia patients for safety check with physiological parameters and measurement of blood H2 level [J]. Medical Gas Research, 2012, 2(1): 21.

[23]GUAN Weijie, WEI Chunhua, CHEN Ailan, et al. Hydrogen/oxygen mixed gas inhalation improves disease severity and dyspnea in patients with Coronavirus disease 2019 in a recent multicenter, open-label clinical trial [J]. Journal of Thoracic Disease, 2020, 12(6): 3448-3452.

[24]ZENG Yingying, GUAN Weijie, WANG Kai, et al. Effect of hydrogen/oxygen therapy for ordinary COVID-19 patients: a propensity-score matched case-control study [J]. BMC Infectious Diseases, 2023, 23(1): 440.

[25]LIU Xiaoyu, MA Cuiqing, WANG Xiaoyu, et al. Hydrogen coadministration slows the development of COPD-like lung disease in a cigarette smoke-induced rat model [J]. International Journal of Chronic Obstructive Pulmonary Disease, 2017, 12: 1309-1324.

[26]ZHENG Zeguang, SUN Wuzhuang, HU Jieying, et al. Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: results of a multicenter, randomized, double-blind, parallel-group controlled trial [J]. Respiratory Research, 2021, 22(1): 149.

[27]HUANG Peikai, WEI Shushan, HUANG Weihua, et al. Hydrogen gas inhalation enhances alveolar macrophage phagocytosis in an ovalbumin-induced asthma model [J]. International Immunopharmacology, 2019, 74: 105646.

[28]LEBARON T W, LAHER I, KURA B, et al. Hydrogen gas: from clinical medicine to an emerging ergogenic molecule for sports athletes 1 [J]. Canadian Journal of Physiology and Pharmacology, 2019, 97(9): 797-807.

[29]趙云來(lái), 宋國(guó)華, 程岳雷, 等. 地塞米松聯(lián)合吸入高濃度氫氣對(duì)百草枯中毒大鼠的治療作用 [C]//2016中國(guó)中毒救治首都論壇暨第八屆全國(guó)中毒及危重癥救治學(xué)術(shù)會(huì)議論文集. 北京: 中國(guó)毒理學(xué)會(huì). 2016: 163-169.

[30]KAJIYA M, SATO K, SILVA M J B, et al. Hydrogen from intestinal bacteria is protective for concanavalin A-induced hepatitis [J]. Biochemical and Biophysical Research Communications, 2009, 386(2): 316-321.

[31]AZUMA T, YAMANE M, EKUNI D, et al. Drinking hydrogen-rich water has additive effects on non-surgical periodontal treatment of improving periodontitis: a pilot study [J]. Antioxidants, 2015, 4(3): 513-522.

[32]TAMAKI N, ORIHUELA-CAMPOS R C, FUKUI M, et al. Hydrogen-rich water intake accelerates oral palatal wound healing via activation of the Nrf2/antioxidant defense pathways in a rat model [J]. Oxidative Medicine and Cellular Longevity, 2016, 2016(1): 5679040.

[33]QIAN Liren, SHEN Jianliang, CHUAI Yunhai, et al. Hydrogen as a new class of radioprotective agent [J]. International Journal of Biological Sciences, 2013, 9(9): 887-894.

[34]TOMOFUJI T, KAWABATA Y, KASUYAMA K, et al. Effects of hydrogen-rich water on aging periodontal tissues in rats [J]. Scientific Reports, 2014, 4(1): 5534.

[35]ZHANG Yi, SU Wenjun, CHEN Ying, et al. Effects of hydrogen-rich water on depressive-like behavior in mice [J]. Scientific Reports, 2016, 6(1): 23742.

[36]楊建鴻, 劉伯言, 陳軍, 等. 納米氣泡氫水處理對(duì)咪喹莫特誘導(dǎo)銀屑病小鼠模型的影響 [J]. 生物技術(shù)進(jìn)展, 2024, 14(4): 676-684.

YANG Jianhong, LIU Boyan, CHEN Jun, et al. Effects of pre-treatment of nanobubble hydrogen water on the mouse psoriasis induction by imiquimod [J]. Current Biotechnology, 2024, 14(4): 676-684.

[37]LIU Fangting, XU Shengming, XIANG Zhenghua, et al. Molecular hydrogen suppresses reactive astrogliosis related to oxidative injury during spinal cord injury in rats [J]. CNS Neuroscience amp; Therapeutics, 2014, 20(8): 778-786.

[38]LI Guomin, JI Muhuo, SUN Xuejun, et al. Effects of hydrogen-rich saline treatment on polymicrobial sepsis [J]. Journal of Surgical Research, 2013, 181(2): 279-286.

[39]SUN Qiang, CAI Jianmei, LIU Shulin, et al. Hydrogen-rich saline provides protection against hyperoxic lung injury [J]. Journal of Surgical Research, 2011, 165(1): e43-e49.

[40]ONO H, NISHIJIMA Y, ADACHI N, et al. Improved brain MRI indices in the acute brain stem infarct sites treated with hydroxyl radical scavengers, edaravone and hydrogen, as compared to edaravone alone: a non-controlled study [J]. Medical Gas Research, 2011, 1(1): 12.

[41]李悅嫻, 秦樹存, 張錦. 富氫水對(duì)小鼠膿毒癥胰腺損傷的改善作用 [J]. 天津醫(yī)藥, 2021, 49(8): 808-812.

LI Yuexian, QIN Shucun, ZHANG Jin. The effect of hydrogen-rich saline on pancreatic injury in septic mice [J]. Tianjin Medical Journal, 2021, 49(8): 808-812.

[42]ZHOU Gaoxin, GOSHI E, HE Qianjun. Micro/nanomaterials-augmented hydrogen therapy [J]. Advanced Healthcare Materials, 2019, 8(16): 1900463.

[43]LOCHAN R C, HEAD-GORDON M. Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions [J]. Physical Chemistry Chemical Physics, 2006, 8(12): 1357-1370.

[44]SCHMITZ B, MüLLER U, TRUKHAN N, et al. Heat of adsorption for hydrogen in microporous high-surface-area materials [J]. ChemPhysChem, 2008, 9(15): 2181-2184.

[45]原野, 王明, 周云琪, 等. 金屬有機(jī)框架孔徑調(diào)控進(jìn)展 [J]. 化工學(xué)報(bào), 2020, 71(2): 429-450.

YUAN Ye, WANG Ming, ZHOU Yunqi, et al. Progress in pore size regulation of metal-organic frameworks [J]. CIESC Journal, 2020, 71(2): 429-450.

[46]RNNEBRO E C E, MAJZOUB E H. Recent advances in metal hydrides for clean energy applications [J]. MRS Bulletin, 2013, 38(6): 452-458.

[47]ZHAO Penghe, JIN Zhaokui, CHEN Qian, et al. Local generation of hydrogen for enhanced photothermal therapy [J]. Nature Communications, 2018, 9(1): 4241.

[48]ZHOU Gaoxin, WANG Yingshuai, JIN Zhaokui, et al. Porphyrin-palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy [J]. Nanoscale Horizons, 2019, 4(5): 1185-1193.

[49]KONG Lei, CHEN Chuanrui, MOU Fangzhi, et al. Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suppliers to scavenge continuously generated hydroxyl radicals in long term [J]. Particle amp; Particle Systems Characterization, 2019, 36(2): 1800424.

[50]WAN Weilin, LIN Y J, SHIH P C, et al. An in situ depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis [J]. Angewandte Chemie International Edition, 2018, 57(31): 9875-9879.

[51]ZHANG Wenjing, ZENG Lingting, YU Huan, et al. Injectable spontaneous hydrogen-releasing hydrogel for long-lasting alleviation of osteoarthritis [J]. Acta Biomaterialia, 2023, 158: 163-177.

[52]DAMAGHI M, WOJTKOWIAK J W, GILLIES R J. pH sensing and regulation in cancer [J]. Frontiers in Physiology, 2013, 4: 370.

[53]YANG Tian, JIN Zhaokui, WANG Zhihao, et al. Intratumoral high-payload delivery and acid-responsive release of H2 for efficient cancer therapy using the ammonia borane-loaded mesoporous silica nanomedicine [J]. Applied Materials Today, 2018, 11: 136-143.

[54]CAO Lin, HUANG Tianqiao, CHEN Xiaohong, et al. Uncovering the interplay between pH receptors and immune cells: potential drug targets (review) [J]. Oncology Reports, 2021, 46(4): 228.

[55]JI Yucheng, HU Yuwei, FENG Yubo, et al. Mitochondrial ‘birth-death’ coordinator: an intelligent hydrogen nanogenerator to enhance intervertebral disc regeneration [J]. Biomaterials, 2025, 313: 122764.

[56]LIU Hua, CHEN Danyang, YANG Xinhui, et al. Intestine-targeted controlled hydrogen-releasing MgH2 microcapsules for improving the mitochondrial metabolism of inflammatory bowel disease [J]. Advanced Functional Materials, 2024, 34(33): 2316227.

[57]LIU Boyan, LV Peixun, ZHANG Xiaoyi, et al. Zn-Fe primary battery-enabled controlled hydrogen release in stomach for improving insulin resistance in obesity-associated type 2 diabetes [J]. Bioactive Materials, 2024, 33: 242-250.

[58]MLINAR B, MARC J, JANEZ A, et al. Molecular mechanisms of insulin resistance and associated diseases [J]. Clinica Chimica Acta, 2007, 375(1/2): 20-35.

[59]GOYAL R K, GUO Yanmei, MASHIMO H. Advances in the physiology of gastric emptying [J]. Neurogastroenterology amp; Motility, 2019, 31(4): e13546.

[60]SCHWARZ R, KASPAR A, SEELIG J, et al. Gastrointestinal transit times in mice and humans measured with 27Al and 19F nuclear magnetic resonance [J]. Magnetic Resonance in Medicine, 2002, 48(2): 255-261.

[61]WAN Weilin, LIN Y J, CHEN H L, et al. In situ nanoreactor for photosynthesizing H2 gas to mitigate oxidative stress in tissue inflammation [J]. Journal of the American Chemical Society, 2017, 139(37): 12923-12926.

[62]ZHANG Boyu, WANG Fei, ZHOU Hua, et al. Polymer dots compartmentalized in liposomes as a photocatalyst for in situ hydrogen therapy [J]. Angewandte Chemie International Edition, 2019, 58(9): 2744-2748.

[63]MURA S, NICOLAS J, COUVREUR P. Stimuli-responsive nanocarriers for drug delivery [J]. Nature Materials, 2013, 12(11): 991-1003.

[64]ZHAO Bin, WANG Yingshuai, YAO Xianxian, et al. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst [J]. Nature Communications, 2021, 12(1): 1345.

[65]XU Yangsen, FAN Mingjian, YANG Wenjuan, et al. Homogeneous carbon/potassium-incorporation strategy for synthesizing red polymeric carbon nitride capable of near-infrared photocatalytic H2 production [J]. Advanced Materials, 2021, 33(39): 2101455.

[66]YANG Bowen, CHEN Yu, SHI Jianlin. Mesoporous silica/organosilica nanoparticles: synthesis, biological effect and biomedical application [J]. Materials Science and Engineering: R Reports, 2019, 137: 66-105.

[67]YOU Yanling, ZHU Yaxuan, JIANG Junjie, et al. Water-enabled H2 generation from hydrogenated silicon nanosheets for efficient anti-inflammation [J]. Journal of the American Chemical Society, 2022, 144(31): 14195-14206.

[68]CHEN Huanhuan, GUO Yunfei, ZHANG Zhewei, et al. Symbiotic algae-bacteria dressing for producing hydrogen to accelerate diabetic wound healing [J]. Nano Letters, 2022, 22(1): 229-237.

[69]CAMMACK R. Hydrogenase sophistication [J]. Nature, 1999, 397(6716): 214-215.

[70]SUN Rui, LIU Xiaocen, LI Guangzhi, et al. Photoactivated H2 nanogenerator for enhanced chemotherapy of bladder cancer [J]. ACS Nano, 2020, 14(7): 8135-8148.

[71]YAO Xianxian, CHEN Danyang, ZHAO Bin, et al. Acid-degradable hydrogen-generating metal-organic framework for overcoming cancer resistance/metastasis and off-target side effects [J]. Advanced Science, 2022,

9(10): 2101965.

[72]GONG Fei, XU Jiachen, LIU Bo, et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy [J]. Chem, 2022, 8(1): 268-286.

[73]CHEN Jiajie, LIN Shiyang, ZHAO Doudou, et al. Palladium nanocrystals-engineered metal-organic frameworks for enhanced tumor inhibition by synergistic hydrogen/photodynamic therapy [J]. Advanced Functional Materials, 2021, 31(4): 2006853.

[74]DENG Ronghui, ZOU Meizhen, ZHENG Diwei, et al. Nanoparticles from cuttlefish ink inhibit tumor growth by synergizing immunotherapy and photothermal therapy [J]. ACS Nano, 2019, 13(8): 8618-8629.

[75]YUAN Guanglong, CEN Jieqiong, LIAO Jiamin, et al. In situ hydrogen nanogenerator for bimodal imaging guided synergistic photothermal/hydrogen therapies [J]. Nanoscale, 2021, 13(37): 15576-15589.

[76]WANG Shibo, LIU Xinhua, LI Bin, et al. Bacteria-assisted selective photothermal therapy for precise tumor inhibition [J]. Advanced Functional Materials, 2019, 29(35): 1904093.

(編輯 杜秀杰)

主站蜘蛛池模板: 亚洲色图欧美视频| 国产精品v欧美| 真实国产乱子伦视频| 91免费国产高清观看| 91美女视频在线观看| 国产美女在线免费观看| 欧美一级专区免费大片| 国产婬乱a一级毛片多女| 伊人丁香五月天久久综合| 国产91九色在线播放| 夜精品a一区二区三区| 欧美无专区| 亚洲精品男人天堂| 成年A级毛片| 国禁国产you女视频网站| 亚洲视频在线青青| 在线视频亚洲色图| 国产精品浪潮Av| 人人看人人鲁狠狠高清| 色亚洲成人| 99九九成人免费视频精品 | 国产高潮流白浆视频| 国产精品成人观看视频国产 | 综1合AV在线播放| 99精品视频播放| 亚洲香蕉伊综合在人在线| 久久婷婷五月综合色一区二区| 激情无码字幕综合| 日韩小视频在线播放| 国产精品第三页在线看| 99在线视频免费| 国产在线观看人成激情视频| 欧美成人综合在线| 亚洲成aⅴ人在线观看| 久青草免费视频| 国产激情在线视频| 免费一级成人毛片| 伊人激情久久综合中文字幕| 伊人精品视频免费在线| 亚洲欧美成人| 区国产精品搜索视频| 91毛片网| 极品国产在线| 亚洲一区二区精品无码久久久| 丁香婷婷久久| 亚洲Aⅴ无码专区在线观看q| 国产欧美日韩另类精彩视频| 久久人人爽人人爽人人片aV东京热| 亚洲永久免费网站| 欧美综合一区二区三区| 欧美福利在线| 大学生久久香蕉国产线观看| 免费无遮挡AV| 午夜一区二区三区| 999精品色在线观看| 中文字幕亚洲乱码熟女1区2区| 亚洲男人天堂网址| 国产成人做受免费视频| 欧美日韩在线亚洲国产人| 国产在线第二页| 高清色本在线www| 亚洲品质国产精品无码| 露脸国产精品自产在线播| 成人国产精品一级毛片天堂| 亚洲一区二区在线无码| 国产老女人精品免费视频| 国产一级毛片yw| 91精品国产一区自在线拍| 国产一区免费在线观看| 中文字幕伦视频| 久久中文字幕av不卡一区二区| 亚洲三级色| 五月天久久婷婷| 蜜桃视频一区二区| 香蕉久久国产精品免| 久久99国产综合精品女同| 99精品视频在线观看免费播放| 国内精品视频在线| 99这里只有精品在线| 67194亚洲无码| 九色视频一区| 久久国产热|