













摘 要: 為了提高納濾膜的抗污染性能和分離性能,以親水聚偏氟乙烯(Polyvinylidene fluoride, PVDF)微孔膜作為基膜,在基膜表面通過單寧酸(Tannic acid, TA)和二乙烯三胺五乙酸(Diethylenetriamine pentaacetic acid, DTPA)交聯(lián)形成酯化層,再通過均苯三甲酰氯(Trimesoyl chloride, TMC)和聚乙烯亞胺(Polyethyleneimine, PEI)界面聚合反應(yīng)制備單寧酸/二乙烯三胺五乙酸酯化層修飾的聚酰胺納濾膜(TA/DTPA/PA納濾膜)。分別利用掃描電子顯微鏡、紅外光譜儀和視頻水接觸角儀表征TA/DTPA/PA納濾膜的表面形貌、化學(xué)結(jié)構(gòu)和親水性。通過優(yōu)化制備條件,制得具有良好抗污染性能和分離性能的TA/DTPA/PA納濾膜。結(jié)果表明:通過酯化層的修飾,TA/DTPA/PA納濾膜表面變得光滑且親水。當(dāng)TA質(zhì)量分?jǐn)?shù)為1.00%,DTPA質(zhì)量分?jǐn)?shù)為0.75%,反應(yīng)時間為15 min時,TA/DTPA/PA納濾膜對MgSO4的分離性能最佳,截留率為92.6%,水通量為31.6 L/(m2·h);與對照膜(PA納濾膜)相比,TA/DTPA/PA納濾膜截留率提升5.1%,水通量提升36.8%。TA/DTPA/PA納濾膜對牛血清白蛋白(Bovine serum albumin, BSA)的通量恢復(fù)率(Flux recovery rate, FRR)達到了94.9%;與PA納濾膜相比,TA/DTPA/PA納濾膜的FRR提升12.4%。該研究制備的TA/DTPA/PA納濾膜具有良好的抗污染性能和分離性能,并克服了傳統(tǒng)抗污染改性方法對滲透性能帶來的負(fù)面影響,在污水處理應(yīng)用中具有一定的潛在優(yōu)勢。
關(guān)鍵詞:納濾膜;界面聚合;酯化層;抗污染;分離性能;親水性
中圖分類號:TQ028.8
文獻標(biāo)志碼:A
文章編號:1673-3851 (2025) 03-0166-09
引文格式:朱德良,何家勁,唐雨欣,等. 單寧酸/二乙烯三胺五乙酸酯化層修飾的聚酰胺納濾膜的制備及性能研究[J]. 浙江理工大學(xué)學(xué)報(自然科學(xué)),2025,53(2):166-174.
Reference Format: ZHU Deliang,HE Jiajin,TANG Yuxin,et al. A study on the preparation and performance of polyamide nanofiltration membranes modified with tannic acid/diethylenetriamine pentaacetic acid esterification layer[J]. Journal of Zhejiang Sci-Tech University,2025,53(2):166-174.
A study on the preparation and performance of polyamide nanofiltration membranes modified with tannic acid/diethylenetriamine pentaacetic acid esterification layer
ZHU Deliang, HE Jiajin, TANG Yuxin, LI Jiangnan, JI Xiaoyu, TANG Hongyan
(a.Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology;
b.National Engineering Lab for Textile Fiber Materials and Processing Technology,
Zhejiang Sci-Tech University, Hangzhou 310018, China)
Abstract:To enhance the antifouling properties and separation performance of nanofiltration membranes, hydrophilic polyvinylidene fluoride (PVDF) microporous membranes were utilized as the substrate, and tannic acid (TA) and diethylenetriamine pentaacetic acid (DTPA) esterification layer was crosslinked on the surface of the substrate. Subsequently, the polyamide nanofiltration membranes modified with tannic acid/diethylenetriamine pentaacetic acid esterification layer (TA/DTPA/PA nanofiltration membranes) were fabricated through the interfacial polymerization of trimesoyl chloride (TMC) and polyethyleneimine (PEI). The surface morphology, chemical structure, and hydrophilicity of the TA/DTPA/PA nanofiltration membranes were analyzed by using scanning electron microscope, Fourier-transform infrared spectroscopy, and video water contact angle meter. The TA/DTPA/PA nanofiltration membranes with good antifouling properties and separation performance were obtained by optimizing the preparation conditions. The results indicated that the surfaces of the TA/DTPA/PA nanofiltration membranes were smoothed and made hydrophilic through esterification modification. When the mass fraction of TA was 1.00%, the mass fraction of DTPA was 0.75%, and the reaction time was 15 min, the separation performance of the TA/DTPA/PA nanofiltration membrane MgSO4 was found to be optimal, with a rejection rate of 92.6% and a water flux of 31.6 L/(m2·h). Compared to the control membrane (PA nanofiltration membrane), the rejection rate was increased by 5.1% and the water flux was enhanced by 36.8%. The flux recovery rate (FRR) of the TA/DTPA/PA nanofiltration membrane for bovine serum albumin (BSA) was achieved at 94.9%. Compared to the PA nanofiltration membrane, the FRR was increased by 12.4%. These results indicate that the TA/DTPA/PA nanofiltration membranes possess good antifouling properties and separation performance, overcoming the negative impact on permeation performance caused by traditional antifouling modification methods, and demonstrating potential advantages in wastewater treatment applications.
Key words:nanofiltration membrane; interfacial polymerization; esterification layer; antifouling; separation performance; hydrophilicity
0 引 言
由于氣候變化、嚴(yán)重干旱和人口增長,淡水資源短缺已成為一個全球性的問題[1-2],迫切需要開發(fā)將海水或污染水轉(zhuǎn)化為淡水資源的技術(shù)[3]。……