









摘" " 要:【目的】探究PpCLH1基因在葉綠素降解中的功能。果皮葉綠素降解是桃果實成熟過程中的標志性信號之一。葉綠素酶(Chlorophyllase,CLH)一直被人們認為是葉綠素降解過程中的第一種酶,CLH是參與植物葉片和果實褪綠的重要基因。然而,桃CLH基因在果皮葉綠素降解中的功能尚不清晰。【方法】以中蟠102為試驗材料,克隆PpCLH1基因,分析PpCLH1的氨基酸序列,檢測桃果實成熟過程中果皮PpCLH1的轉錄水平,研究PpCLH1基因在桃葉綠素降解過程中的功能。【結果】PpCLH1編碼區全長為972 bp,編碼323個氨基酸,在薔薇科植物中表現出高度的保守性。PpCLH1基因的表達水平隨著果實成熟褪綠呈現逐漸上升的趨勢,在成熟前12 d達到最高,之后表達量不斷降低。瞬時過表達PpCLH1基因后,煙草葉片顏色出現明顯褪綠。PpCLH1是桃果皮轉色期葉綠素降解的關鍵基因。【結論】通過對PpCLH1基因進行鑒定和功能研究,發現果實成熟前12 d PpCLH1明顯高表達,在煙草葉片中瞬時過表達PpCLH1會導致葉片明顯褪綠,這為進一步解析桃果實發育過程中葉綠素降解的分子機制提供了參考。
關鍵詞:桃;葉綠素降解;葉綠素酶;PpCLH1基因
中圖分類號:S662.1 文獻標志碼:A 文章編號:1009-9980(2025)03-0476-10
Construction and functional identification of overexpression vector of the peach PpCLH1 gene
LIU Xin, ZHANG Xiaoyu, MENG Junren, LI Ang, DUAN Wenyi, SUN Shihang, PAN Lei, ZENG Wenfang, WANG Zhiqiang, NIU Liang*
(Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences/National Peach amp; Grape Improvement Center/Zhongyuan Research Center, Zhengzhou 450009, Henan, China)
Abstract: 【Objective】 Pericarp chlorophyll degradation is a prominent signal during the ripening of peach fruit. Chlorophyllase (CLH) is considered the primary enzyme in the process of chlorophyll degradation and is a crucial gene involved in the degreening of plant leaves and fruits. The degradation of chlorophyll is an important signal for the onset of fruit ripening and the chlorophyll content plays a significant role in fruit appearance, impacting consumer choice. However, the role of the CLH gene in peach fruit pericarp chlorophyll degradation during development remains unclear. Therefore, the objective of this study was to investigate the transcript level of the PpCLH1 gene prior to fruit ripening and its role in pericarp chlorophyll degradation during fruit development. 【Methods】 Zhongpan 102(Prunus persica L.) was selected as the experimental material. It has been observed that the expression level of the PpCLH1 increases during the fruit color transition period. However, there have been no reports on the functional study of the chlorophyll degradation gene PpCLH1 in peach. To address this issue, the CDS of the related gene was obtained from the genomic database, and the amino acid sequence of the PpCLH1 was analyzed. The function of the PpCLH1 gene was demonstrated using tobacco transient expression, and the overexpression of the PpCLH1 gene in tobacco was determined by real-time quantitative polymerase chain reaction (qRT-PCR). 【Results】 The coding sequence of the PpCLH1 gene spaned 972 base pairs and encoded a protein comprising 323 amino acids. An initial examination of the physicochemical properties of the PpCLH1 protein, was conducted utilizing the Expasy tool, disclosed an isoelectric point of 6.12, with a complement of 26 positively charged and 31 negatively charged residues. The mean hydrophilicity index stood at 0.065, surpassing the global average, while the instability index was computed to be 44.56, hinting at potential protein instability. Additionally, the aliphatic index registered at 88.76, further supporting the notion of protein instability. The advanced secondary structure analysis of the peach-derived PpCLH1 protein, executed on the Sopma platform, revealed a structural composition dominated by α-helices (29.72%) and β-sheets (4.64%), supplemented by extended strands constituting 16.10% and irregular coils accounting for 49.54% of the structure. The tertiary structure predictions, facilitated by the SWISS-MODEL server, predominantly depicted irregular coil conformations, corroborating the findings from secondary structure analysis and additionally noting the presence of extended chains and β-sheet elements.To investigate homology, a BLASTp search against the NCBI database was performed, identifying a closely related protein sequence. A comparative amino acid sequence alignment generated via DNAMAN software highlighted that the peach PpCLH1 shared the highest degree of homology, 99.2%, with the apricot PdCLH1, underscoring their genetic affinity. Similarly, cherry PaCLH1 exhibited a notable similarity of 96.6% to PpCLH1, indicative of a conserved CLH1 function across the Rosaceae family, specifically within the genus Prunus. The phylogenetic analysis clustered peach PpCLH1, apricot PdCLH1, and cherry PaCLH1 into a single clade, evidencing their close evolutionary proximity. Notably, these proteins also demonstrated elevated homology with the apple MdCLH1 protein, reinforcing the conservation hypothesis of CLH1 proteins throughout the Rosaceae family. Conversely, CLH1 proteins from tomato and tobacco showed more remote phylogenetic relationships. To ascertain the transcriptional dynamics of PpCLH1 during the pre-ripening phase of peach fruit, RNA was isolated and reverse-transcribed into cDNA for subsequent qRT-PCR quantification. This analysis unveiled a low expression level of PpCLH1 30 days prior to fruit maturation, characterized by a distinct green pericarp. As the ripening process unfolded, the pericarp transitioned to a paler green hue, paralleled by a surge in PpCLH1 transcript abundance. Specifically, at 16 days preceding fruit ripening, a marked elevation in PpCLH1 expression was observed, peaking at 12 days before ripening—a twelvefold increase compared to its baseline at 30 days prior. An overexpression construct for PpCLH1 was engineered through homologous recombination techniques and transiently introduced into tobacco leaves to assess functional implications. The phenotypic evaluation of transfected tobacco leaves displayed a lighter green phenotype relative to the dark green control leaves, accompanied by a substantial reduction in chlorophyll content. Collectively, these observations imply that PpCLH1 would be instrumental in facilitating chlorophyll breakdown in tobacco, thereby providing indirect evidence for its regulatory role in chlorophyll degradation and concomitant color transformations in peach fruit during ripening. Consequently, it could be postulated that the PpCLH1 gene would act as a pivotal regulator of chlorophyll metabolism and be associated with visual changes in peach fruits approaching maturity. 【Conclusion】 This study conducted identification and functional studies on the PpCLH1 gene, discovering that PpCLH1 is significantly highly expressed during the fruit color transition period. The transient overexpression of the PpCLH1 in tobacco leaves led to a noticeable chlorosis of the leaves. These findings would provide new insights into the degradation of chlorophyll in peach skin throughout the entire fruit development process. Furthermore, they would offer valuable references for exploring the molecular mechanisms of chlorophyll degradation during peach fruit development.
Key words: Peach; Chlorophyll degradation; Chlorophyllase; PpCLH1 gene
葉綠素降解是果實成熟最明顯的特征之一,也是植物代謝過程中的重要一環,促進營養從衰老器官和組織重新分配到正在生長的組織或貯存器官[1]。近年來,植物葉綠素主要降解途徑已被闡明,由6種葉綠素降解酶(chlorophyll catabolic enzyme,CCE)催化[2]。其中葉綠素酶(Chlorophyllase,CLH)一直被認為是葉綠素降解過程中的第一種酶。CLH也是研究比較廣泛的葉綠素降解酶,目前已經在銀杏(Ginkgo biloba L.)[3]、柑橘(Citrus reticulata Blanco)[4]等多種植物中純化得到了CLH蛋白。CLH催化葉綠素a脫植醇基形成脫植基葉綠素a(Chlorophyll a)[5]。有許多研究表明CLH與葉綠素降解有直接聯系,在衰老的葉片和成熟果實中可以檢測到CLH活性[6]。在南瓜(Cucurbita moschata Duch.)葉片和煙草(Nicotiana tabacum L.)葉片中過表達柑橘CLH基因,將會加速葉片的葉綠素降解[7]。但有研究發現葉綠素酶活性的提高與葉綠素含量的下降并不完全一致。在菜豆突變體和野生型植株葉片上發現,新鮮葉片中CLH酶活性高于衰老的葉片[8]。也有研究表明即使大部分葉綠素已經消失,苦楝(Melia azedarach L.)和旱金蓮(Tropaeolum majus L.)在衰老過程中仍保持了較高的CLH活性[9]。對擬南芥葉綠素酶雙突變體的研究發現,葉綠素酶雙突變體葉片衰老時葉綠素依舊可以降解,自此認為葉綠素酶可能與葉片衰老時的葉綠素降解沒有關系[10]。最新的研究表明擬南芥中CLH1參與了PSII受損D1的降解,過表達CLH1提高了幼苗對高光的耐受性,對AtCLH1進行亞細胞定位發現,CLH1定位在幼葉的葉綠體中,而在成熟和衰老葉片中定位在葉綠體外[11]。這說明CLH1是幼葉中葉綠素降解的關鍵基因,而在老葉中不是葉綠素降解的關鍵因素。
但也有研究表明乙烯處理可使柑橘果皮中CLH酶活性提高2.5~4.0倍,導致葉綠素迅速降解,果皮明顯褪綠[12]。青甌柑和黃皮椪柑果實采后葉綠素降解過程中CLH先上調后下調[13]。柑橘CLH的N段有一段轉運肽序列,當該序列缺失時,成熟的葉綠素酶形成,引起柑橘中葉綠素的降解,說明CLH存在翻譯后修飾,該過程對CLH酶活性有重要的影響[14]。盡管CLH在不同物種中的基因表達情況與酶活性規律陸續被發現,但CLH在不同研究出現相互矛盾的結果,使得葉綠素酶在葉綠素降解過程中的功能一直是一個謎[15]。此外,當細胞膜解體時,CLH降解葉綠素a產生脫植基葉綠素a,脫植基葉綠素a對昆蟲是有毒的,以此抵御昆蟲對植物的侵害[16]。而且CLH降解葉綠素a產生脫植基葉綠素a及其衍生物也被證明具有抗病毒作用[17],AtCLH1的下調會導致擬南芥對油菜芽孢桿菌的敏感性增加[18]。
CLH在植物中可能具有更廣泛的功能,在不同植物不同發育階段中可能具有不同的作用,甚至在植物的不同器官也有著不同的基因表達情況,它參與的葉綠素降解過程可能與各種生物脅迫與非生物脅迫等多種生理現象相關。由于CLH在光合生物中是保守的,因此通過生物信息學手段研究CLH同系物在其他物種中的作用是有生物學意義的。
目前,國內外對葉綠素酶的研究主要集中在模式植物擬南芥上,而對薔薇科植物CLH的探索較少,PpCLH1基因在桃中的功能尚未鑒定,其對桃果實葉綠素降解的影響也未得到深入研究。基于此,筆者在本研究中對CLH1的蛋白結構特征進行了生物信息學分析,并對PpCLH1的基因功能進行鑒定和研究,這對桃果實成熟過程中果皮葉綠素降解的研究具有一定的啟發意義,為進一步研究PpCLH1基因在桃中的生物學功能奠定理論基礎。
1 材料和方法
1.1 試驗材料
供試材料為中蟠102,來自中國農業科學院鄭州果樹研究所桃品種圃內,株行距為1.0 m×4.0 m,2017年定植,常規管理,鄭州地區7月上旬成熟。2023年6—7月,于成熟前30 d開始采摘樹體外圍中上部大小均勻、無病蟲害、成熟度一致的果實30個,帶回實驗室使用尼康D 700相機于自然光下以黑色植絨布為背景拍照。以10個果實為一個樣本,3次重復為1組,取樣間隔7 d,在果實轉色期每隔4 d取樣1次,削取表皮進行液氮速凍,保存至-80 ℃冰箱備用。
1.2 RNA提取及反轉錄
總RNA提取參照OMEGA Plant RNA Kit說明書(廣州飛揚生物工程有限公司,廣州,中國)。利用1.5%瓊脂糖凝膠電泳檢測RNA質量和純度,取1 mL RNA利用微量紫外分光光度計NANO,DROP2000(Thermo Scientific,麻省)測定濃度。取5 mL RNA參照HiScript Ⅲ All-in-one RT SuperMix Perfect for qPCR第一鏈合成試劑盒說明書(南京諾唯贊生物科技股份有限公司,南京,中國),進行逆轉錄,-20 ℃冰箱保存進行后續的實時熒光定量PCR。
1.3 實時熒光定量檢測
從桃基因組數據庫Peach DataBase(http://www.peachmd.com/#/)下載相關基因的CDS(Coding sequence),利用primer primer 5.0軟件設計基因克隆引物,長度在20 bp左右,G+C含量在40%~60%,引物Tm值在57~63 ℃,引物避免發夾結構和引物二聚體,擴增片段大小為80~150 bp;PCR體系為15 mL:cDNA 1 mL、Mix 7.5 mL、引物F 0.3 mL、引物R 0.3 mL、水6 mL。PCR程序設置為:95 ℃預變性 5 min;95 ℃變性30 s、60 ℃退火30 s、72 ℃延伸30 s,擴增循環數為40,設置3個技術重復。引物序列見表1。實時熒光定量PCR所用的儀器為羅氏480,所用試劑盒為aq Pro Universal SYBR qPCR Master Mix(南京諾唯贊生物科技股份有限公司,南京,中國)。選取Actin(ppa007228mg)為桃內參基因[19],最后按照2-ΔΔCT方法計算結果[20]。
1.4 桃PpCLH1過表達載體的構建及轉化
根據PpCLH1目的基因編碼區(CDS)的全長序列,結合PGreen 62-sk載體上的Bam HⅠ和Eco RⅠ為酶切位點,利用primer 5.0軟件設計基因克隆引物(表2),由上海生工公司進行引物的合成。以中蟠102號的cDNA為模板,利用合成的克隆引物擴出PpCLH1目的基因CDS區的全長序列,用限制性內切酶Bam HⅠ和Eco RⅠ對62-sk空載體進行雙酶切以獲得線性化載體,于水浴鍋中37 ℃酶切30 min。利用1.5%瓊脂糖凝膠電泳,切下帶有目的基因條帶的凝膠,參考凝膠回收試劑盒說明書FastPure Gel DNA Extraction Mini Kit(南京諾唯贊生物科技股份有限公司,南京,中國)進行目的DNA片段的回收及純化,取1 mL" DNA利用微量紫外分光光度計NANO,DROP2000(Thermo Scientific,麻省)測定濃度。參考同源重組試劑盒說明書ClonExpress?Ⅱ One Step Cloning Kit(南京諾唯贊生物科技股份有限公司,南京,中國),對PpCLH1基因的純化產物與線性化載體進行重組連接反應,構建PpCLH1的過表達載體。轉化至大腸桿菌感受態細胞DH5α,鑒定的含有基因PpCLH1片段的陽性菌落送生工生物工程(上海)股份有限公司測序。選擇測序正確的菌落采用質粒提取試劑盒純化PpCLH1質粒,用限制性內切酶Bam HⅠ對該質粒進行酶切1 h后,使用瓊脂糖電泳檢測。將PpCLH1質粒轉入農桿菌GV3101感受態細胞,利用注射的方法瞬時浸染煙草葉片。
1.5 葉綠素含量
葉綠素含量測定參照李合生[21]的方法進行。
1.6 生物信息學分析
利用桃基因組數據庫Peach DataBase(http://www.peachmd.com/#/)獲得PpCLH1基因序列,利用NCBI數據庫中BLASTp在線分析軟件對蛋白PpCLH1進行同源性比對并下載其同源蛋白序列。通過DNAMAN獲得不同物種中CLH1氨基酸序列比對圖,并結合MEGA7.0的Clustal W進行聚類分析。使用Expasy(https://web.expasy.org/protparam/)在線分析,對PpCLH1蛋白的分子質量、等電點、氨基酸數目、氨基酸組分、脂肪指數、親水性等進行分析。用SOPMA(https://npsa prabi.ibcp.fr/)在線軟件對PpCLH1蛋白的二級結構進行預測;使用Swiss-model(https://swissmodel.expasy.org/)對PpCLH1蛋白的三級結構進行預測。
2 結果與分析
2.1 PpCLH1基因克隆
以中蟠102號果皮cDNA為模板,擴增PpCLH1目的基因CDS區的全長序列,1%瓊脂糖凝膠電泳檢測,使用膠回收試劑盒(南京諾唯贊生物科技股份有限公司)進行目的DNA片段的回收及純化,用微量紫外分光光度計測定濃度。隨后將克隆片段連接至PGreen 62-sk載體中。陽性克隆測序結果表明中蟠102 PpCLH1基因與UNIPORT數據庫(https://www.uniprot.org/)中桃基因組公布的PpCLH1序列比對率為100%(圖1)。
2.2 PpCLH1蛋白基本理化性質分析
PpCLH1編碼區全長為972 bp,編碼323個氨基酸。用Expasy在線分析PpCLH1蛋白的理化性質,該蛋白的分子式為C1568H2441N403O451S16,總原子數為4879,分子質量為34 667.02 Da,等電點為6.12,帶正電荷的殘基總數為26,帶負電荷的殘基總數為31,總平均親水性為0.065,大于平均值,不穩定系數為44.56,脂肪族指數是88.76,并預測PpCLH1蛋白是一個不穩定的蛋白。
2.3 PpCLH1蛋白二級結構、三級結構分析
利用Sopma網站分析桃PpCLH1的二級結構(圖2),發現多個氨基酸參與α-螺旋、β-折疊等二級結構的形成,其中α-螺旋占比29.72%、β-折疊占比4.64%、延伸鏈占比16.10%、無規則卷曲占比49.54%。通過SWISS-MODEL網站預測PpCLH1蛋白的三維結構(圖3),發現該蛋白無規卷曲占比最大,同時還存在延伸鏈和β-折疊等結構,該預測結果與二級結構預測結果一致。
2.4 多序列分析與CLH1蛋白系統進化樹分析
不同物種CLH1氨基酸序列比對的結果顯示(圖4),桃PpCLH1蛋白與其他物種中CLH1蛋白具有較高的同源性。DNAMAN顯示桃PpCLH1、杏PdCLH1、櫻桃PaCLH1、蘋果MdCLH1、柑橘CsCLH1、葡萄VvCLH1、擬南芥AtCLH1、番茄SlCLH1、煙草NtCLH1的一致性為67.48%。其中桃PpCLH1與杏中PdCLH1蛋白的同源性最高,為99.2%,這也證明了桃與杏的親緣關系。櫻桃PaCLH1與PpCLH1相似度也高達96.6%,說明CLH1在薔薇科李屬植物中有著高度的保守性。
根據多個物種的CLH1蛋白序列,利用MEGA 7.0軟件,采用鄰接法構建了包括PpCLH1等9個CLH1蛋白家族的系統進化樹(圖5)。發現桃PpCLH1、杏PdCLH1、櫻桃PaCLH1位于進化樹同一分支,親緣關系最近,同時與蘋果MdCLH1蛋白的同源性也較高,這說明薔薇科中CLH1蛋白進化較為保守,但與番茄和煙草的CLH1蛋白親緣關系較遠。
2.5 PpCLH1在不同發育時期桃果實中的表達分析
葉綠素降解主要發生在果實完全成熟前的發育階段中。因此,筆者選用中蟠102果實成熟前30 d、23 d、16 d、12 d、8 d、4 d、0 d共7個時間點的桃果皮,進行PpCLH1轉錄水平分析。熒光定量PCR分析的結果顯示(圖6),在果實成熟前30 d,果實呈現明顯綠色時,PpCLH1轉錄水平較低;隨著果實逐步成熟,果皮褪綠,表達量不斷升高。在果實成熟前16 d,PpCLH1的表達量快速上升,并在果實成熟前12 d達到最高。基于以上結果,推測PpCLH1基因可能是調控桃果實轉色時褪綠的重要基因。
2.6 瞬時注射煙草葉片驗證PpCLH1的功能
為了驗證PpCLH1基因的功能,利用瞬時注射煙草葉片以Pgreen 62-sk空載作為對照,對PpCLH1基因的功能進行初步的驗證。對煙草葉片表型分析,發現瞬轉PpCLH1煙草葉片顏色呈現淡綠色,而對照煙草葉片呈現深綠色(圖7)。
對葉片葉綠素含量進行測定,結果顯示瞬轉PpCLH1煙草葉片葉綠素含量相較于對照煙草葉片顯著降低(圖8-A)。熒光定量結果顯示在瞬時注射的煙草葉片中檢測到了PpCLH1的表達,與對照相比,PpCLH1基因在煙草葉片中的表達量相較于野生型WT上調了33倍(圖8-B)。上述結果表明,PpCLH1具有促進葉綠素降解,進而導致煙草葉片葉綠素含量降低的功能。
3 討 論
在葉片衰老和果實成熟過程中葉綠素降解是標志性的信號之一[22]。在過量光照條件下,葉綠體中光系統產生大量ROS,而葉綠素參與光系統中能量的吸收與轉移,對光保護和清除活性氧具有重要作用[23]。最近的研究表明,葉綠素酶參與葉綠素脫植基反應過程中產生的植醇基,可以作為α-生育酚合成的前體,說明葉綠素酶參與葉綠素降解在清除ROS過程中具有重要作用[24]。樊艷燕等[25]發現BoCLH1主要在青花菜初始衰老中起降解葉綠素的作用。但也有研究表明CLH的表達與銀杏葉片衰老或果實成熟過程均無關[6]。將匍匐剪股穎(Agrostis stolonifera)暴露于熱脅迫溫度下35 d,響應熱脅迫后,其葉綠素酶活性增強[26]。在正常生長條件下,擬南芥CLH的敲除系仍然能夠以與野生型植物相同的速率降解葉綠素,擬南芥CLH沒有參與到衰老進程中葉綠素的降解代謝[27]。但CLH突變體的幼苗在強光持續照射下,比野生型表現出更嚴重的光傷害,積累更多的光保護色素(花色素苷)以降低光傷害[28]。因此擬南芥葉綠素降解的另一條途徑涉及脫酶葉綠素水解酶(pheophytin pheophorbide hydrolase,PPH),它是在擬南芥中催化葉綠素降解的必需酶[29],但在PPH番茄果實成熟過程中不起作用[30]。
因此,CLH在果實發育和葉片中是否具有不同的葉綠素代謝作用呢?番茄(Solanum lycopersicum)中SlPPH沉默番茄系葉綠素降解不正常,在葉片衰老期間積累脫鎂葉綠素,但果實中只會短暫積累,最終這些果實能夠像野生類型一樣降解葉綠素。因此,番茄果實成熟過程中葉綠素降解還涉及其他葉綠素降解酶[30]。在番茄果實成熟過程中,CLH有可能是參與葉綠素降解的酶,類似于柑橘CLH。多種植物的研究表明,CLH對植物激素信號轉導具有重要作用[31]。鮮棗色澤與葉綠素酶活性顯著相關,葉綠素酶直接參與鮮棗的紅變[32]。杧果成熟時葉綠素酶活性升高,葉綠素降解,但采前噴灑赤霉素會導致杧果葉綠素酶活性降低,從而延緩葉綠素的降解[33]。柑橘CLH位于葉綠體中,可以響應乙烯,并參與果實成熟過程中葉綠素的降解[34]。在蜜柑(Citrus unshiu)中,乙烯能夠增強葉綠素酶活性,從而加速葉綠素的降解[35]。將茉莉酸甲酯(Methyl jas monate,MeJA)作用于擬南芥植物時,CLH基因的表達量達到最高[36]。因此,CLH的功能可能因物種或植物器官而異。
盡管CLH距離其被發現已經過了一個多世紀,并且在其功能和相關機制上在不同物種上也有了很多研究,但CLH的功能還有許多未解答的問題[37]。由于CLH在果實成熟與葉片衰老過程葉綠素降解中扮演的角色尚不夠清晰,其功能可能因物種或植物器官而異。因此,進一步解析PpCLH1是如何調控果實成熟過程與幼嫩葉片葉綠素降解的具有重要意義,這將為探索桃果實發育過程中葉綠素降解的分子機制提供參考。
4 結 論
PpCLH1基因隨著桃果實成熟轉錄水平逐漸上升,在果實成熟前16~12 d時表達量升至最高,之后隨著果實成熟表達量不斷下降。煙草葉片瞬時表達結果表明,PpCLH1具有促進葉片葉綠素降解的功能。基于本研究的結果,筆者初步推測PpCLH1具有促進桃果皮葉綠素降解的功能,這對桃果實外觀品質研究具有一定的啟發意義,也為CLH1基因轉錄水平和功能研究提供了一定的理論參考。
參考文獻References:
[1] LIM P O,KIM H J,GIL NAM H. Leaf senescence[J]. Annual Review of Plant Biology,2007,58:115-136.
[2] H?RTENSTEINER S. Update on the biochemistry of chlorophyll breakdown[J]. Plant Molecular Biology,2013,82(6):505-517.
[3] OKAZAWA A,TANGO L,ITOH Y,FUKUSAKI E,KOBAYASHI A. Characterization and subcellular localization of chlorophyllase from Ginkgo biloba[J]. Zeitschrift Fur Naturforschung. C,Journal of Biosciences,2006,61(1/2):111-117.
[4] JACOB-WILK D,HOLLAND D,GOLDSCHMIDT E E,RIOV J,EYAL Y. Chlorophyll breakdown by chlorophyllase:Isolation and functional expression of the Chlase1 gene from ethylene-treated Citrus fruit and its regulation during development[J]." The Plant Journal,1999,20(6):653-661.
[5] CHOU Y L,LEE Y L,YEN C C,CHEN L F O,LEE L C,SHAW J F. A novel recombinant chlorophyllase from Cyanobacterium cyanothece sp. ATCC 51142 for the production of bacteriochlorophyllide a[J]. Biotechnology and Applied Biochemistry,2016,63(3):371-377.
[6] TANG L,OKAZAWA A,ITOH Y,FUKUSAKI E I,KOBAYASHI A. Expression of chlorophyllase is not induced during autumnal yellowing in Ginkgo biloba[J]. Zeitschrift Fur Naturforschung. C,Journal of Biosciences,2004,59(5/6):415-420.
[7] HARPAZ-SAAD S,AZOULAY T,ARAZI T,BEN-YAAKOV E,METT A,SHIBOLETH Y M,H?RTENSTEINER S,GIDONI D,GAL-ON A,GOLDSCHMIDT E E,EYAL Y. Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated[J]. The Plant Cell,2007,19(3):1007-1022.
[8] MAJUMDAR S,GHOSH S,GLICK B R,DUMBROFF E B. Activities of chlorophyllase,phosphoenolpyruvate carboxylase and ribulose-1,5-bisphosphate carboxylase in the primary leaves of soybean during senescence and drought[J]. Physiologia Plantarum,1991,81(4):473-480.
[9] BEN-YAAKOV E,HARPAZ-SAAD S,GALILI D,EYAL Y,GOLDSCHMIDT E. The relationship between chlorophyllase activity and chlorophyll degradation during the course of leaf senescence in various plant species[J]. Israel Journal of Plant Sciences,2006,54(2):129-135.
[10] SCHENK N,SCHELBERT S,KANWISCHER M,GOLDSCHMIDT E E,D?RMANN P,H?RTENSTEINER S. The chlorophyllases AtCLH1 and AtCLH2 are not essential for senescence-related chlorophyll breakdown in Arabidopsis thaliana[J]. FEBS Letters,2007,581(28):5517-5525.
[11] TIAN Y N,ZHONG R H,WEI J B,LUO H H,EYAL Y,JIN H L,WU L J,LIANG K Y,LI Y M,CHEN S Z,ZHANG Z Q,PANG X Q. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair[J]. Molecular Plant,2021,14(7):1149-1167.
[12] TREBITSH T,GOLDSCHMIDT E E,RIOV J. Ethylene induces de novo synthesis of chlorophyllase,a chlorophyll degrading enzyme,in citrus fruit peel[J]. Proceedings of the National Academy of Sciences of the United States of America,1993,90(20):9441-9445.
[13] 羅燾. 青甌柑和黃皮椪柑果實采后色澤變化及調控機理研究[D]. 武漢:華中農業大學,2016.
LUO Tao. Characteristics and regulatory mechanism of pigmentation in Postharvest Green Ougan and Yellowish Ponkan[D]. Wuhan:Huazhong Agricultural University,2016.
[14] AZOULAY SHEMER T,HARPAZ-SAAD S,BELAUSOV E,LOVAT N,KROKHIN O,SPICER V,STANDING K G,GOLDSCHMIDT E E,EYAL Y. Citrus chlorophyllase dynamics at ethylene-induced fruit color-break:A study of chlorophyllase expression,posttranslational processing kinetics,and in situ intracellular localization[J]. Plant Physiology,2008,148(1):108-118.
[15] CHRIST B,H?RTENSTEINER S. Mechanism and significance of chlorophyll breakdown[J]. Journal of Plant Growth Regulation,2014,33(1):4-20.
[16] HU X Y,MAKITA S,SCHELBERT S,SANO S,OCHIAI M,TSUCHIYA T,HASEGAWA S F,H?RTENSTEINER S,TANAKA A,TANAKA R. Reexamination of chlorophyllase function implies its involvement in defense against chewing herbivores[J]. Plant Physiology,2015,167(3):660-670.
[17] GUO H T,PAN X B,MAO R C,ZHANG X C,WANG L J,LU X Y,CHANG J H,GUO J T,PASSIC S,KREBS F C,WIGDAHL B,WARREN T K,RETTERER C J,BAVARI S,XU X D,CUCONATI A,BLOCK T M. Alkylated porphyrins have broad antiviral activity against hepadnaviruses,flaviviruses,filoviruses,and arenaviruses[J]. Antimicrobial Agents and Chemotherapy,2011,55(2):478-486.
[18] KARIOLA T,BRADER G,LI J,PALVA E T. Chlorophyllase 1,a damage control enzyme,affects the balance between defense pathways in plants[J]. The Plant Cell,2005,17(1):282-294.
[19] BRANDI F,BAR E,MOURGUES F,HORVáTH G,TURCSI E,GIULIANO G,LIVERANI A,TARTARINI S,LEWINSOHN E,ROSATI C. Study of ‘Redhaven’ peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism[J]. BMC Plant Biology,2011,11:24.
[20] SCHMITTGEN T D,LIVAK K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nature Protocols,2008,3(6):1101-1108.
[21] 李合生. 植物生理生化實驗原理和技術[M]. 北京:高等教育出版社,2000.
LI Hesheng. Principles and techniques of plant physiological biochemical experiment[M]. Beijing:Higher Education Press,2000.
[22] TANAKA A,TANAKA R. Chlorophyll metabolism[J]. Current Opinion in Plant Biology,2006,9(3):248-255.
[23] MU?OZ P,MUNNé-BOSCH S. Vitamin E in plants:Biosynthesis,transport,and function[J]. Trends in Plant Science,2019,24(11):1040-1051.
[24] VOM DORP K,H?LZL G,PLOHMANN C,EISENHUT M,ABRAHAM M,WEBER A P M,HANSON A D,D?RMANN P. Remobilization of phytol from chlorophyll degradation is essential for tocopherol synthesis and growth of Arabidopsis[J]. The Plant Cell,2015,27(10):2846-2859.
[25] 樊艷燕,劉玉梅,李占省,方智遠,楊麗梅,莊木,張揚勇,孫培田. 青花菜衰老過程中葉綠素降解相關基因的表達分析[J]. 園藝學報,2015,42(7):1338-1346.
FAN Yanyan,LIU Yumei,LI Zhansheng,FANG Zhiyuan,YANG Limei,ZHUANG Mu,ZHANG Yangyong,SUN Peitian. Analysis of the expression of chlorophyll degrading genes during senescence of broccoli[J]. Acta Horticulturae Sinica,2015,42(7):1338-1346.
[26] ROSSI S,CHAPMAN C,HUANG B R. Suppression of heat-induced leaf senescence by γ-aminobutyric acid,proline,and ammonium nitrate through regulation of chlorophyll degradation in creeping bentgrass[J]. Environmental and Experimental Botany,2020,177:104116.
[27] HU X Y,JIA T,H?RTENSTEINER S,TANAKA A,TANAKA R. Subcellular localization of chlorophyllase2 reveals it is not involved in chlorophyll degradation during senescence in Arabidopsis thaliana[J]. Plant Science,2020,290:110314.
[28] 田亞楠. 擬南芥葉綠素酶1在幼葉中光保護作用的分子機制[D]. 廣州:華南農業大學,2020.
TIAN Yanan. Molecular mechanisms of photo-protective role of chlorophyllase 1 in young leaves of Arabidopsis thaliana[D]. Guangzhou:South China Agricultural University,2020.
[29] SCHELBERT S,AUBRY S,BURLA B,AGNE B,KESSLER F,KRUPINSKA K,H?RTENSTEINER S. Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidopsis[J]. The Plant Cell,2009,21(3):767-785.
[30] GUYER L,HOFSTETTER S S,CHRIST B,LIRA B S,ROSSI M,H?RTENSTEINER S. Different mechanisms are responsible for chlorophyll dephytylation during fruit ripening and leaf senescence in tomato[J]. Plant Physiology,2014,166(1):44-56.
[31] SHARAFI E,DEHESTANI A,FARMANI J,PAKDIN-PARIZI A. Bioinformatics evaluation of plant chlorophyllase,the key enzyme in chlorophyll degradation[J]. Applied Food Biotechnology,2017,4(3):167-178.
[32] 縱偉,張沙沙,趙光遠,張華. 熱處理下鮮棗紅變與葉綠素酶活性相關性的研究[J]. 食品科技,2012,37(7):44-46.
ZONG Wei,ZHANG Shasha,ZHAO Guangyuan,ZHANG Hua. Correlation between the going-red of fresh jujube and the chlorophyllase activity[J]. Food Science and Technology,2012,37(7):44-46.
[33] 董真真,曾鳳,徐孝蘭,李雯. 采前噴灑赤霉素對‘紅貴妃’芒果色澤及相關酶活性的影響[J]. 熱帶生物學報,2017,8(2):178-184.
DONG Zhenzhen,ZENG Feng,XU Xiaolan,LI Wen. Effect of pre-harvest spraying with gibberellic acid on coloration and related enzyme activities of ‘Hongguifei’ mango fruits[J]. Journal of Tropical Biology,2017,8(2):178-184.
[34] Jia Z, Zhang H, Zhang X, Zhang J, Xu C. Transcriptome analysis reveals candidate genes involved in ethylene-induced color break of Satsuma mandarin (Citrus unshiu Marc.) [J]. Scientia Horticulturae, 2018, 237: 43-51.
[35] SHIMOKAWA K. Purification of ethylene-enhanced chlorophyllase from Citrus unshiu fruits[J]. Agricultural and Biological Chemistry,1981,45(10):2357-2359.
[36] TSUCHIYA T,OHTA H,OKAWA K,IWAMATSU A,SHIMADA H,MASUDA T,TAKAMIYA K. Cloning of chlorophyllase,the key enzyme in chlorophyll degradation:Finding of a lipase motif and the induction by methyl jasmonate[J]. Proceedings of the National Academy of Sciences of the United States of America,1999,96(26):15362-15367.
[37] HU X Y,KHAN I,JIAO Q S,ZADA A,JIA T. Chlorophyllase,a common plant hydrolase enzyme with a long history,is still a puzzle[J]. Genes,2021,12(12):1871.