






摘" 要:最近的理論研究發(fā)現(xiàn),一維準(zhǔn)周期鑲嵌模型存在遷移率邊。在該文中,研究該模型的量子輸運(yùn),尤其是擴(kuò)展態(tài)的兩端口電導(dǎo),模型的輸運(yùn)相圖、平均值和統(tǒng)計(jì)分布。擴(kuò)展態(tài)的電導(dǎo)并不恒為1,而是有干涉共振條紋,用波函數(shù)的行為解釋這些干涉條紋。該模型的擴(kuò)展態(tài)能在極強(qiáng)的準(zhǔn)周期勢(shì)能下存活,通過(guò)電導(dǎo)的統(tǒng)計(jì)分布,以及與波函數(shù)分形維度的比較,解釋其中的物理圖像。
關(guān)鍵詞:準(zhǔn)周期鑲嵌模型;擴(kuò)展態(tài);電導(dǎo);介觀輸運(yùn);量子輸運(yùn)
中圖分類(lèi)號(hào):O413" " " 文獻(xiàn)標(biāo)志碼:A" " " " " 文章編號(hào):2095-2945(2024)26-0032-06
Abstract: Recent theoretical studies have found that there is a mobility edge in the one-dimensional quasi-periodic mosaic model. This paper studies the quantum transport of the model, especially the two-port conductance of the extended state, its transport phase diagram, average value and statistical distribution. The conductance of the extended state is not always 1, but there are interference resonance fringes. We explain these interference fringes by the behavior of wave function. The extended state of the model can survive under extremely strong quasi-periodic potential energy. Explain the physical images through the statistical distribution of conductance and the comparison with the fractal dimension of wave function.
Keywords: quasiperiodic mosaic model; extended state; conductance; mesoscopic transport; quantum transport
量子輸運(yùn)是量子相干效應(yīng)明顯時(shí)發(fā)生的輸運(yùn)現(xiàn)象,其可以發(fā)生于低溫的普通晶體材料中,也可以發(fā)生于光子晶體等現(xiàn)代量子材料中。量子輸運(yùn)是微觀粒子(如電子)的波函數(shù)經(jīng)歷晶格和雜質(zhì)相干散射的結(jié)果,因此晶體的細(xì)節(jié),例如周期性或非周期性都會(huì)對(duì)量子輸運(yùn)產(chǎn)生很大的影響。根據(jù)標(biāo)準(zhǔn)的固體能帶理論,周期晶格中的波函數(shù)都是擴(kuò)展的布洛赫波,有良好的導(dǎo)電性。然而,無(wú)序會(huì)破壞晶格的周期性,同時(shí)影響波函數(shù)的擴(kuò)展性。這個(gè)影響與系統(tǒng)的空間維度密切相關(guān)[1-2]。在三維晶格中,弱無(wú)序不會(huì)改變波函數(shù)的擴(kuò)展性,但強(qiáng)無(wú)序會(huì)導(dǎo)致金屬-絕緣體相變(或叫“擴(kuò)展態(tài)-局域態(tài)轉(zhuǎn)變”),能量軸上的相變點(diǎn)稱(chēng)為遷移率邊。不過(guò),在一維或二維晶格中,任何有限的無(wú)序都會(huì)使波函數(shù)局域化,從而導(dǎo)致全部狀態(tài)都處于絕緣相[1-2]。這些都是凝聚態(tài)物理中熟知的結(jié)論。
準(zhǔn)周期結(jié)構(gòu)微妙地介于無(wú)序和周期之間,是傳統(tǒng)固體電子理論較少研究的對(duì)象,其對(duì)量子態(tài)的影響是現(xiàn)代凝聚態(tài)物理感興趣的話題。……