摘要:文章系統綜述了2023年茶樹病蟲害防控研究進展。國內外取得的主要研究進展包括,挖掘出一批茶樹主要病蟲害的高效微生物防控資源和天敵昆蟲,解析了我國茶園重大害蟲茶小綠葉蟬的求偶振動通信,鑒定出高效調控茶樹-灰茶尺蠖、茶樹-茶小綠葉蟬-寄生蜂間互作關系的化學信息,建立了茶樹病蟲害快速識別的多種模型。這些結果將為今后茶樹病蟲害高效綠色防控技術的創新研發提供有力支撐。
關鍵詞:茶樹;病蟲害防控;研究進展;2023
中圖分類號:S571.1;S433.2 文獻標識碼:A 文章編號:1000-3150(2024)10-01-7
Research Progress of Tea Pest Control in 2023
CAI Xiaoming, BIAN Lei, LUO Zongxiu, LI Zhaoqun, XIU Chunli, FU Nanxia, CHEN Zongmao
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
Abstract: This paper systematically summarized the research progress of tea pest control in 2023. In this year, the research progress included the obtaining of a number of effectiSz0/NwRICHLvJhhO58YjOVOccAoiZ40kCggOg/7mz34=ve microbial resources and natural enemy insects against the major diseases and pests of tea plants, the resolution of the vibrational signals for sexual communication of tea leafhoppers, the identification of the effective chemical communication information among the tritrophic level, and the development of the several rapid detection models for tea pest. These information provided valuable references on the innovative development of the green control for tea pest.
Keywords: tea plant, pest control, research progress, 2023
茶樹病蟲害防控是保護茶葉生產安全,保障茶葉質量安全,促進茶產業綠色可持續發展的重要支撐。同時,茶是公認的有益人體健康的飲品,世界各國均對茶葉的質量安全賦予更多的關注。因此如何減少茶園化學農藥施用、提升茶葉質量安全,是茶樹植保工作者的首要任務。本文從茶樹害蟲基礎生物學、茶樹病蟲害生物防控、茶樹病蟲害化學生態防控、茶樹害蟲物理防控、茶樹害蟲化學防控、茶樹智慧植保6個方面,總結概述了2023年茶樹病蟲害防控研究進展,以期為今后研究提供借鑒。
1 茶樹害蟲基礎生物學研究
東亞地區茶小綠葉蟬(Empoasca onukii)的群體遺傳分化研究顯示,相對于地理距離、景觀隔離,氣候差異在茶小綠葉蟬種群分化中起到了更大的作用;同時葉蟬種群的遺傳多樣性隨局部溫度的波動幅度增大而增加[1]。這一結果預示了在溫度多變的未來,茶小綠葉蟬具備良好的適應能力和加速適應潛力。
近年部分茶區茶網蝽(Stephanitis chinensis)暴發成災。通過測定茶網蝽12個地理種群的COI基因序列發現,我國茶網蝽群體遺傳分化程度較高,基因交流較小,推測我國茶網蝽兼具入侵種群擴張成災和原始種群擴張成災的風險,建議茶網蝽發生茶區和大巴山脈周邊茶園加強對該害蟲的監測工作[2]。
通過田間調查明確,茶棍薊馬(Dendrothrips minowai)雌蟲、若蟲呈聚集分布,一年有2個為害高峰,分別為4—6月、8—10月,以成蟲在茶樹下部老葉越冬,田間以雌成蟲為主,雄蟲僅在6月有1個高峰[3];黑刺粉虱(Aleurocanthus spiuiferus)在北方茶園以若蟲和偽蛹越冬,在越冬期間可緩慢發育至4齡若蟲和偽蛹,田間越冬代呈聚集分布[4]。
小圓胸小蠹(Euwallacea fornicatus)復合種,包含E. fornicatus sensu stricto (s.s.) Eichhoff、E. fornicatior Eggers、E. kuroshio Gomez & Hulcr、E. perbrevis Schedl等4個隱種,是斯里蘭卡、印度茶園重要害蟲,近年在我國臺灣茶園發生嚴重。調查研究顯示,我國臺灣茶園發生的種類主要是E. fornicatus sensu stricto (s.s.) Eichhoff和E. kuroshio Gomez & Hulcr;而在斯里蘭卡嚴重發生的E. perbrevis Schedl種,未在我國臺灣茶園發現[5]。
Wu等[6]對灰茶尺蠖(Ectropis grisescens Warren)的絲裂原活化蛋白激酶(MAPK)級聯途徑基因家族進行了鑒定,共鑒定出19個MAPKs基因;解析了基因結構、蛋白組織結構、遺傳圖譜等MAPK級聯途徑基因家族的分子進化特征。科研人員還鑒定出具解毒、氣味降解功能的灰茶尺蠖羧酸酯酶、谷胱甘肽-S-轉移酶基因,比較了灰茶尺蠖、茶尺蠖(Ectropis obliqua)兩近緣種羧酸酯酶基因的表達譜差異[7-8]。
2 茶樹病蟲害生物防控研究
從茶園根際土壤放線菌、茶樹內生細菌中,分離、鑒定出兩株對茶炭疽病具較強抑菌活性的藤黃生孢鏈霉菌(Streptomyces luteosporeus, JS4-F)、枯草芽孢桿菌(Bacillus subtilis, X13),JS4-F、X13對茶炭疽病菌的拮抗效果分別為75.6%、61.6%,JS4-F對盆栽茶樹炭疽病的防治效果達44.6%[9-10]。從茶樹根際微生物中,分離、鑒定出1株熒光假單胞菌(Pseudomonas fluorescens)、1株枯草芽孢桿菌(Bacillus subtilis),具有高含量的幾丁質酶和β-1,3-葡聚糖酶,可高效抑制茶莖潰瘍病病原菌菌絲生長和孢子萌發[11];分離、鑒定出1株里氏木霉(Trichoderma reesei),對鐮刀(Fusarium)菌引起的根腐病有較好的防控效果,防效達74%[12]。從深海微生物中,分離鑒定出1株枯草芽孢桿菌(Bacillus subtilis)、1株淡紫擬青霉(Paecilomyces lilacinus),對茶輪斑病病菌具較強的抑制活性,田間防效均可達75%以上[13]。研究發現,叢枝菌根真菌可激活茶樹的生長素、乙烯和抗氧化系統,進而抑制茶炭疽病病菌的生長,減少35%的病斑產生[14];梅衣科真菌(Parmotrema austrosinense)產生的紅粉苔酸,對茶赤星病、茶炭疽病、茶莖潰瘍病等茶樹病原真菌具優良的抑菌活性,防效甚至優于商品化的生物源殺菌劑[15]。此外,植物源農藥補骨脂種子提取物可增強茶樹的抗病性,提升茶樹多酚氧化酶、過氧化氫酶、苯丙氨酸氨基醇酶、過氧化物酶等防御性酶的活性,對茶餅病有較好的控制效果[16]。田間單獨使用或配合誘抗劑殼寡糖使用,對茶餅病的防效分別為61.7 %、70.5 %,與化學農藥吡唑醚菌酯相當。
挖掘出多種茶樹主要害蟲的高效生物防控資源。針對茶麗紋象甲(Myllocerinus aurolineatus)、茶尺蠖,篩選出多個具高致病力的白僵菌、綠僵菌菌株[17-19];篩選出1種對茶跗線螨(Polyphagotarsonemus latus)具高致病力的球孢白僵菌菌株[20];獲得了對印度茶園主要害蟲大鉤翅尺蛾(Hyposidra talaca)具強致病力的核型多角體病毒(NPV)毒株[21];明確了灰茶尺蠖的NPV對灰茶尺蠖、茶尺蠖幼蟲具相似的致病力[22];明確了東亞小花蝽(Orius sauteri)、叉角厲蝽(Eocanthecona furcellate)、南方小花蝽(Orius similis),分別對茶棍薊馬、茶谷蛾(Agriophara rhombata)、茶網蝽具有較好的生物防控潛能[23-25];發現1種茶園新天敵綠點益蝽(Picromerus viridipunctatus),對茶園鱗翅目害蟲具有較好的控害效能[26];發現廣藿香(Pogostemon cablin)、香樟(Cinnamomum camphora)精油對茶小綠葉蟬具較強的熏蒸毒力,LC50分別為0.474、1.204 μL/mL[27]。此外,對茶尺蠖、灰茶尺蠖寄生蜂進行了鑒定[28],明確了40多年前國內報道的茶尺蠖幼蟲期兩種絨繭蜂,茶尺蠖絨繭蜂(Apanteles sp.)和單白綿絨繭蜂(Apanteles sp.)均可寄生茶尺蠖和灰茶尺蠖;經形態鑒定和分子比對,這兩種廣義絨繭蜂為尺蠖原絨繭蜂(Protapanteles immunis)和單白綿副絨繭蜂(Parapanteles hyposidrae),其中尺蠖原絨繭蜂為中國新記錄種。
茶樹抗性因子同樣受到了學者們較多的關注。鑒定出UGT95B17、CsTPS1-AS、CsGSTU45、CsRPM1、CFHTF2等抗茶炭疽病、茶輪斑病等病害的抗性基因[29-33],鑒定出N-Feruloylputrescine、花色素苷-3-O-半乳糖苷等茶樹抗炭疽病的內源次生代謝物[34-36]和抗茶尺蠖的絲氨酸蛋白酶抑制劑[37]。這為茶樹抗病蟲品種選育研究奠定了基礎。
3 茶樹病蟲害化學生態防控研究
通過轉錄組、代謝組分析,明確了茶小綠葉蟬為害可激活茶樹體內的茉莉酸、脫落酸信號通路,促進苯丙烷類化合物、黃酮類化合物、萜類化合物的合成和亞麻酸的代謝[38];六斑葉螨(Eotetranychus sexmaculatus)為害可激活茶樹體內的茉莉酸、水楊酸信號通路,促進苯丙烷類化合物、黃酮類化合物的合成[39];茶蚜(Toxoptera aurantii)為害可激活茶樹體內的茉莉酸信號通路,促進黃酮類化合物的合成[40]。
灰茶尺蠖為害后,茶樹會大量釋放苯乙腈,驅避灰茶尺蠖取食,抑制其生長[41]。明確了茶樹體內的光信號轉錄因子CsPIF1、茉莉酸信號轉錄因子CsMYC2可激活苯乙腈的合成。這樣,在生物、非生物因素共同調控下,茶樹通過釋放苯乙腈抵御灰茶尺蠖的為害。從茶小綠葉蟬為害誘導的茶樹揮發物中,鑒定出芳樟醇、水楊酸甲酯、(E)-2-己烯醛、紫蘇烯、法尼烯的混合物對葉蟬卵寄生蜂葉蟬三棒纓小蜂(Stethynium empoascae)和微小裂骨纓小蜂(Schizophragma parvula)具強引誘活性[42]。這個混合物,可通過招引寄生蜂,抑制田間葉蟬種群的增長。炭疽病為害可誘導茶樹釋放大量的香葉醇,而香葉醇可破壞炭疽病病原菌的菌絲和細胞結構。其對炭疽病病原菌的最小抑菌、殺菌質量濃度分別為0.5、1.0 mg/L[43]。
茉莉酸甲酯(MeJA)是茶樹體內調控防御反應的重要信號分子。但MeJA有(-)-epi-MeJA、(-)-MeJA、(+)-MeJA、(+)-epi-MeJA 共4種立體異構型,不同的立體異構型具有不同的生物活性。Luo等[44]建立了一種氣助液液分配-對映體選擇性氣相串聯質譜的MeJA立體異構型測定方法,避免了常規測定方法的高溫濃縮和復雜操作。測定顯示,茶樹體內主要是(+)-MeJA,且茶尺蠖取食或機械損傷30 s后,(+)-MeJA含量就有顯著提升。
對茶小綠葉蟬的多個化學感受蛋白進行了基因鑒定、表達譜分析、反向功能驗證或3D結構解析,其中包括氣味結合蛋白EonuOBP43,化學感受蛋白EonuCSP4、EonuCSP 6-1、EonuCSP6-2,味覺受體EonuGR1,離子型受體EonuIR25a等[45-49]。
早在1994年就鑒定出茶毛蟲(Euproctis pseudoconspersa)信息素組分,但對其主成分的手性結構一直未明確。Li等[50]通過嗅覺電生理和田間誘捕試驗,明確茶毛蟲性信息素主成分10,14-二甲基十五醇異丁酸酯存在明顯的手性活性差異,R體是關鍵組分,次要組分14-甲基十五醇異丁酸酯可顯著提高其生物活性。這為發展高效的茶毛蟲性信息素防控技術奠定了基礎。
4 茶樹害蟲物理防控研究
茶小綠葉蟬是我國茶樹重要害蟲,至今缺乏高效的化學農藥替代防治技術。葉蟬、粉虱等小型刺吸害蟲利用振動信號進行兩性求偶通訊,利用振動信號干擾其交配,進而達到控制田間種群,是當前國際刺吸害蟲綠色防控技術的研究熱點。目前,已對茶小綠葉蟬的求偶振動通訊有了較為詳盡的認識[51-52]。其求偶通訊行為具有高度保守的模式,包括5個階段:(1)召喚階段,雄蟲釋放召喚信號(MCaS),搜索潛在的交配對象;(2)識別階段,雌蟲感知到MCaS后,釋放回應信號(FS1);(3)定位階段,雄蟲感知到FS1信號后,發出定位信號(McoS),與雌蟲的回應信號(FS2)形成定位二重奏,定位雌蟲棲息的葉片;(4)求愛階段,雄蟲和雌蟲距離5 mm后,連續發出MCoS、FS2構成求愛二重奏,并嘗試與雌蟲交尾;(5)交尾階段,雌蟲若接受雄蟲求愛,則進入交尾階段。當存在多只雄蟲時,雄蟲之間存在求偶競爭行為。競爭策略有兩種:(1)競爭雄蟲感知MCaS后,釋放競爭信號,干擾已建立的求偶通訊并伺機與雌蟲建立通訊;(2)競爭者感知MCaS后,會釋放干擾脈沖掩蓋MCaS,同時對求偶雄蟲進行驅趕。
此外,利用3D顯微和X射線顯微斷層掃描技術研究顯示,茶小綠葉蟬成蟲復眼的分辨率較低[53]。即使在30 cm的距離內,也不能區分純黃和黃紅相間的兩種圖案。這在一定程度上解釋了為什么黃紅雙色誘蟲板對葉蟬的引誘活性與黃色誘蟲板相當。
5 茶樹害蟲化學防控研究
國內外對茶樹主要害蟲的抗藥性開展了系列研究。目前我國浙江和河南省7個茶園的灰茶尺蠖、茶尺蠖種群對不同農藥已產生抗性。其中,大部分地區的尺蠖對聯苯菊酯產生了中高等抗性,杭州地區茶尺蠖對苦參堿的抗性達中等水平[54]。印度茶園重要害蟲咖啡小爪螨(Oligonychus coffeae)已對三氯殺螨醇、乙硫磷、甲氰菊酯、唑螨酯、喹螨醚、克螨特產生了不同程度的抗性,生產上不宜再使用乙硫磷、甲氰菊酯防治咖啡小爪螨;高抗種群中,總酯酶、谷胱甘肽S-轉移酶等解毒酶活性高[55]。日本廣泛使用蟲酰肼防治茶園重要害蟲茶小卷葉蛾(Adoxophyes honmai),目前茶小卷葉蛾已產生明顯抗性。研究發現,抗性產生的原因是茶小卷葉蛾蛻皮激素受體位點上等位基因發生了突變;同時這一抗性的產生不會增加茶小卷葉蛾的生存成本,且無選擇壓力下抗性也可無衰減遺傳[56]。這些研究結果可為預測抗藥性發展趨勢、開展抗藥性治理提供科學依據。
此外,研究發現,常規方法噴施化學農藥對茶小綠葉蟬成蟲的防治效果并不理想。這與葉蟬成蟲主要在茶梢中部活動、較難與噴施藥液接觸有很大關系[57]。因此,可通過改進施藥技術、增強藥液的穿透性,提高化學農藥對茶小綠葉蟬種群的防治效果。
6 茶樹智慧植保研究
隨著人工智能技術的快速發展,茶樹病蟲害的快速、精準識別成為了各國的研究熱點。對迭代法和卷積神經網絡等深度學習方法進行了優化、結合,基于病斑、為害狀的顏色、形狀、大小、高光譜、密度等特征,建立了IEM-ViT、TeaDiseaseNet、CBAM-TealeafNet、TSBA-YOLO、YOLO-Tea、YOLOv5-CBM等多種茶輪斑病病癥、茶褐斑病病癥、茶煤病病癥、紅蜘蛛為害狀、茶角盲蝽為害狀等病蟲害的快速精準識別技術[58-70]。此外,還利用性誘、高壓電網、紅外傳感、4G無線傳輸等技術,提出灰茶尺蠖、茶尺蠖遠程監測設備[71],田間計數準確率達100%。監測數據可作為預判下一代幼蟲發生時間、發生量的依據。這些技術的研發為我國茶園智慧植保奠定了基礎。
7 結語
2023年,病蟲害生物防控、害蟲化學生態調控、智慧植保是茶樹病蟲害防控的研究熱點。這一年國內外取得的主要進展包括,鑒定、挖掘出一批茶樹主要病蟲害的高效微生物防控資源和天敵昆蟲,解析了我國茶園重大害蟲茶小綠葉蟬的求偶振動通信,鑒定出高效調控茶樹-灰茶尺蠖、茶樹-茶小綠葉蟬-寄生蜂間互作關系的化學信息,建立了茶樹病蟲害快速識別的多種模型。但目前的研究主要還是聚焦在茶樹病蟲害生物防控資源的挖掘和三營養級化學、物理通信信息的鑒定。今后要加強這些生物資源、通信信息在茶樹植保方面的應用技術研究,特別是茶樹吸汁害蟲、茶樹病害的高效綠色防控技術研發。
參考文獻
[1] LI J Y, SHI L Q, CHEN W, et al. Environmental heterogeneity drives population genetic divergence of a key agricultural pest, Empoasca onukii[J]. Entomologia Generalis, 2023, 43: 305-313.
[2] 陳世春, 江宏燕, 廖姝然, 等. 基于COI基因解析我國茶網蝽種群遺傳多樣性和遺傳結構[J]. 茶葉科學, 2023, 43(6): 795-805.
[3] ZHANG F G, CAI X M, JIN L M, et al. Activity patterns, population dynamics, and spatial distribution of the stick tea thrips, Dendrothrips minowai, in tea plantations[J/OL]. Insects, 2023, 14(2): 152. https://doi.org/10.3390/insects14020152.
[4] 劉夢圓, 王楓荻, 趙亞津, 等. 茶園黑刺粉虱越冬蟲態及空間分布型研究[J]. 環境昆蟲學報, 2023, 45(1): 73-82.
[5] LIAO Y C, LIU F L, RUGMAN-JONES P F, et al. The Euwallacea fornicatus species complex (Coleoptera: Curculionidae); emerging economic pests of tea in Taiwan[J/OL]. Crop Protection, 2023, 168: 106226. https://doi.org/10.1016/j.cropro.2023.106226.
[6] WU X Z, ZHOU C H, LI X F, et al. Genome-wide identification and immune response analysis of mitogen-activated protein kinase cascades in tea geometrid, Ectropis grisescens Warren (Geometridae, Lepidoptera)[J/OL]. BMC Genomics, 2023, 24(1): 344. https://doi.org/10.1186/s12864-023-09446-7.
[7] ZHANG F M, CHEN Y J, ZHAO X C, et al. Antennal transcriptomic analysis of carboxylesterases and glutathione S-transferases associated with odorant degradation in the tea gray geometrid, Ectropis grisescens (Lepidoptera, Geometridae)[J/OL]. Frontiers in Physiology, 2023, 14: 1183610. https://doi.org/10.3389/fphys.2023.1183610.
[8] YANG F S, LI Y J, GAO M Y, et al. Comparative expression profiles of carboxylesterase orthologous CXE14 in two closely related tea geometrid species, Ectropis obliqua Prout and Ectropis grisescens Warren[J/OL]. Frontiers in Physiology, 2023, 14: 1194997. https://doi.org/10.3389/fphys.2023.1194997.
[9] 鄭世仲, 周子維, 陳曉慧, 等. 拮抗炭疽病的茶樹內生菌篩選、鑒定及培養條件優化[J]. 茶葉科學, 2023, 43(2): 205-215.
[10] 張玉丹, 譚琳, 任佐華, 等. 茶炭疽病拮抗鏈霉菌的篩選鑒定與拮抗能力測定[J]. 中國生物防治學報, 2023, 39(3): 646-656.
[11] KOLANDASAMY M, MANDAL A K A, BALASUBRAMANIAN M G, et al. Multifaceted plant growth-promoting traits of indigenous rhizospheric microbes against Phomopsis theae, a causal agent of stem canker in tea plants[J/OL]. World Journal of Microbiology and Biotechnology, 2023, 39: 237. https://doi.org/10.1007/s11274-023-03688-z.
[12] PANDEY A K, SAMOTA M K, TANTI A J, et al. Trichoderma reesei induces defense-related biochemical markers associated with resistance to Fusarium dieback in tea crop[J/OL]. Biological Control, 2023, 180: 105200. https://doi.org/10.1016/j.biocontrol.2023.105200.
[13] XU G X, YING F, WU H M, et al. Biocontrol potential of two deep-sea microorganisms against gray blight disease of tea[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 53. https://doi.org/10.1186/s41938-023-00701-3.
[14] CHEN W L, YE T, SUN Q Y, et al. Arbuscular mycorrhizal fungus alleviates anthracnose disease in tea seedlings[J/OL]. Frontiers in Plant Science, 2022, 13: 1058092. https://doi.org/10.3389/fpls.2022.1058092.
[15] RAJENDRAN K, PONMURUGAN P, GNANAMANGAI B M, et al. Bioefficacy of lecanoric acid produced by Parmotrema austrosinense (Zahlbr.) Hale against tea fungal pathogens[J/OL]. Horticulturae, 2023, 9(6): 705. https://doi.org/10.3390/horticulturae9060705.
[16] YANG X J, CAO K Q, REN X L, et al. Field control effect and initial mechanism: A study of isobavachalcone against blister blight disease[J/OL]. International Journal of Molecular Science, 2023, 24(12): 10225. https://doi.org/10.3390/ijms241210225.
[17] FU N X, WANG T K, LI Q R, et al. Identification and biocontrol potential evaluation of a naturally occurring Metarhizium pingshaense isolate infecting tea weevil Myllocerinus aurolineatus Voss (Coleoptera: Curculionidae)[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 101. https://doi.org/10.1186/s41938-023-00749-1.
[18] 付楠霞, 羅宗秀, 李兆群, 等. 一株球孢白僵菌的分離鑒定及其對茶麗紋象甲幼蟲的室內致病力測定[J]. 中國生物防治學報, 2023, 39(5): 1104-1112.
[19] ZHAO J, CHEN Y, KEYHANI N O, et al. Isolation of a highly virulent Metarhizium strain targeting the tea pest, Ectropis obliqua[J/OL]. Frontiers in Microbiology, 2023, 14: 1164511. https://doi.org/10.3389/fmicb.2023.1164511.
[20] 張燕南, 畢司進, 李悅, 等. 球孢白僵菌菌株GZGY對茶黃螨致病力及生長發育的影響[J]. 應用昆蟲學報, 2023(60): 1835-1840.
[21] DEKA B, BABU A, SARKAR S, et al. Hyposidra talaca NPV (HytaNPV): A potential baculovirus for efficient control of the black inch worm, Hyposidra talaca Walker (Lepidoptera: Geometridae), a major pest of tea Camellia sinensis (Ericales: Theaceae (L.) O. Kuntze)[J/OL]. Egyptian Journal of Biological Pest Control, 2023, 33: 106. https://doi.org/10.1186/s41938-023-00760-6.
[22] 譚榮榮, 陳勛, 黃丹娟, 等. 灰茶尺蠖核型多角體病毒對兩種尺蠖的致病性[J]. 中國生物防治學報, 2023, 39(3): 684-689.
[23] 張鳳閣, 蔡曉明, 修春麗, 等. 東亞小花蝽對茶棍薊馬成蟲的捕食功能[J]. 植物保護學報, 2023, 50(3): 668-675.
[24] 龔雪娜, 羅梓文, 玉香甩, 等. 叉角厲蝽對于不同蟲齡茶谷蛾幼蟲的捕食功能反應[J]. 中國生物防治學報, 2023, 39(5): 1066-1075.
[25] 江宏燕, 陳世春, 程令, 等. 軍配盲蝽和南方小花蝽對茶網蝽若蟲的捕食作用[J]. 環境昆蟲學報, 2023, 45(3): 754-760.
[26] 唐美君, 王志博, 張欣欣, 等. 茶園新天敵綠點益蝽的初步研究[J]. 植物保護, 2023, 49(3): 231-235.
[27] TAN W W, ZHANG N, WANG J Q, et al. Fumigant activity and transcriptomic analysis of two plant essential oils against the tea green leafhopper, Empoasca onukii Matsuda[J/OL]. Frontiers in Physiology, 2023, 14: 1217608. https://doi.org/10.3389/fphys.2023.
1217608.
[28] 周孝貴, 唐璞, 吳瓊, 等. 茶尺蠖和灰茶尺蠖幼蟲兩種共有寄生蜂的鑒定[J]. 中國生物防治學報, 2023, 39(1): 1-9.
[29] LU M Q, ZHAO Y F, FENG Y Y, et al. 2,4-Dihydroxybenzoic acid, a novel sa derivative, controls plant immunity via UGT95B17-mediated glucosylation: A case study in Camellia sinensis[J/OL]. Advanced Science, 2024, 11(7): 2307051. https://doi.org/10.1002/advs.202307051.
[30] JIANG H, ZHANG M T, YU F, et al. A geraniol synthase regulates plant defense via alternative splicing in tea plants[J/OL]. Horticulture Research, 2023, 10(10): uhad184. https://doi.org/10.1093/hr/uhad184.
[31] LV W Y, JIANG H, CAO Q H, et al. A tau class glutathione S-transferase in tea plant, CsGSTU45, facilitates tea plant susceptibility to Colletotrichum camelliae infection mediated by jasmonate signaling pathway[J]. The Plant Journal, 2023, 117(5): 1356-1376.
[32] LV W Y, XU Y J, JIANG H, et al. An NBS-LRR-encoding gene CsRPM1 confers resistance to the fungus Colletotrichum camelliae in tea plant[J]. Beverage Plant Research, 2023, 3: 109-115.
[33] ZHANG C K, ZHOU Z W, GUO T L, et al. CFHTF2 is needed for vegetative growth, conidial morphogenesis and the osmotic stress response in the tea plant anthracnose (Colletotrichum fructicola)[J/OL]. Genes 2023, 14(12): 2235. https://doi.org/10.3390/genes14122235.
[34] WANG W Z, XIE X C, LV Y Y, et al. Identification and profile of phenolamides with anthracnose resistance potential in tea (Camellia sinensis)[J/OL]. Horticulture Research, 2023, 10(9): uhad154.
https://doi.org/10.1093/hr/uhad154.
[35] LIU S A, ZHANG S H, HE S N, et al. Tea plant (Camellia sinensis) lipid metabolism pathway modulated by tea field microbe (Colletotrichum camelliae) to promote disease[J/OL]. Horticulture Research, 2023, 10(4): uhad028. https://doi.org/10.1093/hr/uhad028.
[36] LI T T, WANG S R, SHI D D, et al. Phosphate deficiency induced by infection promotes synthesis of anthracnose-resistant anthocyanin-3-O-galactoside phytoalexins in the Camellia sinensis plant[J/OL]. Horticulture Research, 2023, 10: uhad222. https://doi.org/10.1093/hr/uhad222.
[37] YE M, LIU C, LI N, et al. A constitutive serine protease inhibitor suppresses herbivore performance in tea (Camellia sinensis)[J/OL]. Horticulture Research, 2023, 10: uhad178. https://doi.org/10.1093/hr/uhad178.
[38] QIAO D H, YANG C, GUO Y, et al. Transcriptome and co-expression network analysis uncover the key genes mediated by endogenous defense hormones in tea plant in response to the infestation of Empoasca onukii Matsuda[J]. Beverage Plant Research, 2023, 3: 29-41.
[39] WANG X P, XIANG Y J, SUN M S, et al. Transcriptomic and metabolomic analyses reveals keys genes and metabolic pathways in tea (Camellia sinensis) against six-spotted spider mite (Eotetranychus Sexmaculatus) [J/OL]. BMC Plant Biology, 2023, 23(1): 638. https://doi.org/10.1186/s12870-023-04651-8.
[40] 劉艷麗, 唐海燕, 萬晴, 等. 茶樹新梢響應茶蚜取食的代謝物變化研究[J]. 植物科學學報, 2023, 41(5): 657-667.
[41] QIAN J, LIAO Y, JIAN G, et al. Light induces an increasing release of benzyl nitrile against diurnal herbivore Ectropis grisescens Warren attack in tea (Camellia sinensis) plants[J]. Plant Cell and Environment, 2023, 46(11): 3464-3480.
[42] WANG M, HAN S, WU Y, et al. Tea green leafhopper-induced synomone attracts the egg parasitoids, mymarids to suppress the leafhopper[J]. Pest Management Science, 2023, 79(10): 3785-3795.
[43] CHEN W, LIU H F, CHEN Y, et al. Geraniol: A potential defense-related volatile in "Baiye No. 1" induced by Colletotrichum camelliae[J/OL]. Agriculture, 2023, 13(1): 15. https://doi.org/10.3390/agriculture13010015.
[44] LUO Z F, ZHU X, X LI H, et al. Air-assisted liquid-liquid microextraction and enantioselective gas chromatography-tandem mass spectrometry quantification of methyl jasmonate stereoisomers in tea (Camellia sinensis L.)[J]. Reproduction and Breeding, 2023, 3(1): 17-25.
[45] LUN X Y, XU X X, ZHANG X Z, et al. Identification and expression profiles of candidate chemoreceptor genes in the tea leafhopper, Empoasca onukii Matsuda (Hemiptera: Cicadellidae)[J]. Phytoparasitica, 2023, 51(5): 1073-1085.
[46] LUN X Y, XU X X, ZHANG Y, et al. An antennae-enriched odorant-binding protein EonuOBP43 mediate the behavioral response of the tea green leafhopper, Empoasca onukii Matsuda to the host and nonhost volatiles[J]. Journal of Agricultural and Food Chemistry, 2023, 71(50): 20000-20010.
[47] ZHANG R R, LUN X Y, ZHANG Y, et al. Characterization of ionotropic receptor gene EonuIR25a in the tea green leafhopper, Empoasca onukii Matsuda[J/OL]. Plants, 2023, 12(10): 2034. https://doi.org/10.3390/plants12102034.
[48] ZHANG L W, ZHAO M X, AIKEREMU F, et al. Involvement of three chemosensory proteins in perception of host plant volatiles in the tea green leafhopper, Empoasca onukii[J/OL]. Frontiers in Physiology, 2023, 13: 1068543. https://doi.org/10.3389/fphys.2022.1068543.
[49] ZHANG R R, LUN X Y, ZHAO Y H, et al. RNAi-mediated interference with EonuGR1 affects the recognition of phenylacetaldehyde by Empoasca onukii Matsuda (Hemiptera: Cicadellidae)[J/OL]. Agronomy 2023, 13(9): 2221. https://doi.org/10.3390/agronomy13092221.
[50] LI Z Q, YUAN T T, CUI S W, et al. Development of a high-efficiency sex pheromone formula to control Euproctis pseudoconspersa[J]. Journal of Integrative Agriculture, 2023, 22(1): 195-201.
[51] ZHANG H N, BIAN L, CAI X M, et al. Vibrational signals are species-specific and sex-specific for sexual communication in the tea leafhopper, Empoasca onukii[J]. Entomologia Experimentalis et Applicata, 2023, 171(4): 277-286.
[52] SHAN Y, ZHOU X S, CAI X M, et al. Mating and post-copulation behavior in the tea leafhopper, Empoasca onukii (Hemiptera: Cicadellidae)[J/OL]. Frontiers in Plant Science, 2023, 14: 1273718. https://
doi.org/10.3389/fpls.2023.1273718.
[53] TAN C, CAI X M, LUO Z X, et al. Visual acuity of Empoasca onukii (Hemiptera, Cicadellidae)[J/OL]. Insects, 2023, 14(4): 370. https://doi.org/10.3390/insects14040370.
[54] 陳雨思, 周孝貴, 曾維健, 等. 不同茶園灰茶尺蠖和茶尺蠖對5種殺蟲劑的抗藥性監測[J]. 環境昆蟲學報, 2023, 45(4): 1103-1110.
[55] PATRA B, HATH T K. Resistance status and activity of detoxifying enzymes in Oligonychus coffeae (Nietner) (Acari: Tetranychidae) on tea[J/OL]. Crop Protection, 2023, 167: 106201. https://doi.org/10.1016/j.cropro.2023.106201.
[56] LEE T M, SMITH R A, NELSON W A, et al. No life-history cost of tebufenozide resistance in the smaller tea tortrix moth[J]. Pest Management Science, 2023, 79(7): 2581-2590.
[57] 鄒佳婷, 郭宇航, 邊磊, 等. 化學農藥對茶小綠葉蟬成蟲的防效及其原因探究[J].茶葉科學, 2023, 43(4): 544-552.
[58] SAIKAT D, NITIN G. A novel approach for the detection of tea leaf disease using deep neural network[J]. Procedia Computer Science, 2023, 218: 2273-2286.
[59] SOEB M J A, JUBAYER M F, TARIN T A, et al. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T)[J/OL]. Scientific Reports, 2023, 13: 6078. https://doi.org/10.1038/s41598-023-33270-4.
[60] XU Y, MAO Y L, LI H, et al. A deep learning model for rapid classification of tea coal disease[J/OL]. Plant Methods, 2023, 19(1): 98. https://doi.org/10.1186/s13007-023-01074-2.
[61] PANDIAN J A, NISHA S N, KANCHANADEVI K, et al. Grey blight disease detection on tea leaves using improved deep convolutional neural network[J/OL]. Computational Intelligence and Neuroscience, 2023, 7876302. https://doi.org/10.1155/2023/7876302.
[62] WANG Y K, XU R J, BAI D, et al. Integrated learning-based pest and disease detection method for tea leaves[J/OL]. Forests, 2023, 14(5):1012. https://doi.org/10.3390/f14051012.
[63] XUE Z Y, XU R J, BAI D, et al. YOLO-Tea: A tea disease detection model improved by YOLOv5[J/OL]. Forests, 2023, 14(2): 415. https://doi.org/10.3390/f14020415.
[64] LIN J, BAI D, XU R J, et al. TSBA-YOLO: An improved tea diseases detection model based on attention mechanisms and feature fusion[J/OL]. Forests, 2023, 14(3): 619. https://doi.org/10.3390/f14030619.
[65] ZHANG J H, GUO H L, GUO J, et al. An information entropy masked vision transformer (IEM-ViT) model for recognition of tea diseases[J/OL]. Agronomy, 2023, 13(4): 1156. https://doi.org/10.3390/agronomy13041156.
[66] ZHAN B S, LI M, LUO W, et al. Study on the tea pest classi?cation model using a convolutional and embedded iterative region of interest encoding transformer[J/OL]. Biology, 2023, 12(7): 1017. https://doi.org/10.3390/biology12071017.
[67] YANG Z J, FENG H L, RUAN Y P, et al. Tea tree pest detection algorithm based on improved yolov7-tiny[J/OL]. Agriculture, 2023, 13(5): 1031. https://doi.org/10.3390/agriculture13051031.
[68] SUN Y G, WU F, GUO H P, et al. TeaDiseaseNet: Multi-scale selfattentive tea disease detection[J/OL]. Frontiers in Plant Science, 2023, 14: 1257212. https://doi.org/10.3389/fpls.2023.1257212.
[69] 陳禹, 吳雪梅, 張珍, 等. 基于改進YOLOv5s的自然環境下茶葉病害識別方法[J].農業工程學報, 2023, 39(24): 185-194.
[70] 黃鋁文, 關非凡, 謙博, 等. 基于2D DWT與MobileNetV3融合的輕量級茶葉病害識別[J]. 農業工程學報, 2023, 39(24): 207-214.
[71] 胡錦召, 陳華才, 季慧華, 等. 基于紅外傳感器的灰茶尺蠖智能監測裝置的設計[J]. 現代電子技術, 2023, 46(18): 157-161.