







摘 要:該文基于2018年和2019年的高分六號(hào)衛(wèi)星數(shù)據(jù),利用歸一化差值植被指數(shù)實(shí)現(xiàn)太湖藍(lán)藻水華的提取,驗(yàn)證紅邊波段對(duì)藍(lán)藻水華的監(jiān)測(cè)效果。結(jié)果表明,藍(lán)藻水華在太湖的梅梁灣、湖心區(qū)北部和西太湖北部發(fā)生頻次最多。但存在有代表性的最小整體和季節(jié)閾值范圍,且整體閾值與夏季閾值相關(guān)性高;紅邊I波段(0.71波段)閾值范圍的穩(wěn)定性優(yōu)于紅邊II波段(0.75波段)和近紅外波段(0.83波段),且最小閾值范圍呈現(xiàn)為正態(tài)分布。因此,高分衛(wèi)星具有監(jiān)測(cè)太湖藍(lán)藻水華的潛力,在業(yè)務(wù)上運(yùn)用高分衛(wèi)星能夠?qū)μ{(lán)藻水華的暴發(fā)作出快速監(jiān)測(cè)。
關(guān)鍵詞:高分六號(hào)衛(wèi)星;藍(lán)藻水華;歸一化差值植被指數(shù);太湖;監(jiān)測(cè)效果
中圖分類(lèi)號(hào):X87 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):2095-2945(2024)29-0021-06
Abstract: Based on the GF-6satellite data in 2018 and 2019, this paper uses the Normalized Difference Vegetation Index to extract cyanobacteria blooms in Taihu Lake, and verifies the excellent monitoring effect of red edge band on cyanobacteria blooms. The results show that cyanobacteria blooms occur most frequently in Meiliang Bay, the north of the central area of Taihu Lake and the northern part of West Taihu Lake. NDVI has a representative minimum global and seasonal threshold range, and the overall threshold has a high correlation with the summer threshold, and the stability of the threshold range of the red edge I band (0.71 band)is better than that of the red edge II band(0.75 band) and the near-infrared band (0.83 band), and the minimum threshold range is normal distribution. Therefore, the GF-6 satellite has the potential to monitor the cyanobacteria bloom in Taihu Lake and can be used to quickly monitor the outbreak of cyanobacteria bloom in Taihu Lake.
Keywords: GF-6 satellite satellite; cyanobacteria bloom; Normalized Difference Vegetation Index; Taihu Lake; monitoring effect
中國(guó)的湖泊藍(lán)藻水華呈現(xiàn)出從南到北逐漸多樣化的趨勢(shì)[1-2],并且已經(jīng)建立的大規(guī)模的綜合監(jiān)測(cè)預(yù)報(bào)系統(tǒng)和應(yīng)急響應(yīng)措施可以降低藍(lán)藻水華污染風(fēng)險(xiǎn),但仍然無(wú)法減少富營(yíng)養(yǎng)化和藍(lán)藻水華問(wèn)題,這些問(wèn)題需要幾十年才能解決[3]。
衛(wèi)星遙感因其速度快、范圍廣、監(jiān)測(cè)周期性短,已經(jīng)成為湖泊富營(yíng)養(yǎng)化及藍(lán)藻水華監(jiān)測(cè)和預(yù)測(cè)預(yù)警不可或缺的技術(shù)手段[4]。已有衛(wèi)星遙感研究藍(lán)藻水華的方法有:浮游藻類(lèi)指數(shù)(Floating Algae Index, FAI)法[5],歸一化差值植被指數(shù)(Normalized Difference Vegetation Index,NDVI)[6]以及隨機(jī)森林(Random Forest, RF)法[7]。高分六號(hào)衛(wèi)星在監(jiān)測(cè)藍(lán)藻方面的優(yōu)點(diǎn)主要體現(xiàn)為更高的空間分辨率,更強(qiáng)的時(shí)間連續(xù)性,更廣的覆蓋范圍、數(shù)據(jù)質(zhì)量和應(yīng)用領(lǐng)域。這些特性將為衛(wèi)星監(jiān)測(cè)藍(lán)藻水華提供更好的數(shù)據(jù)來(lái)源?!?br>