











摘要:【目的】避免在核能利用過程中產生的常見放射性污染核素129I和131I等碘蒸氣泄漏對環境和生物產生危害,制備并探討具有豐富孔道的有機多孔聚合物對碘蒸氣的吸附性能。【方法】采用簡便快捷的機械合成法,以具有正四面體結構的四苯基甲烷為單體,利用高能行星式球磨機球磨2 h制備3種具有較大比表面積和豐富孔道的有機多孔聚合物T-FDA、T-DCM和T-DCE,并利用碘單質在溫度為75℃的密閉體系內升華模仿放射性碘蒸氣,分別測試3種多孔材料的碘蒸氣吸附性能。【結果】T-FDA、T-DCM、T-DCE的碘蒸氣吸附質量分數分別可達461%、486%、444%,達到飽和吸附量的時間分別為5、8、6 h,且多孔材料在循環使用5次后碘吸附性能僅有輕微下降(≤6.8%)。【結論】以四苯基甲烷為單體,通過快速球磨法合成的多孔材料具有良好的碘蒸氣吸附性能,有望在放射性碘蒸氣吸附領域發揮重要作用。
關鍵詞:四苯基甲烷;球磨法;有機多孔材料;碘蒸氣吸附
中圖分類號:O64;TB4文獻標志碼:A
引用格式:
張承昕,王余蓮,蘇峻樟,等.四苯基甲烷球磨法合成多孔碘蒸氣吸附材料[J].中國粉體技術,2024,30(3):158-169.
ZHANG C X,WANG Y L,SU J Z,et al.Ball-milling synthesis of organic porous materials with tetraphenylmethane for iodine vapor adsorption[J].China Powder Science and Technology,2024,30(3):158?169.
核能是當前應用較為廣泛、技術較為成熟的高效清潔能源之一,具有清潔低碳、經濟高效、能量密度高等優點,但是在實際應用當中,如何更安全地利用核能始終是人類面臨的重要問題[1]。當前較為成熟的技術是通過核裂變反應從原子核釋放能量,用于發電等民生、軍事用途,然而在利用核能過程中也會產生放射性污染核素。放射性碘是重要的放射性污染物之一,主要來源為核工業、醫療廢物泄漏。放射性碘主要包括129I、131I等同位素,絕大部分會以氣體形式釋放,對人類健康和環境造成威脅[2]。129I會與其他元素形成化合物,造成環境永久性污染,131I會通過食物鏈和大氣循環被人體吸收并富集于甲狀腺內,嚴重威脅甲狀腺正常功能[3]。放射性碘同位素半衰期可長達1.6?107 a,氣化溫度低(75℃),自然環境中流動性強,危害性不能忽視。如何妥善處理放射性碘是當前研究者關注的重要問題,其中利用多孔材料吸附碘蒸氣是有效的解決方法之一[4]。
傳統的多孔碘吸附劑,如活性炭[5]和多孔沸石[6]等,雖然具有生產工藝成熟、成本低廉等優點,但這些材料仍然存在密度較大、結構功能有限、比表面積較小、孔道尺寸較大、吸附容量不高、循環性能不佳等缺點,在實際工業應用方面受到較大限制。
有機多孔聚合物(porous organic polymers,POPs)是近些年來興起的一類新型多孔材料,POPs材料的物理化學穩定性高、密度小、孔隙率和比表面積大、吸附性能優異、可循環利用等優點,在放射性碘的治理領域具有良好的應用前景[7]。特別是POPs材料由純有機元素組成,與傳統無機類多孔材料相比具有合成策略多樣、結構可調節、成本低廉等優勢[8],因此受到科研工作者的廣泛關注并已成功應用于碘蒸氣吸附領域。例如,Zhai等[9]合成了2種含有甲氧基官能團且比表面積大、化學穩定性優良的新型共價有機骨架,碘蒸氣吸附容量分別3.21、5.07 g/g。Chang等[10]報道了2種四硫脲基共價有機框架(COFs)JUC-560和JUC-561,并對二者的碘吸附性能進行研究,所得材料比表面積可高達2 359 m2/g,同時表現出極佳的碘吸附性能(JUC-561碘吸附容量高達8.19 g/g)。宋玲等[11]合成了2種三嗪基多孔有機聚合物COP-1和COP-2,對碘蒸氣的吸附量分別為1.60和2.13 g/g,并通過實驗證明了碘吸附機制主要為物理吸附。Zou等[12]合成了2種含有不同長度炔鍵的類金剛石三維有機多孔材料CPOF-2和CPOF-3,揮發性碘吸附容量可高達5.87 g/g。Liu等[13]基于Tr?ger堿合成了具有三維剛性六連通結構的多孔三萜烯網絡TB-PTN,比表面積可達1 528 m2/g,碘蒸氣吸附質量分數高達240%。Hassan等[14]基于六氯環三磷腈單體合成的HPOP-4,碘蒸氣吸附容量高達6.25 g/g且具有良好的重復利用性。綜上所述,具有大比表面積、高孔隙率且具有穩定剛性多孔框架結構的POPs材料非常適用于碘蒸氣吸附,然而許多材料為達到較好的碘蒸氣吸附性能,需要選擇特定合成方法或使用特殊結構單體來構建,且往往使用大量有機溶劑并加熱數小時至數天不等[8],間接增加了合成成本,材料實際應用的可能性受到較大限制。
球磨機是工業上常見的破碎設備之一,廣泛用于選礦、建材及化工等行業[15]。此外,研究者也將球磨機用于化學合成,這種機械合成方法具有反應時間短、效率高、簡便易行等優勢,具備大規模工業化生產的潛力[16]。本文中以具有正四面體結構的四苯基甲烷為單體,以高能行星式球磨機為反應器,通過成本低廉、簡便易行的合成方法快速、高效構建3種具有豐富孔道結構的POPs材料;對球磨法合成的多孔材料進行物理化學結構表征,并通過模擬放射性碘蒸氣環境,測試材料對碘蒸氣的吸附性能及循環利用性,為POPs材料的大規模生產和實際碘蒸氣吸附應用提供可行的方案。
1材料與方法
1.1試劑材料和儀器設備
試劑材料:四苯基甲烷(質量分數為98%,安耐吉化學試劑有限公司)、二甲氧基甲烷(FDA,質量分數為98%,阿拉丁生化科技股份有限公司);二氯甲烷、1,2-二氯乙烷、無水三氯化鐵、無水三氯化鋁(均為分析純,國藥集團化學試劑有限公司)。上述所有實驗試劑均可直接使用,無需進一步純化處理。
儀器設備:PULVERISETTE-4型可變轉速比率高能行星式球磨機(德國Fritsch公司);Vertex 70型傅里葉變換紅外光譜分析儀(FTIR,德國Bruker公司);13C CP/MAS型固態核磁(400 MHz WB,德國Bruker公司,AdvanceⅡ);HITACHI SU8010型場發射掃描電鏡(FE?SEM,日本日立公司);JEM-2100 PLUS型場發射透射電鏡(FE?TEM,日本電子株式會社);TGA8000型熱重分析儀(TGA,美國Perkin-Elmer公司);Micromeritics ASAP 2020型吸脫附等溫線和孔徑分布吸附儀(美國Micromeritics公司)。
1.2多孔碘吸附材料制備
四苯基甲烷—二甲氧基甲烷交聯材料(T-FDA):稱取質量為0.32 g的四苯基甲烷,質量為0.912 g的交聯劑FDA和質量為1.95 g的無水三氯化鐵,量取體積為10 mL的溶劑1,2—二氯乙烷,先后加入到已放有50個直徑為10 mm氧化鋯微球的250 mL氧化鋯研磨罐中,通入氬氣保護5 min之后封緊罐蓋。設置行星式高能球磨機的公轉速度和自轉速度均為400 r/min,室溫下球磨工作2 h后停止。球磨罐小心打開后,加入100 mL無水甲醇淬滅反應體系并轉移,用甲醇和氯仿分別抽濾洗滌數次后得到棕色粉體產物。最后將產物置于溫度為60℃的真空烘箱中干燥24 h。所得材料命名為T-FDA。
四苯基甲烷—二氯甲烷交聯材料(T-DCM):稱取0.32 g四苯基甲烷和1.6 g無水三氯化鋁,量取10 mL溶劑(兼作交聯劑)二氯甲烷,球磨合成過程及相關參數與上述T-FDA材料相同。在小心打開球磨罐后,加入100 mL無水乙醇淬滅反應體系并轉移,用乙醇和氯仿分別抽濾、洗滌數次后得到棕褐色粉體產物。最后產物干燥過程與T-FDA相同,所得材料命名為T-DCM。
四苯基甲烷—1,2-二氯乙烷交聯材料(T-DCE):稱取0.32 g四苯基甲烷和1.6 g無水三氯化鋁,量取10 mL溶劑(兼作交聯劑)1,2-二氯乙烷,球磨合成過程及相關參數與上述T-FDA和T-DCM材料相同。將球磨罐小心打開后,加入100 mL無水乙醇淬滅反應體系并轉移,用質量分數為5%的稀鹽酸、乙醇和氯仿分別抽濾、洗滌數次后得到深褐色粉體產物。最后產物干燥過程與T-FDA和T-DCM相同,所得材料命名為T-DCE。
1.3對碘蒸氣的吸附
碘蒸氣吸附實驗具體操作過程如下:精確稱量0.2 g多孔材料粉末放入預先稱重的邊長為25 mm的正方體小樣品瓶中,再稱取2 g碘單質加入另一個樣品瓶,將2個樣品瓶放入玻璃容器中形成密閉體系。之后將密封好的密閉體系置于75℃恒溫烘箱內,使粉體樣品置于飽和碘蒸氣環境當中,在固定的時間節點(1、2、3、4、5、6、8、12、16、20、24 h)取出密閉容器并快速冷卻,取出裝有粉末樣品的樣品瓶并精確稱量其質量。
2結果與分析
2.1材料基本結構分析
四苯基甲烷分子中含有芳環結構,在催化劑和球磨條件作用下,單體通過交聯劑連接后形成具有豐富孔道的多孔聚合物,如圖1所示。
圖2所示為多孔材料T-FDA、T-DCM、T-DCE的FTIR譜圖和固態核磁共振譜圖。球磨法所合成3種材料的FTIR光譜如圖2(a)所示,在FTIR光譜中,波數為3 000~2 800 cm-1處存在明顯的亞甲基C—H振動特征峰,表明材料結構中具有大量的亞甲基(—CH2—)存在[17]。四苯基甲烷單體中并不存在此類結構,由此可判定多孔固體產物中的亞甲基結構來源于交聯劑,通過傅克烷基化反應將不同單體通過亞甲基連接并成功構建多孔結構骨架。所有材料在波數為1 440 cm-1處呈現出亞甲基連接體—CH2—彎曲模式的特征峰,同時在波數分別為1 420、1 260 cm-1處呈現出Cl—CH2的彎曲和擺動的特征峰,說明材料中均有一定的氯元素殘留,可能來自于催化劑或未完全反應的含氯交聯劑[18]。同樣地,3種材料在波數為1 650~1 450 cm-1處存在芳環的骨架伸縮振動峰,在波數為900~650 cm-1處均出現較為明顯的芳環面外彎曲振動吸收峰[19]。在波數分別為600、800 cm-1處出現的峰是由于芳環上1、4位置取代所致,說明3種材料中亞甲基與苯環橋聯的位置主要以單體中苯環與季碳原子連接位置的對位為主(圖1結構示意圖中紅色線段所示)。特別地,對于T-FDA,在波數為1 100 cm-1處存在明顯的C—O—C彎曲振動峰,這是由于交聯劑二甲氧基甲烷在球磨過程并未完全反應,殘存有C—O—C結構所致[20]。此外,通過固態核磁共振譜圖(圖2(b))可見,在化學位移δ為142×10-6和132×10-6處出現明顯的特征峰,分別代表四苯基甲烷中苯環上發生化學交聯反應的碳原子和未發生化學交聯反應的碳原子,同時δ為37×10-6處的特征峰屬于連接單元亞甲基碳原子,證明單體之間通過交聯劑形成的亞甲基互相連接從而形成多孔骨架結構[21]。δ為60×10-6處的特征峰屬于四苯基甲烷中的季碳原子,δ為18×10-6處的峰屬于材料結構中殘存的甲基(—CH3)[22]。
3種多孔材料的形貌特征通過場發射掃描電子顯微鏡觀察。圖3所示為多孔材料T-FDA、T-DCM、T-DCE的FE-SEM圖像。由圖3(a)中可見,以二甲氧基甲烷(FDA)為交聯劑球磨合成的T-FDA,其形貌主要為微米級的塊體,表面呈現較為松散的微顆粒聚集狀態。而T-DCM和T-DCE 2個樣品沒有明顯的形貌差異,雖然在掃描電鏡下也主要表現為微米級的塊體形貌,但是二者的表面相對較為致密,這有可能與所使用的交聯劑及化學反應過程不同所致。本實驗中通過球磨法制備的多孔材料與通過傳統溶劑熱方法合成的多孔材料具有相似的形貌特點,即:使用FDA作為交聯劑合成的多孔材料大多呈現類似顆粒狀、珊瑚狀的疏松質地形貌,在電鏡圖片中可以觀察到具有許多顆粒堆積形成的介孔和大孔;而使用氯代烷烴(如二氯甲烷等)作為交聯劑合成的多孔材料則呈現質地緊密、表面平整的塊體,甚至可構建具有特殊二維層狀形貌的材料18]。
多孔材料的微觀孔道結構特征通過分辨率更高的FE-TEM觀察。圖4所示為T-FDA、T-DCM、T-DCE的FE-TEM圖像。3種多孔材料在透射電鏡下均可觀察到大量的細微孔道存在,說明與傳統的溶劑熱方法相比,所需時間更短的球磨法所制備的多孔材料內部孔道仍很豐富,并且同樣具有穩定的結構,在透射電鏡長時間高能電子束照射下不會被破壞。
多孔材料結構的熱穩定性通過TGA表征。圖5所示為3種材料在氮氣氣氛中的TGA曲線。在從室溫逐漸升至800℃的過程中,3種材料殘余質量隨溫度變化的規律有明顯的差異。當升溫超過150℃時,T-FDA材料的熱重曲線出現斷崖式下降,說明此材料的部分組分發生分解;當溫度超過225℃時,T-FDA質量下降趨勢逐漸放緩,直至溫度達到800℃過程中T-FDA的質量呈現緩慢下降趨勢。結合圖3中T-FDA的形貌特點來看,這有可能是由于大量尺寸微小且呈松散顆粒狀的T-FDA在較低溫度下首先發生了熱分解所導致的。而與T-FDA相比,T-DCM和T-DCE的熱重曲線則表現出明顯差異,差異之處在于T-DCM和T-DCE的質量均隨著溫度的逐漸升高緩慢降低,未出現斷崖式下降,這與二者相對致密的塊體形貌有一定的關系;其中T-DCM在300℃以下的升溫區間內熱穩定性優于T-DCE,在超過300℃之后其質量損失要比T-DCE略大。在達到終點溫度800℃后,T-FDA、T-DCM、T-DCE的最終殘余質量分別為58.8%、54.1%和62.6%。
多孔材料的孔道特性利用比表面積和孔徑吸附儀表征,結果如表1所示。圖6所示為T-FDA、T-DCM、T-DCE的N2吸附-脫附等溫線以及對應的孔徑分布圖。結合表1中各材料的相關孔道特征數據可見,對于單體四苯基甲烷,雖然常溫常壓狀態下為粉末狀態,但是不存在任何可檢測到的孔道;極小的比表面積數值可能是松散粉末堆積所致。而將單體與不同交聯劑、催化劑混合球磨反應2 h后,所得多孔材料T-FDA、T-DCM和T-DCE的比表面積分別為398、516、753 m2/g,N2吸附-脫附等溫線均表現為Ⅳ型曲線,在低壓條件下(相對壓力p/p0lt;0.1,p為測試體系當前N2壓力值,p0為標準大氣壓)N2吸附曲線上升較快,說明3種多孔材料中均含有大量的微孔結構;曲線中段出現的回滯環表明材料中存在一定的介孔;而高壓區范圍內(p/p0=0.8~1.0)吸附曲線未見明顯上升,表明3種多孔材料中大孔的比例極低。上述特征從圖6(b)的孔徑分布曲線中明顯可見,雖然T-FDA、T-DCM、T-DCE 3種多孔材料均含有大量的微孔,但T-FDA的孔徑為2~10 nm的介孔數量略多于T-DCM和T-DCE,T-DCM和T-DCE的孔徑主要分布區間為小于2 nm,大多數為微孔甚至是超微孔(孔徑≤0.7 nm),其中T-DCE的孔徑大于在2 nm的介孔比例較T-DCM略多。由以上分析可知,豐富的微孔甚至是超微孔結構決定了T-FDA、T-DCM、T-DCE 3種材料具有較大的比表面積,而大比表面積和連續分布的孔道又決定了材料理論上具有優異的吸附特性。鑒于多孔材料在物質吸附領域尤其是氣體物質的吸附與分離方面具有獨特的應用優勢,因此將上述3種材料用于碘蒸氣吸附(以常規碘蒸氣模擬放射性碘蒸氣)并測試其吸附性能。
2.2有機多孔材料的碘蒸氣吸附實驗結果
采用重量差法來計算樣品在不同時刻的碘蒸氣吸附量,計算式為
式中:wt為碘蒸氣吸附質量分數;mt為樣品吸附碘后t時刻的質量;m0為樣品的初始質量。
圖7所示為T-FDA、T-DCM、T-DCE的粉體狀態以及吸附碘蒸氣飽和后的粉體狀態圖,T-FDA、T-DCM、T-DCE吸附碘蒸氣后顏色變化比較明顯,在吸附碘蒸氣飽和后顏色均呈現棕黑色,表明3種多孔材料對碘蒸氣均具有明顯的吸附效果。
圖8所示為T-FDA,T-DCM、T-DCE的碘蒸氣吸附質量分數與時間關系曲線圖。由圖可以看出,3種多孔材料均可在8 h內達到最大吸附量并保持平衡。T-FDA吸附速率相對最快,在5 h后可達到最大吸附質量分數461%;而T-DCM碘蒸氣吸附飽和時間相對較長,但吸附質量分數相對較大,在8 h之后可達到486%;T-DCE則在6 h吸附碘蒸氣達到最大吸附質量分數444%。從圖8(d)比較可見,T-DCM吸附量相對最大,達到飽和的時間也相對較長。結合表1來看,這可能是由于材料自身的微孔和極微孔數量較多、在孔道中所占的比例較大,對碘蒸氣的吸附能力相對較強,吸附量也較大,但是碘蒸氣分子充分進入微孔和極微孔所需時間較長。T-FDA達到碘蒸氣吸附飽和的速率雖快,但是吸附質量分數(461%)不及T-DCM。而T-DCE雖然比表面積最大,但是其微孔所占比例最低,T-DCE對碘蒸氣的吸附效果相對最弱,吸附質量分數相對也最小(444%)。由圖可以看出,3種物質吸附速率的差異主要由孔道分布的不同所致,吸附質量分數與微孔比例的正比規律較為明顯。除微孔之外,3種材料中均含有一定比例的介孔和大孔,這些多級孔道也有利于碘分子的擴散和傳輸。由于材料中基本不含有碳氫之外的其他雜元素,因此材料對碘蒸氣主要通過孔道(尤其是尺寸較小的微孔)進行物理吸附。
此外,本文中還對3種多孔材料的循環使用性進行了探索和分析。根據已有相關文獻報道,采用乙醇洗脫的方法可以充分移除多孔材料中吸附的碘[23]。在每次碘蒸氣吸附實驗結束并稱重后,將吸附碘蒸氣飽和后的樣品用濾紙包好放到索氏提取器中,使用無水乙醇反復索提清洗48 h以上,直至回流溶液澄清為止。脫附后的樣品經過溫度為60℃真空干燥24 h后,回收并進行下一次碘蒸氣吸附實驗。圖9所示為3種材料脫附再生與循環性能的測試結果,對每種材料進行5次碘蒸氣吸附-乙醇洗脫循環利用實驗,每個樣品重復5次得到圖示結果。由圖可知,T-FDA在循環使用5次后吸附效率僅有輕微下降,碘蒸氣吸附質量分數由第1次的461%下降至第5次的454%,下降幅度僅有1.5%;T-DCM的碘蒸氣吸附質量分數由首次的486%下降至第5次的473%,下降幅度為2.7%;T-DCE的碘蒸氣吸附質量分數由首次的444%下降至第5次的414%,下降幅度為6.8%。由此可見,通過球磨法合成得到的3種多孔材料的循環利用性較好,循環使用5次后吸附效率僅有輕微降低。
表2所示為近些年部分文獻報道的各類多孔材料對碘蒸氣的吸附質量分數。通過比較可見,采用球磨法合成的T-FDA、T-DCM、T-DCE與其他已報道的碘蒸氣吸附材料相比,碘蒸氣吸附性能表現較好。本文中材料的合成過程簡便快捷,避免了傳統溶劑熱合成法對能源和有機溶劑的大量使用,具有能耗小、成本低的優勢。
3結論
1)采用球磨合成法,以具有立體結構的四苯基甲烷分子為構建單元,通過3種不同的交聯策略,球磨2 h合成了T-FDA、T-DCM、T-DCE 3種多孔材料,比表面積分別為398、516、753 m2/g,同時具有豐富的微孔和連續的多級孔道分布,結構較為穩定。
2)將T-FDA、T-DCM、T-DCE 3種多孔材料應用于碘蒸氣吸附,在溫度為75℃的密閉體系中以常規碘單質模擬放射性碘的蒸氣揮發環境,3種多孔材料的碘吸附質量分數分別可達461%、486%和444%,可以循環重復使用多達5次,且性能僅略微下降。
3)絕大多數有機多孔材料的碘蒸氣吸附質量分數在200%~600%之間,相比之下,T-FDA、T-DCM、T-DCE 3種多孔材料的碘蒸氣吸附量與同類有機多孔材料相比處于較高水平,同時通過球磨法合成多孔材料具有時間短、效率高、能耗低等優點,避免了能源和有機溶劑的大量消耗和使用,具有一定的工業化大規模生產潛力,為有機多孔材料在碘蒸氣吸附領域的實際應用提供了新的參考思路。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(Author’s Contributions)
張承昕和王余蓮進行了方案設計和論文寫作,蘇峻樟、董春陽、王浩然和肖坤富進行合成實驗與表征,袁志剛和蘇德生參與了論文的修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by ZHANG Chengxin and WANG Yulian,who also conducted paper writing.While SU Junzhang,DONG Chunyang,WANG Haoran,and XIAO Kunfu conducted synthesis experiments and characterization.YUAN Zhigang and SU Desheng participated in the revision of the paper.All authors have read the last version of paper and consentedfor submission.
參考文獻(References)
[1]AHAD J,AHMAD M,FAROOQ A,et al.Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident[J].Environmental Science and Pollution Research,2023,30(30):74628-74670.
[2]GENG T,ZHANG H C,LIU M,et al.Preparation of biimidazole-based porous organic polymers for ultrahigh iodine cature and formation of liquid complexes with iodide/polyiodide ions[J].Journal of Materials Chemistry A,2020,8(5):2820-2826.
[3]SHETTY D,RAYA J,HAN D S,et al.Lithiatedpolycalix[4]arenes for efficient adsorption of iodine from solution and vapor phases[J].Chemistry of Materials,2017,29(21):8968-8972.
[4]HO K,PARK D,PARK M K,et al.Adsorption mechanism of methyl iodide by triethylenediamine and quinuclidine-impregnated activated carbons at extremely low pressures[J].Chemical Engineering Journal,2020,396 125215.
[5]HUVE J,RYZHIKOV A,NOUALI H,et al.Porous sorbents for the capture of radioactive iodine compounds:a review[J].RSC Advances,2018,8(51):29248-29273.
[6]ZHAO Q,LIAO C,CHEN G,et al.In situ confined synthesis of a copper-encapsulated silicalite-1 zeolite for highly efficient iodine capture[J].Inorganic Chemistry,2022,61(49):20133-20143.
[7]XIONG S,TANG X,PAN C,et al.Carbazole-bearing porous organic polymers with a mulberry-like morphology for effi?cient iodine capture[J].ACS Applied Materialsamp;Interfaces,2019,11(30):27335-27342.
[8]HAO Q,TAO Y,DING X,et al.Porous organic polymers:a progress report in China[J].Science China Chemistry,2023,66(3):620-682.
[9]ZHAI L,HAN D,DONG J,et al.Constructing stable and porous covalent organic frameworks for efficient iodine vapor cap?ture[J].Macromolecular Rapid Communications,2021,42(13):2100032.
[10]CHANG J,LI H,ZHAO J,et al.Tetrathiafulvalene-based covalent organic frameworks for ultrahigh iodine capture[J].Chemical Science,2021,12(24):8452-8457.
[11]宋玲,黃清,蔣選峰.三嗪基有機多孔材料的制備及碘吸附性能研究[J].化學工程,2022,50(8):20-25.
SONG L,HUANG Q,JIANG X F.Preparation of triazine-based organic porous materials and iodine adsorption properties[J].Chemical Engineering(China),2022,50(8):20-25.
[12]ZOU J,WEN D,ZHAOY.Flexible three-dimensional diacetylene functionalized covalent organicframeworks for efficient iodine capture[J].Dalton Transactions,2023,52(3):731-736.
[13]LIU N,MA H,SUN R,et al.Porous triptycene network based on Tr?ger’s base for CO2 capture and iodine enrichment[J].ACS Applied Materialsamp;Interfaces,2023,15(25):30402-30408.
[14]HASSAN A,DAS N.Chemically stable and heteroatom containing porous organic polymers for efficient iodine vapor cap?ture and its storage[J].ACS Applied Polymer Materials,2023,5(7):5349-5359.
[15]李瀅,康曉明,陳曦,等.再生微粉顆粒級配對水泥凝膠體微觀結構及強度的影響[J].中國粉體技術,2022,28(3):107-115.
LI Y,KANG X M,CHEN X,et al.Effect of particle size distribution of recycled concrete powders on microstructure and strength of cement gel[J].China Powder Science and Technology,2023,28(3):107-115.
[16]于穎,曹丙強.無鉛雙鈣鈦礦納米粉體Cs2AgBiBr6的球磨法制備工藝與性能[J].中國粉體技術,2023,29(6):91-100.
YU Y,CAO B Q.Preparation process and property of lead-free double perovskite nano-powder Cs2AgBiBr6by ball milling[J].China Powder Science and Technology,2023,29(6):91-100.
[17]ZHAN Z,YU J,LI S,et al.Ultrathin hollow Co/N/C spheres from hyper-crosslinked polymers by a new universal strategy with boosted ORR efficiency[J].Small,2023,19(16):2207646.
[18]WANG S L,ZHANG C X,SHU Y,et al.Layered microporous polymers by solvent knitting method[J].Science Advances,2017,3(3):e1602610.
[19]ZHANG C X,WANG S L,ZHAN Z,et al.Synthesis of MWCNT-based hyper-cross-linked polymers with thickness-tunable organic porous layers[J].ACS Macro Letters,2019,8(4):403-408.
[20]陳瀟祿,袁珍閆,仲迎春,等.機械球磨制備三苯胺基PAF-106s及C2烴吸附性質[J].高等學校化學學報,2022,43(3):20210771.
CHEN X L,YUAN Z Y,ZHONG Y C,et al.Preparation of triphenylamine based PAF-106s via mechanical ball milling and C2 hydrocarbons adsorption property[J].Chemical Journal of Chinese Universities,2022,43(3):20210771.
[21]OUYANG H,SONG K,DU J,et al.Creating chemisorption sites for enhanced CO2 chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers[J].Chemical Engineering Journal,2022,431:134326.
[22]ERRAHALI M,GATTI G,TEI L,et al.Microporous hyper-cross-linked aromatic polymers designed for methane and car?bon dioxide adsorption[J].The Journal of Physical Chemistry C,2014,118(49):28699-28710.
[23]SUN H,LA P,ZHU Z,et al.Capture and reversible storage of volatile iodine by porous carbon with high capacity[J].Journal of Materials Science,2015,50(22):7326-7332.
[24]HE X,ZHANG SY,TANG X,et al.Exploration of 1D channels in stable and high-surface-area covalent triazine polymers for effective iodine removal[J].Chemical Engineering Journal,2019,371:314-318.
[25]SHAO L,SANG Y,LIU N,et al.One-step synthesis of N-containing hyper-cross-linked polymers by two crosslinking strategies and their CO2 adsorption and iodine vapor capture[J].Separation and Purification Technology,2021,262:118352.
[26]CHEN R,HU T,ZHANG W,et al.Synthesis of nitrogen-containing covalent organic framework with reversible iodine capture capability[J].Microporous and Mesoporous Materials,2021,312:110739.
[27]WANG J,WANG L,WANG Y,et al.Covalently connected core–shell NH2-UiO-66@Br-COFshybrid materials for CO2 capture and I2 vapor adsorption[J].Chemical Engineering Journal,2022,438:135555.
[28]HE D,JIANG L,YUAN K,et al.Synthesis and study of low-cost nitrogen-rich porous organic polyaminals for efficient adsorption of iodine and organic dye[J].Chemical Engineering Journal,2022,446:137119.
[29]LIU C,JIN Y,YU Z,et al.Transformation of porous organic cages and covalent organic frameworks with efficient iodine vapor capture performance[J].Journal of the American Chemical Society,2022,144(27):12390-12399.
[30]萬歡愛,邵禮書,劉娜,等.氮修飾木質素基超交聯聚合物的制備及其放射性碘捕獲[J].化工進展,2022,41(10):5599-5611.
WAN H A,SHAO L S,LIU N,et al.Preparation of nitrogen modified lignin-based hyper-cross-linked polymers and their radioactive iodine capture[J].Chemical Industry and Engineering Progress,2022,41(10):5599-5611.
[31]RUIDAS S,CHOWDHURY A,GHOSH A,et al.Covalent organic framework as a metal-free photocatalyst for dye degra?dation and radioactive iodine adsorption[J].Langmuir,2023,39(11):4071-4081.
[32]QIU N,WANG H,TANG R,et al.Synthesis of phenothiazine-based porous organic polymer and its application to iodine adsorption[J].Microporous and Mesoporous Materials,2024,363:112833.
[33]ZHANG J,PU N,LI M,et al.High-efficient Ag(I)ion binding,Ag(0)nanoparticle loading,and iodine trapping in ultra?stable benzimidazole-linked polymers[J].Separation and Purification Technology,2024,328:125052.
Ball?milling synthesis of organic porous materials with tetraphenylmethane for iodine vapor adsorption
ZHANG Chengxin1,WANG Yulian1,SU Junzhang1,DONG Chunyang1,WANG Haoran1,XIAO Kunfu1,YUAN Zhigang1,SUDesheng2,3
1.School of Materials Science and Engineering,Shenyang Ligong University,Shenyang 110159,China;
2.Liaoning Dan Carbon Group Corporation Limited,Dandong 118100,China;
3.Liaoning Province Ultra?high Power Graphite Electrode Material Professional Technology Innovation Center,Dandong 118100,China
Abstract
Objective Radioactive isotopes of iodine,such as iodine-129 and iodine-131,are prevalent contaminants during nuclear energy utilization.Managing radioactive iodine is a critical concern for researchers and the use of porous materials for iodine vapor adsorption presents a promising solution.However,traditional porous iodine adsorbents,including activated carbon and porous zeolite,exhibit drawbacks such as high density,limited structural versatility,low specific surface area,large pore size,low adsorption capacity,and inadequate cycling performance,significantly impeding their industrial applicability.Given these chal?lenges,it is necessary to develop novel porous materials for efficient iodine vapor adsorption.Porous Organic Polymers(POPs)emerge as a potential solution,characterized by high physical and chemical stability,low density,high porosity,large specific surface area,outstanding adsorption performance,and recyclability,offering a promising prospects in radioactive iodine treat?ment.Ball mills,as common crushing equipment,find widespread application in industries such as mineral processing,build?ing materials,and chemical industry.Furthermore,researchers use ball mills for chemical synthesis due to their advantages such as brief reaction times,high efficiency,simplicity,and potential for low-cost,straightforward,large-scale industrial pro?duction.In this study,tetraphenylmethane,featuring a three-dimensional structure served as the monomer,while a high-energy planetary ball mill functioned as areactor,enabling swift and efficient construction of three POPs materials.Thesemateri?als were evaluated for their adsorption performance and recycling ability in a simulated radioactive iodine vapor environment.Our research offers a viable solution for large-scale production of POPs materials and their practical application in iodine vapor adsorption.
Methods In this study,we successfully synthesized three distinct porous organic polymers(POPs),namely T-FDA,T-DCM,and T-DCE,utilizing a rapid and efficient ball milling approach.This method resulted in materials characterized by high spe?cific surface area and abundant pore structure.The synthesis process involved employing tetraphenylmethane as a three-dimensional structure monomer,along with either anhydrous ferric chloride or anhydrous aluminum trichloride as catalysts,and three different crosslinking agents(dimethoxymethane,dichloromethane,and 1,2-dichloroethane)to generate the aforemen?tioned POPs materials.The synthesis procedure commenced by introducing the requisite reagents into a 250 mL zirconia grinding jar containing 50 zirconia spheres(Diameter:10 mm).After purging the jar with an argon atmosphere and sealing it,the plan?etary high-energy ball mill was set to a revolution speed and rotation speed of 400 r/min,with the milling process lasting for 2 hours at room temperature.Subsequently,the iodine vapor adsorption capacity of the porous materials was evaluated.Specifi?cally,0.2 g of POPs powders were accurately weighed and placed into a pre-weighed small sample bottle while 2 g of iodine was introduced into another sample bottle.These two bottles were then positioned within a glass container to create a sealed sys?tem,which was subsequently transferred into an oven set at 75℃to expose the powder to a saturated iodine vapor environment.At predetermined time intervals(1,2,3,4,5,6,8,12,16,20,and 24 hours),the sealed container was removed from the oven and rapidly cooled,following which the mass of the sample bottle was accurately determined.
Results and Discussion The resulting porous materials,T-FDA,T-DCM,and T-DCE,exhibited high specific surface area(398,516,and 753 m2/g respectively),abundant pore channels,and excellent structural stability.These materials were char?acterized by a significant presence of micropores(lt;2 nm)and even ultra-micropores(lt;0.7 nm),alongside a certain proportion of mesopores.The interconnected nature of these pores gave unique advantages to the materials,particularly in the realm of adsorption,notably in the adsorption and separation of gas substances such as radioactive iodine vapor.Based on experimental findings,the iodine adsorption capacity of T-FDA,T-DCM,and T-DCE could reach up to 461%,486%,and 444%respec?tively.These materials achieved adsorption saturation at the 5th,8th,and 6th hour respectively.Furthermore,to assess the materials'cycling performance,iodine vapor adsorption recycling experiments were conducted five times for each of T-FDA,T-DCM,and T-DCE.The results indicated that the iodine vapor adsorption efficiency of T-FDA only slightly decreased after five cycles of use,with the iodine vapor adsorption amount reducing from 461%initially to 454%after the fifth cycling,representing a decrease of only 1.5%.For T-DCM,its iodine vapor adsorption capacity decreased from 486%in the first time to 473%in the fifth time,corresponding to a reduction of 2.7%.Similarly,the iodine vapor adsorption of T-DCE decreased from 444%in the first time to 414%in the fifth time,with a reduction of 6.8%.Notably,the iodine adsorption performance of the three porous materials only slightly decreased after five cycles of use.
Conclusion In this study,utilizing the ball-milling method,three porous materials(T-FDA,T-DCM,and T-DCE)were syn?thesized within a remarkably short period of 2 hours.Subsequently,structural analyses and iodine vapor adsorption performance of these materials were conducted.Our findings revealed that T-FDA,T-DCM,and T-DCE exhibited specific surface areas of 398,516,and 753 m2/g,respectively.These materials showcased abundant micropores,continuous multi-level pore distribu?tion,and a relatively stable structure.To assess their practical utility,we applied these porous materials to iodine vapor adsorp?tion in a closed system operating at 75℃,simulating the vapor evaporation environment of radioactive iodine with standard iodine elements.The experimental outcomes demonstrated impressive iodine adsorption mass fractions of 461%,486%,and 444%for T-FDA,T-DCM,and T-DCE,respectively.Remarkably,these materials exhibited reusability for up to 5 cycles with only a marginal decrease in performance(≤6.8%).Our results underscore the exceptional iodine vapor adsorption performance of the porous materials synthesized via fast ball milling,suggesting their potential significance in the context of radioactive iodine adsorption.Moreover,the ball milling synthetic method offers advantages including short reaction time,high efficiency,low energy consumption,and avoidance of extensive energy and organic solvent usage,thereby harboring considerable potential for large-scale industrial production.
Keywords:tetraphenylmethane;ball-milling method;porous organic polymer;iodine vapor adsorption
(責任編輯:王雅靜)