999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

利用短支鏈表面配體修飾提升Cs2AgInCl6量子點穩定性和熒光性能

2024-09-29 00:00:00邵山徐帆曹丙強
中國粉體技術 2024年3期

摘要:【目的】分析不同表面配體修飾對無鉛雙鈣鈦礦Cs2AgInCl6量子點穩定性和光學性能的影響,實現量子點穩定性和光學性能的提升。【方法】通過熱注射方法合成Cs2AgInCl6量子點,在合成過程中原位引入長碳鏈的油酸(OA)和有2條短支鏈的2-己基癸酸(DA),研究不同表面配體修飾對Cs2AgInCl6量子點的純度、粒徑和形貌的影響,并對量子點進行熒光性、穩定性分析以及發光機制的討論。【結果】OA配體和DA配體均勻覆蓋Cs2AgInCl6量子點表面,2種量子點均呈現鈣鈦礦的立方結構,具有良好分散性和高結晶度,在常溫環境中連續儲存80 d后,DA修飾的Cs2AgInCl6量子點仍能保持初始發光的95.43%,熒光量子產率為4.67%。【結論】DA配體可以保持Cs2AgInCl6量子點的穩定性,并有助于有效的輻射復合,利于新興的無鉛雙鈣鈦礦Cs2AgInCl6量子點的光電應用。

關鍵詞:量子點;無鉛雙鈣鈦礦;表面配體;穩定性

中圖分類號:TB44;TQ591文獻標志碼:A

引用格式:

邵山,徐帆,曹丙強.利用短支鏈表面配體修飾提升Cs2AgInCl6量子點穩定性和熒光性能[J].中國粉體技術,2024,30(3):139-149.

SHAO S,XU F,CAO B Q.Utilizing short-chain surfactants for enhancing the stability and fluorescence performance of Cs2AgInCl6 quantum dots[J].China Powder Science and Technology,2024,30(3):139?149.

獲得2023年諾貝爾化學獎的量子點是一類特殊的半導體材料。鉛基鈣鈦礦ABX3(A=(CH3NH3)+、CH(NH2)2+、Cs+,B=Pb2+,X=Cl-、Br-、I-)量子點具有高熒光量子產率(photoluminescence quantum yield,PLQY)、強載流子遷移率、可調諧波長、單色純度等優異的光學性能[1-7]。這些顯著特性使其超越了傳統的量子點光電材料,有望廣泛應用于發光二極管、太陽能電池、彩色顯示器等光電器件[8-12]。盡管有如此優異特性,但是鹵化鉛基鈣鈦礦中存在鉛的毒性問題,長期接觸鉛會影響人的心血系統、神經系統等,當鉛質量分數超過10-5時,會對人體健康造成不可逆轉的危害。歐洲國家的相關環境衛生法規,如有害物質限制指令RoHS 2002-95-EC,嚴格限制含鉛光電器件的商業應用[13],因此,開發一種具有優異光電性能且綠色環保的無鉛鈣鈦礦量子點具有重要的意義。為了獲得無鉛鹵化物鈣鈦礦,一種簡單的方法是用毒性較小的IV族金屬離子Ge2+、Sn2+取代Pb2+,但是Ge2+、Sn2+在空氣中極易被氧化[14-15]。另一種方法是用三價離子Sb3+、Bi3+等電子取代Pb2+位構建A3B23+X9結構;然而由于電荷運輸能力變弱,因此其光學激發和發射性能降低[16-17]。為了獲得性能更好的無鉛鹵化物鈣鈦礦,研究人員提出用1個M+陽離子和1個M3+陽離子取代2個Pb2+離子而構建的三維鈣鈦礦結構,這種結構被稱為雙鈣鈦礦結構。雙鈣鈦礦具有通式A2M+M3+X6(A=Cs+、CH3NH3+,M+=Cu+、Ag+、Na+,M3+=Bi3+、Sb3+、In3+,X=Cl-、Br-、I-),共角八面體[M+X6]5-和[M3+X6]3-交替,作為鉛基鹵化物鈣鈦礦的新替代品出現[18-21]。雙鈣鈦礦材料具有光發射寬、毒性低、斯托克(Stoke)位移大、可調發光、對X射線靈敏等特性,已經應用于光催化、太陽能電池、可調諧防偽、X射線探測器等方面[22-27]。在雙鈣鈦礦材料中,如Cs2AgBiX6、Cs2AgSbX6這類間接帶隙材料的光吸收系數相對較小,導致PLQY低[24];然而,Cs2AgInX6、Cs2NaInX6具有直接帶隙結構,因此具有較大的吸收系數、更高的PLQY以及更快的載流子復合速率[28]。其中,雙鈣鈦礦Cs2AgInCl6作為一種直接帶隙結構的雙鈣鈦礦材料,不僅其PLQY相較于其他雙鈣鈦礦材料更高,而且由于公差因子t和八面體因子μ均在穩定范圍內,Cs2AgInCl6的穩定性也相對較高[29]。

2018年,Liu等[30]通過熱注射法合成雙鈣鈦礦Cs2AgInCl6量子點,然而對于鉛基鈣鈦礦量子點來說,通過熱注射法合成的Cs2AgInCl6量子點的穩定性仍然很差,極易受到空氣中的水分和氧氣的影響,嚴重阻礙了其實際應用。為了減少量子點的表面缺陷,提高量子點的穩定性,合成過程中的原位表面鈍化是較為可行的方法。在之前的研究中,Gong等[31]將Cs2AgInCl6量子點包覆在無機物SiO2,不僅可以提高Cs2AgInCl6量子點在環境中和水中的穩定性和抗氧性,而且還可以提高量子點的光學性能;但是這種核殼封裝策略通常需要復雜的步驟,因此有必要探索一種替代封裝策略的簡單方法,以避免量子點團聚。近年來,也有研究采用聚乙二烯二氟化物(PVDF)對Cs2AgIn0.93Bi0.07Cl6表面封蓋處理[32],制備成的Cs2AgIn0.93Bi0.07Cl6-PVDF復合薄膜性能突出,在水中儲存仍能保持穩定的光致發光(photoluminescence,PL);然而PVDF包覆量子點后,Cs2AgIn0.93Bi0.07Cl6的結晶性下降,生長形狀不規則,所以應該探索一種既能提高量子點穩定性能和光學性能,又不破壞鈣鈦礦結晶結構的制備方案。

熱注射法合成鈣鈦礦量子點,通常是以油酸(OA)和油胺(OLA)等長烷基配體原位封裝量子點,然而這類量子點在環境中的穩定性并不理想,阻礙了量子點在光電領域中的應用。根據密度泛函理論計算結果發現,長碳鏈有機物對應的配體與量子點之間的結合能比較弱,導致團聚和長期穩定性差的問題[24],而短支鏈的2-乙基癸酸(DA)配體與量子點之間的大結合能可以提高量子點暴露在空氣中的穩定性。有報道表明,用較短支鏈的配體DA替代較長支鏈的配體OA,制備出了高質量的CsPbBr3量子點[33-34]。本文中嘗試通過引入DA配體取代OA配體來提高Cs2AgInCl6量子點的穩定能和光學性能。

1材料與方法

1.1試劑材料和儀器設備

試劑材料:碳酸銫(CsCO3,質量分數為99%)、1-十八烯(ODE,質量分數gt;90%)、油酸(分析純,阿拉丁試劑(上海)有限公司);硝酸銀(AgNO3)、乙酸乙酯(均為分析純,上海滬試化工有限公司);氯化銦(InCl3,質量分數為99.99%,北京伊諾凱科技有限公司);油胺(質量分數為80%~90%)、正己烷(分析純,上海麥克林生化科技有限公司);2-己基癸酸(質量分數為98%,梯希愛(上海)化成工業發展有限公司);鹽酸(HCl,質量分數為37%,煙臺遠東精細化工有限公司)。

儀器設備:集熱式磁力攪拌器(湖南云儀匯電子商務有限公司);JW–3021H型醫用離心機(安徽嘉文儀器設備有限公司);PANalytical X-ray Diffractometer Model X pert3型粉末衍射儀(XRD,荷蘭帕納科公司);JEM-2100 PLUS型高分辨率透射電子顯微鏡(TEM,日本電子株式會社);Nicoletis 20型傅里葉紅外光譜儀(FTIR,美國賽默飛世爾科技公司);Lambda 1050型透射、反射、吸收光譜儀(UV,美國珀金埃爾默股份有限公司);FLS 1000型穩、瞬態熒光光譜儀(英國愛丁堡公司)。

1.2制備與測試

首先將質量為0.203 5 g的CsCO3、10 mL的ODE、0.625 mL的OA裝入三頸燒瓶中,在溫度為120℃的條件下真空處理1 h,通入N2并將混合物加熱至150℃,完全溶解,合成油酸銫溶液,持溫等待注射。接下來,將質量為0.061 1 g的AgNO3、0.080 8 g的InCl3、14 mL的ODE、1 mL OA、1 mL OLA,以及0.28 mL HCl裝入另一只三頸燒瓶中,在溫度為120℃的條件下真空處理1 h后通入N2,將混合物升溫至260℃時,快速注入0.8 mL熱的油酸銫溶液,等待5 s,將混合物置于水浴冷卻至室溫。隨后對產物進行離心處理,在轉速為8 000 r/min下離心4 min,得到沉淀重新分散在正己烷中。再次在轉速為5 000 r/min離心4 min,將得到的上清液均勻分散在乙酸乙酯中。最終,在轉速為10 000 r/min離心10 min,得到Cs2AgInCl6-OA量子點沉淀。將上述步驟中的OA置換成DA,經過相同步驟,最終獲得Cs2AgInCl6-DA量子點沉淀。

1.3測試與表征

采用粉末衍射儀測定粉末的物相和純度;采用傅里葉紅外光譜儀測定粉末的官能團;采用透射電子顯微鏡觀察不同溶液的形貌;采用透射、反射、吸收光譜儀和穩、瞬態熒光光譜儀測定溶液的吸收和發光特性。

2結果與討論

2.1結構與官能團分析

圖1所示為Cs2AgInCl6雙鈣鈦礦的結構模型以及2種量子點的XRD圖譜、FTIR圖譜。Cs2AgInCl6雙鈣鈦礦的結構模型如圖1(a)所示,其形貌是立方體結晶,空間結構為共角八面體[AgX6]5-和[InX6]3-交替與Cs+共同構成了一個三維的立方鈣鈦礦結構框架。圖1(b)、(c)分別展示了長支鏈OA配體和短支鏈DA配體在Cs2AgInCl6量子點表面的分布。原則上DA配體的短支鏈可以增強配體與量子點之間的結合能,進一步提高量子點的穩定性。Cs2AgInCl6-OA量子點與Cs2AgInCl6-DA量子點的XRD圖譜如圖1(d)所示,觀察到2種量子點的XRD結果與塊狀標準卡片ICSD 1927876是一致的[35],并無雜質峰,Cs2AgInCl6-DA量子點的結晶性明顯優于Cs2AgInCl6-OA量子點。為了研究表面配體,進行相對應的FTIR光譜表征,如圖1(e)所示。2種量子點均在波數為3 200 cm-1處出現N—H伸縮振動吸收峰,表明量子點表面有少量來自油胺的氨基表面活性基團。波數為2 924 cm-1處的峰顯示了含有—CH3甲基的烴鏈存在。波數為722 cm-1處的峰顯示了長飽和烴鏈中—(CH2)n—的特征峰。在Cs2AgInCl6-OA量子點的1 468 cm-1峰位和Cs2AgInCl6-DA量子點的1 465 cm-1峰位表明了—COO—羥酸鹽的拉伸振動特性,配體中的羥基基團是以—COO—基團的形式結合在Cs2AgInCl6量子點表面,說明經離心清洗后長支鏈OA配體和短支鏈DA配體已經均勻地覆蓋量子點的表面[36]。

2.2形貌與粒徑分析

圖2所示為Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的TEM圖像。Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的TEM照片如圖2(a)和(d),通過圖2(a)和(d)可以清晰地看到Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點均呈現鈣鈦礦的立方結構、良好的分散性和高結晶度。PVDF對Cs2AgIn0.93Bi0.07Cl6表面封蓋處理的實驗中,Cs2AgInCl6呈現不規則的納米塊狀形貌。經過精確計算,量子點的平均晶粒粒徑分別達到了10.54、10.65 nm。這些數據表明,量子點的尺寸并沒有發生明顯的變化,這意味著羥基鏈長度的改變并不會對量子點尺寸產生影響,短支鏈DA配體仍能夠有效控制量子點形貌。而在無機物SiO2包覆Cs2AgInCl6的實驗中,Cs2AgInCl6不僅生長不規則,且尺寸過大。在本實驗中成功合成了尺寸均勻、結晶性高、分散良好的具有立方結構的Cs2AgInCl6量子點。此外在圖2(b)和(e)中可以測量出二者晶格條紋均為0.36 nm,這與雙鈣鈦礦結構的(022)晶面相吻合,對應XRD圖譜中(022)衍射峰。同時,快速傅里葉紅外圖譜如圖2(c)和(f)中2種量子點都表現出良好結晶性,測量結果同晶格條紋的測量結果一致,均對應(022)晶面。

2.3光學性能和穩定性分析

Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的吸收光譜、光致發光激發光譜以及壽命譜如圖3所示。圖3(a)描述了Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的吸收光譜,可以觀察到2種量子點的激子吸收峰均為292 nm。圖3(d)展示了Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點在室溫下的光致激發譜和光致發光譜。2種量子點均在450 nm處呈現藍色發射,峰形并未發生變化,但Cs2AgInCl6-DA量子點的發光強度明顯更高。同時表征Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的PLQY,經過計算分析得出二者的PLQY分別為2.79%、4.67%。Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的壽命衰減譜如圖3(b)、(e)所示。采用雙指數擬合方法,得到Cs2AgInCl6-OA量子點壽命τ1=1.221 7 ns,τ2=4.538 9ns,Cs2AgInCl6-DA量子點壽命τ1=1.835 1 ns,τ2=6.133 5 ns。平均壽命計算公式為

式中:τavg為平均壽命;τ1為雙指數擬合中A1對應壽命;τ2為雙指數擬合中A2對應壽命;A1、A2為常數。

確定Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的平均壽命分別為1.236 9、3.936 6 ns。Cs2AgInCl6-DA量子點的發光強度增強、光致熒光衰減壽命延長,意味著Cs2AgInCl6-DA量子點的熒光性能更優,證明了DA配體可以顯著降低量子點的表面缺陷,并有效地抑制由缺陷引起的非輻射復合。Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點在室溫環境下靜置80 d的PL穩定性,如圖3(c)、(f)所示。經過空氣中靜置40 d后,Cs2AgInCl6-OA量子點熒光強度減小至原來的76.95%,與此同時Cs2AgInCl6-DA量子點的熒光強度降低至96.50%。連續靜置80 d后,Cs2AgInCl6-OA量子點的熒光強度繼續減小至原56.27%,Cs2AgInCl6-DA量子點的熒光強度減小至95.43%。圖3(c)、(f)中的照片同樣可以觀察出與Cs2AgInCl6-OA量子點的熒光強度快速下降相比,Cs2AgInCl6-DA量子點下降十分平緩。這一現象表明,Cs2AgInCl6-DA量子點的穩定性優于Cs2AgInCl6-OA量子點,具有更強的抗氧性和防潮性,這得益于短支鏈DA配體與量子點之間的強相互作用,即使長時間暴露在空氣中,量子點的熒光強度也沒有明顯改變。Wang等[37]通過Co的摻雜提高Cs2AgInCl6的穩定性和光學性能,在經過30 d后,Cs2AgInCl6的熒光強度下降至原強度的70%左右。Cs2AgInCl6-DA量子點在空氣中經過80 d后熒光強度下降至原強度的95.43%,說明Cs2AgInCl6-DA量子點展現出更加優越的穩定性能。

I(T)=I0/1+Aexp(-k BT(E b))[38],(2)

式中:I(T)為隨溫度變化熒光強度;I0為0 K時的熒光強度;Eb為激子結合能;kB為玻爾茲曼常數;A為常數因子。

圖4所示為Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的溫度依賴性和功率依賴性的PL分析圖譜。PL強度隨溫度變化的趨勢圖譜如圖4(c)、(d)所示,計算得到Cs2AgInCl6-OA量子點的激子結合能為64.67 meV,Cs2AgInCl6-DA量子點的激子結合能為78.88 meV。圖4(e)、(f)分別展示了Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的具有功率依賴性的PL強度變化圖譜。從圖4(e)中可以觀察到Cs2AgInCl6-OA量子點的發射強度與激發功率之間呈現線性關系,表明發射不是由永久缺陷引起的,Cs2AgInCl6-DA量子點的發射強度與激發功率同樣呈現線性關系(如圖4(f))。Cs2AgInCl6量子點展示出的高激子結合能和寬發射峰等特性,通常是因為存在自陷激子(Self-trapped excitons,STEs),STEs的產生是由于半導體中具有局域載流子和軟晶格[29]。

2.4圓極化發光性和發光機制分析

為了深入研究Cs2AgInCl6量子點的圓極化發光特性,在室溫下對Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點進行極化發光光譜研究,圖5所示為Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點的自旋極化分析圖譜和發光機制圖。在測試過程中,使用σ+激發樣品(此處定義左旋圓偏振光為σ+、右旋偏振光為σ-)。圓偏振光路中,氙燈發出的非偏振光經過線偏振片和1/4λ波片,最終轉變為圓偏振光。通過使用左旋和右旋偏振光來激發量子點,獲得了圖5(a)和(b)中展示的Cs2AgInCl6-OA量子點以及Cs2AgInCl6-DA量子點的圓偏振光致發光光譜。在圖5(a)中Cs2AgInCl6-OA量子點的圓偏振光致發光峰位保持不變,發光強度存在明顯差異。為了量化圓極化PL的程度,引入了參數DP,定義

DP=(Iσ+-Iσ-)/(Iσ++Iσ-)[39],(3)

式中:Iσ+為左旋偏振PL強度;Iσ-為右旋偏振PL強度。

經計算得出Cs2AgInCl6-OA量子點的DP值為5.561%。同樣得出圖5(b)中Cs2AgInCl6-DA量子點的DP值為5.333%。基于角動量守恒定律,基態的電子受激躍遷到激發態,這些激發的電子或激子同樣具有特定的角動量+?,并在復合的過程中釋放出對應的自旋態光子[40-41]。如圖5(c)所展示,圓偏振激發下量子點的自旋極化過程。量子點受偏振光激發時會出現電子自旋態的不平衡態,在這種情況下,σ+光激發的自旋帶比σ-光激發自旋帶更加密集,這就導致了σ+光與σ-光激發的熒光強度之間存在差異[42]。二者的DP值相差不大,可以說明配體只通過—COO—基團結合于量子點表面,主要作用為控制形貌并防止團聚,長支鏈OA配體和短支鏈DA配體均并不會對量子點的發光過程產生影響。Cs2AgInCl6的發光機制如圖5(d)所示,Cs2AgInCl6在Γ點的價帶邊(VBM)和導帶邊(CBM)提供直接帶隙結構[43]。在Γ點,VBM主要來源于Ag 5 s態和Cl 3 p軌道,由于Ag軌道Eg態的能量更高,VBM在Γ點以Γ3+表示,而CBM主要來源于In 5 s態,因In 5 s態和反演對稱性,CBM在Γ點具有Γ1+表示,因此,VBM和CBM具有相同的偶宇稱,從VBM到CBM在Γ點的躍遷是奇偶禁止躍遷。VBM-1在Γ點上以Γ4+表示,所以VBM-1到CBM在Γ點上的躍遷同樣是奇偶禁止躍遷,而VBM-2在Γ點具有Γ4-表示,從VBM-2到CBM在Γ點上的躍遷是奇偶允許的。自由激子從允許躍遷的VBM轉移到CBM,部分自由激子由于表面缺陷非輻射復合,而部分自由激子被由強電子-聲子耦合引起的[AgCl6]5-八面體的Jahn-Teller畸變而形成的自陷態捕獲[29-30]。雙鈣鈦礦Cs2AgInCl6是通過自陷激子的輻射復合實現了發射。

3結論

1)通過熱注射法成功制備了純相的Cs2AgInCl6-OA量子點和Cs2AgInCl6-DA量子點。

2)Cs2AgInCl6-DA量子點和Cs2AgInCl6-OA量子點均呈現立方結構,具有分散良好、尺寸均一等特性。

3)與傳統的Cs2AgInCl6-OA量子點相比,Cs2AgInCl6-DA量子點的穩定性能顯著,結晶性更好,壽命更長,PLQY更高。

4)長支鏈OA配體和短支鏈DA配體分別修飾量子點表面,起到控制形貌、阻止團聚的作用,并討論了Cs2AgInCl6量子點的發光機制,即[AgCl6]5-八面體的Jahn-Teller畸變而形成的STE的輻射復合。

利益沖突聲明(Conflict of Interests)

所有作者聲明不存在利益沖突。

All authors disclose no relevant conflict of interests.

作者貢獻(Author’s Contributions)

邵山、徐帆、曹丙強參與了實驗設計、論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。

The study was designed,drafted and revised by SHAO Shan、XU Fan and CAO Bingqiang.All authors have read the last version of paper and consented for submission.

參考文獻(References)

[1]PROTESESCU L,YAKUNIN S,BODNARCHUK M I,et al.Nanocrystals of cesium lead halide perovskites(CsPbX3,X=Cl,Br,and I):novel optoelectronic materials showing bright emission with wide color gamut[J].Nano Letters,2015,15(6):3692-3696.

[2]YETTAPU G R,TALUKDAR D,SARKAR S,et al.Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrys-tals:remarkably high carrier mobilities and large diffusion lengths[J].Nano Letters,2016,16(8):4838-4848.

[3]OGA H,SAEKI A,OGOMI Y,et al.Improved understanding of the electronic and energetic landscapes of perovskite solar cells:high local charge carrier mobility,reduced recombination,and extremely shallow traps[J].Journal of the American Chemical Society,2014,136(48):16948-16948.

[4]JIANG M C,PAN C Y,et al.Research on the stability of luminescence of CsPbBr3 and Mn:CsPbBr3 PQDs in polar solution[J].RSC Advances,2022,12(24):15420-15426.

[5]WANG T T,YANG W T,LI B,et al.Radiation-resistant CsPbBr3 nanoplate-based lasers[J].ACS Applied Nano Materials,2020,3(12):12017-12024.

[6]YAKUNIN S,PROTESESCU L,KRIEG F,et al.Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites[J].Nature Communications,2015,6:8056.

[7]SONG S,LV Y C,CAO B Q,et al.Surface modification strategy synthesized CsPbX3 perovskite quantum dots with excel-lent stability and optical properties in water[J].Advanced Functional Materials,2023,33(21):2300493.

[8]GONZALEZ-RODRIGUEZ R,HATHAWAY E,PAULETTE H,et al.Two-dimensional quantum-confined CsPbBr3 in silicene for LED applications[J].ACS Applied Nano Materials,2023,6(5):4028-4033.

[9]BERGAMINI L,SANGIORGI N,GONDOLINI A,et al.CsPbBr3 for photoelectrochemical cells[J].Solar Energy,2020,212:62-72.

[10]CHENG J J,YAN J H,WANG J M,et al.Preparation of CsPbBr3 perovskite solar cells using a green solvent[J].Energies,2023,16(18):6426.

[11]ZHAO Y Y,ZHANG Q Y,LIU Y F,et al.Improved performance of CsPbBr3 quantum-dot light-emitting diodes by bottom interface modification[J].Organic Electronics,2022,109:106620.

[12]LIU Y X,ZHANG L L,LONG X M,et al.Ultra-stable CsPbBr3 nanocrystals with lead-carboxylate/SiO2 encapsulation for LED applications[J].Journal of Materials Chemistry C,2021,9(37):12581-12589.

[13]GAMBELUNGHE A,SALLSTEN G,BORNE Y,et al.Low-level exposure to lead,blood pressure,and hypertension in a population-based cohort[J].Environmental Research,2016,149:157-163.

[14]TAN Z F,LI J H,ZHANG C,et al.Highly efficient blue-emitting bi-doped Cs2SnCl6 perovskite variant:photolumines?cence induced by impurity doping[J].Advanced Functional Materials,2018,28(29):1801131.

[15]YAO H H,ZHAO F H,LI Z Z,et al.Strategies for improving the stability of tin-based perovskite(ASnX3)solar cells[J].Advanced Science,2020,7(10):1903540.

[16]LI X,GAO X P,ZHANG X T,et al.Lead-free halide perovskites for light emission:recent advances and perspectives[J].Advanced Science,2021,8(4):2003334.

[17]LENG M Y,YANG Y,ZENG K,et al.All-inorganic bismuth-based perovskite quantum dots with bright blue photolumi?nescence and excellent stability[J].Advanced Functional Materials,2018,28(1):1704446.

[18]VOLONAKIS G,HAGHIGHIRAD A A,MILOT R T,et al.Cs2InAgCl6:a new lead-free halide double perovskite with direct band gap[J].Journal of Physical Chemistry Letters,2017,8(4):772-778.

[19]LIU X Y,XU X,LI B,et al.Tunable dual-emission in monodispersed Sb3+/Mn2+codoped Cs2NaInCl6 perovskite nanocrys?tals through an energy transfer process[J].Small,2020,16(31):2002547.

[20]DANG Y Y,TONG G Q,WANG D,et al.Interface engineering strategies towards Cs2AgBiBr6 single-crystalline photode?tectors with good ohmic contact behaviours[J].Journal of Materials Chemistry C,2020,8(1):276-284.

[21]JEEVARAJ M,SUDHAHAR S,NALLAMUTHU N,et al.Solution processed Mn2+doped Cs2AgInCl6 lead free double perovskite as a potential light emitting material[J].Physica B-Condensed Matter,2023,653:414679.

[22]LI K K,LI S,ZHANG W L,et al.Highly-efficient and stable photocatalytic activity of lead-free Cs2AgInCl6 double perovskite for organic pollutant degradation[J].Journal of Colloid and Interface Science,2021,596:376-383.

[23]AHMAD R,NUTAN G V,SINGH D,et al.Colloidal lead-free Cs2AgBiBr6 double perovskite nanocrystals:synthesis,uni?form thin-film fabrication,and application in solution-processed solar cells[J].Nano Research,2021,14(4):1126-1134.

[24]WANG M,ZENG P,WANG Z H,et al.Vapor-deposited Cs2AgBiCl6 double perovskite films toward highly selective and stable ultraviolet photodetector[J].Advanced Science,2020,7(11):1903662.

[25]YUAN W M,NIU G D,XIAN Y M,et al.In situ regulating the order-disorder phase transition in Cs2AgBiBr6 single crystal toward the application in an X-ray detector[J].Advanced Functional Materials,2019,29(20):1900234.

[26]LIU X L,YE M,LIU F Y,et al.Fluorescence sensing of ammonia in water using lead-free perovskite Cs2AgInCl6:Bi[J].Microchemical Journal,2023,192:108913.

[27]SINGH N,AGARWAL A,AGARWAL M,et al.Performance evaluation of lead-free double-perovskite solar cell[J].Optical Materials,2021,114:110964.

[28]GIUSTINO F,SNAITH H J.Toward lead-free perovskite solar cells[J].ACS Energy Letters,2016,1(6):1233-1240.

[29]LOU J J,WANG X M,LI S R,et al.Efficient and stable emission of warm-white light from lead-free halide double perovskites[J].Nature,2018,563:541-545.

[30]LIU Y,JING Y Y,ZHAO J,et al.Design optimization of lead-free perovskite Cs2AgInCl6:Bi nanocrystals with 11.4%photoluminescence quantum yield[J].Chemistry Materials,2019,31(9):3333-3339.

[31]GONG X K,ZHANG X S,LIU X,et al.Novel cryogenic dual-emission mechanism of lead-free double perovskite Cs2AgInCl6 and using SiO2 to enhance their photoluminescence and photostability[J].Journal of Hazardous Materials,2021,403:123821.

[32]SHI J D,WANG M Q,ZHANG C,et al.Enhanced stability of lead-free double perovskite Cs2AgInxBi1-xCl6 crystals under a high humidity environment by surface capping treatment[J].Journal of Materials Chemistry C,2023,11(14):4742-4752.

[33]YAN D D,SHI T C,ZHANG Z G,et al.Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified sponta?neousemission by surface ligand modification[J].Small,2019,15(23):1901173.

[34]YAN D D,ZHAO S Y,WANG H X,et al.Ultrapure and highly efficient green light emitting devices based on ligand-modified CsPbBr3 quantum dots[J].Photonics Research,2020,8(7):1086-1092.

[35]ZHANG B W,WANG M J,GHINI M,et al.Colloidal Bi-doped Cs2Ag1?xNaxInCl6 nanocrystals:undercoordinated surface Clions limit their light emission efficiency[J].ACS Materials Letters,2022,4(9):1756-1763.

[36]WANG S X,QI J S,KERSHAW T H,et al.Co-doping of cerium and bismuth into lead-free double perovskite Cs2AgInCl6 nanocrystals results in improved photoluminescence efficiency[J].ACS Nanoscience Au,2020,2(2):93-101.

[37]WANG S X,SHI R,TANG B,et al.Co-doping of tellurium with bismuth enhances stability and photoluminescence quantum yield of Cs2AgInCl6 double perovskite nanocrystals[J].Nanoscale,2022,14(42):15691-15700.

[38]WANG S X,KERSHAW T H,ROGACH A R,et al.Bright and stable dion-jacobson tin bromide perovskite microcrystals realized by primary alcohol dopants[J].Chemistry of Materials,2021,33(13):5413-5421.

[39]LONG G K,JIANG C Y,SABATINI R,et al.Spin control in reduced-dimensional chiral perovskites[J].Nature Photonics,2018,12(9):528-533.

[40]ZHAN G X,ZHANG J R,ZHANG L H,et al.Stimulating and manipulating robust circularly polarized photoluminescence in achiral hybrid perovskites[J].Nano Letters,2022,22(10):3961-3968.

[41]MA J Q,FANG C,CHEN C,et al.Chiral 2D perovskites with a high degree of circularly polarized photoluminescence[J].ACS Nano,2019,13(3):3659-3665.

[42]LIU Y,JIANG Y,XU Z Y,et al.Magnetic doping induced strong circularly polarized light emission and detection in 2D layered halide perovskite[J].Advanced Optical Materials,2022,10(13):2200183.

[43]MENG W W,WANG X M,XIAO Z W,et al.Parity-forbidden transitions and their impact on the optical absorption properties of lead-free metal halide perovskites and double perovskites[J].Journal of Physical Chemistry Letters,2017,8(13):2999-3007.

Utilizing short-chain surfactants for enhancing the stability and fluorescence performance of Cs2AgInCl6 quantum dots

SHAO Shan1,XU Fan1,CAO Bingqiang2

1.School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China;

2.School of Materials Science and Engineering,University of Jinan,Jinan 250022,China

Abstract

Objective Lead-free double perovskite Cs2AgInCl6 quantum dots,which are non-toxic and optically superior compared to toxic lead-based perovskites have garnered considerable attention.However,challenges arise from their poor stability and ten?dency to aggregate in air,hindering their practical applications.To address these issues,this study analyzed the effects of vari?ous surface ligand modifications on the stability and optical properties of Cs2AgInCl6 quantum dots,aiming to improve their sta?bility and optical characteristics.The research methodologies and findings presented in this paper hold promise for the applica?tion of double perovskite Cs2AgInCl6 quantum dots in optoelectronic devices.

Methods Cs2AgInCl6 quantum dots were synthesized via a thermal injection method,employing oleic acid(OA)and 2-hexylcap?ric acid(DA)as surface ligands.The synthesized quantum dots underwent comprehensive characterization including powder diffraction,Fourier infrared spectrometry,transmission electron microscopy,transmission,reflection,and absorption spectrom?etry,stability assessment,and transient fluorescence spectrometry.This study investigated the influence of different surface ligand modifications on the purity,particle size,and morphology of Cs2AgInCl6 quantum dots,along with fluorescence and sta?bilityanalyses.Furthermore,the luminescence mechanism was elucidated through examinations of low-temperature fluores?cence,power-dependent fluorescence,and circular polarization luminescence properties.

Results and Discussion This paper investigated the impact of different surface ligand modifications on the purity,particle size,and morphology of Cs2AgInCl6 quantum dots.X-ray diffraction(XRD)analysis revealed consistent results with ICSD 1927876,a bulk standard card,for both types of quantum dots,indicating no impurity peaks.Notably,Cs2AgInCl6-DA quan?tum dots exhibited enhanced crystallization compared to Cs2AgInCl6-OA quantum dots,as evidenced by the 1 468 cm-1 peak for Cs2AgInCl6-OA and the 1 465 cm-1 peak for Cs2AgInCl6-DA,indicating tensile vibration characteristics of the—COO—group.Both types of quantum dots demonstrated a cubic structure,good dispersion,and high crystallinity of the perovskite.Fluores?cence and stability analyses were conducted for Cs2AgInCl6 quantum dots.Cs2AgInCl6-DA quantum dots exhibited notably higher luminescence intensity compared to Cs2AgInCl6-OA quantum dots,with a photoluminescence quantum yield of 4.67%.After continuous storage at room temperature for 80 days,DA-modified Cs2AgInCl6 quantum dots retained 95.43%of the initial luminescence,while Cs2AgInCl6-OA quantum dots exhibited a photoluminescence quantum yield of 2.79%,with fluorescence intensity decreasing to 56.27%after the same duration.Moreover,the average lifetime of Cs2AgInCl6-OA and Cs2AgInCl6-DA quantum dots was determined to be 1.236 9 ns and 3.936 6 ns,respectively.The luminescence mechanism was discussed based on low-temperature fluorescence,power-dependent fluorescence,and circular polarization luminescence studies.Both types of quantum dots showed a decrease in emission intensity with increasing temperature,suggesting inhibition of non-radiative recombination at lower temperatures.Furthermore,the exciton binding energy was calculated to be 64.67 meV for Cs2AgInCl6-OA quantum dots and 78.88 meV for Cs2AgInCl6-DA.While the photoluminescence peaks remained consistent for both types of quantum dot,noticeable differences existed in luminous intensity.Additionally,a polarization value,defined as the ratio of the difference in left-handed and right-handed polarized photoluminescence intensities to their sum and normalized to the range[-1,1],was introduced as a measure of the degree of photoluminescence emission polarization.The polarization value,or DP value,was found to be 5.561%for Cs2AgInCl6-OA and 5.333%for Cs2AgInCl6-DA.

Conclusion This study reported the successful synthesis of pure-phase Cs2AgInCl6-OA and Cs2AgInCl6-DA quantum dots through thermal injection.The hydroxyl group within the ligand bound to the surface of Cs2AgInCl6 quantum dots as—COO—groups,ensuring uniform coverage of both the long-branched OA ligand and short-branched DA ligand.Both Cs2AgInCl6-DA and Cs2AgInCl6-OA quantum dots exhibited a cubic structure with excellented dispersion and uniform size.Cs2AgInCl6-DA dem?onstrated superior performance compared to traditional Cs2AgInCl6-OA,showcasing a prolonged fluorescence even after continu?ous exposure to air for 80 days,demonstrating remarkable stability.DA ligands effectively reduced surface defects of quantum dots,suppressing non-radiative recombination and enhancing fluorescence lifetimes and photoluminescence quantum yield.The long-branched OA and short-branched DA ligands played a crucial role in morphology control and preventing agglomeration by modifying the surface of quantum dots.The observed transition of free excitons from the valence band maximum(VBM)to the conduction band minimum(CBM)highlighted the interplay between radiative and non-radiative recombination pathways,influ?enced by surface defects and Jahn-Teller distortion of the[AgCl6]5-octahedron under strong electron-phonon coupling.Radia?tive recombination of self-trapped excitons drove emission in the double perovskite Cs2AgInCl6.In summary,DA ligands contrib?ute to preserving the stability of Cs2AgInCl6quantum dots and facilitating effective radiation recombination,thereby offering potential for the photoelectric application of emerging lead-free double perovskite Cs2AgInCl6 quantum dots.

Keywords:quantum dots;lead-free double perovskite;surface ligand;stability

(責任編輯:王雅靜)

主站蜘蛛池模板: 亚洲第一极品精品无码| 欧美日韩v| 一本大道AV人久久综合| 青青草原国产av福利网站| 亚洲精品男人天堂| 亚洲欧洲美色一区二区三区| 熟妇无码人妻| 国产亚洲视频免费播放| 亚洲成aⅴ人在线观看| 青青青伊人色综合久久| 性网站在线观看| 国产美女免费网站| 国产无码性爱一区二区三区| 91毛片网| 日本一区二区三区精品AⅤ| 日本一区高清| 蜜桃视频一区二区三区| 激情在线网| 欧美国产日韩在线观看| 免费a级毛片18以上观看精品| P尤物久久99国产综合精品| 国产精品手机在线播放| 国产熟女一级毛片| 欧美一级在线播放| 在线欧美日韩国产| 伊人大杳蕉中文无码| 一级毛片免费不卡在线视频| 国产99欧美精品久久精品久久| 国内精品自在自线视频香蕉| 女人18毛片一级毛片在线 | 久久伊伊香蕉综合精品| 中文字幕欧美成人免费| 成人看片欧美一区二区| 黄色三级网站免费| 丰满人妻一区二区三区视频| 国产精品大白天新婚身材| 欧美日韩国产在线播放| 久久一日本道色综合久久| 日本高清免费不卡视频| 亚洲狠狠婷婷综合久久久久| 欧美成人免费午夜全| 黄色网在线| 71pao成人国产永久免费视频| 久久国产高潮流白浆免费观看| 18禁色诱爆乳网站| 国产成人综合在线观看| 亚洲精品高清视频| 美女内射视频WWW网站午夜 | 专干老肥熟女视频网站| AV天堂资源福利在线观看| 真实国产乱子伦视频| a级毛片免费看| 国产午夜看片| 狠狠综合久久久久综| 国产女人爽到高潮的免费视频| 国产波多野结衣中文在线播放 | 国产成人a毛片在线| jizz国产在线| 中文字幕av无码不卡免费| 91无码网站| 国产91久久久久久| 91久久偷偷做嫩草影院| 中国美女**毛片录像在线| 久无码久无码av无码| 欧美精品在线免费| 国产美女免费| 在线观看欧美精品二区| 99久久国产精品无码| 日韩精品久久久久久久电影蜜臀| 国产国语一级毛片| 波多野结衣第一页| 亚洲伊人电影| 欧美午夜网站| 91精品日韩人妻无码久久| 亚洲人在线| 中文字幕在线欧美| 欧美人与牲动交a欧美精品| 亚洲天堂精品视频| 日本黄网在线观看| 国产亚洲精品在天天在线麻豆 | 啦啦啦网站在线观看a毛片| 真人免费一级毛片一区二区|