










摘要:【目的】研究外加電場和細(xì)顆粒物粒徑對(duì)固定床顆粒層除塵器(granular bed filter,GBF)過濾性能的影響。【方法】建立GBF的三維過濾模型和電場力模型并驗(yàn)證其準(zhǔn)確性;研究有、無外加電場及不同電場強(qiáng)度情況下GBF對(duì)粒徑為1~21μm的細(xì)顆粒物的過濾情況,并分析不同粒徑的細(xì)顆粒物在GBF內(nèi)部的分布規(guī)律。【結(jié)果】外加電場的存在能顯著提高GBF對(duì)粒徑為3~21μm的細(xì)顆粒物的過濾效率,且外加電場強(qiáng)度越大,細(xì)顆粒物粒徑越大,GBF過濾效率提升越明顯;隨著粒徑的增大,細(xì)顆粒物在堆積顆粒層內(nèi)部的分布更加集中在高氣流速度區(qū)域,且更容易通過堆積顆粒層與GBF壁面之間形成的通道;外加電場的存在使得堆積顆粒層內(nèi)部的細(xì)顆粒物數(shù)量減少,分布散亂,且大粒徑細(xì)顆粒物在GBF壁面附近區(qū)域發(fā)生較大規(guī)模聚集。【結(jié)論】外加電場和細(xì)顆粒物粒徑的增大與GBF內(nèi)部細(xì)顆粒物的分布規(guī)律密切聯(lián)系,且對(duì)GBF過濾性能的提升發(fā)揮積極作用。
關(guān)鍵詞:顆粒層除塵器;電場;細(xì)顆粒物;過濾效率;數(shù)值模擬
中圖分類號(hào):TK284.5文獻(xiàn)標(biāo)志碼:A
引用格式:
朱康寧,李源,沈小又,等.外加電場作用下顆粒層除塵器過濾性能的數(shù)值研究[J].中國粉體技術(shù),2024,30(3):88-99.
ZHU K N,LI Y,SHEN X Y,et al.Numerical study on filtration performance of granular bed filter under applied electric field[J].China Powder Science and Technology,2024,30(3):88?99.
細(xì)顆粒物廣泛存在于工業(yè)生產(chǎn)、日常生活和自然環(huán)境中,對(duì)大氣環(huán)境質(zhì)量、人體健康及精密工業(yè)設(shè)備等均存在重要影響,細(xì)顆粒物的脫除成為當(dāng)前亟待解決的問題之一[1-3]。顆粒層除塵器(granular bed filter,GBF)是以硅砂、礫石、礦渣或焦炭等顆粒作為濾料,脫除含塵氣流中細(xì)顆粒物的一種過濾式除塵器,具備除塵效率高、耐高溫高壓、耐腐蝕磨損、成本低廉,結(jié)構(gòu)簡單等優(yōu)點(diǎn),被認(rèn)為是最有前途的含塵氣體凈化技術(shù)之一,已被廣泛應(yīng)用于能源、化工、冶金、環(huán)保等領(lǐng)域[4-6]。開展堆積顆粒層脫除細(xì)顆粒物的相關(guān)研究,進(jìn)一步完善細(xì)顆粒物在堆積顆粒層內(nèi)的過濾沉積理論,具有重要的現(xiàn)實(shí)意義。
迄今為止,國內(nèi)外學(xué)者已經(jīng)對(duì)顆粒層除塵器這一課題進(jìn)行了大量的研究并取得了許多進(jìn)展。實(shí)驗(yàn)著重于GBF結(jié)構(gòu)的優(yōu)化和改變宏觀物理量,研究其對(duì)GBF內(nèi)部壓降和過濾效率的影響。例如,Xiao等[7]研究了上、下顆粒床層厚度對(duì)雙層固定床GBF過濾性能的影響。Shi等[8]基于雙層固定床GBF研究了過濾氣速對(duì)過濾效率的影響,并分析了上、下層顆粒床層過濾細(xì)顆粒物的差異性;Shen等[9]研究了煙氣溫度對(duì)雙層固定床GBF除塵效率和壓降的影響。Chen等[10]基于移動(dòng)床GBF研究了過濾氣體溫度對(duì)GBF過濾效率的影響。Masias-Machin等[11]使用一種新型材料火山石作為固定床GBF的濾料顆粒,并研究了GBF除塵效率與濾料顆粒粒徑、濾料層厚度、氣流溫度的關(guān)系。Xiao等[12]對(duì)比分析了固定床、移動(dòng)床和流化床GBF的過濾性能。Lv等[13]提出一種氣-固逆流的移動(dòng)床GBF,研究了濾料顆粒質(zhì)量流量、入口細(xì)顆粒物濃度與GBF壓降和過濾效率的關(guān)系,并給出移動(dòng)床GBF過濾效率的經(jīng)驗(yàn)公式。
數(shù)值研究方面,早期受制于計(jì)算機(jī)技術(shù),相關(guān)研究主要基于單顆粒過濾模型,建立單顆粒過濾模型與堆積顆粒層過濾模型的聯(lián)系,得到能夠預(yù)測堆積顆粒層過濾效率的經(jīng)驗(yàn)公式,但一般誤差較大[14]。而后隨著計(jì)算機(jī)技術(shù)的提高及理論模型研究的進(jìn)步,直接針對(duì)堆積顆粒層建立過濾模型的數(shù)值研究開始出現(xiàn)。Kikuchi等[15]基于離散元法(discrete element method,DEM)建立了細(xì)顆粒物在隨機(jī)堆積顆粒層內(nèi)的運(yùn)動(dòng)沉積模型,研究不同粒徑和形狀的細(xì)顆粒物在堆積顆粒層內(nèi)的沉積堵塞情況;Chen等[16]采用計(jì)算流體力學(xué)-離散相模型(computational fluid dynamics-discrete phase model,CFD-DPM)對(duì)比了單層固定床GBF和不同類型雙層固定床的過濾性能;Wang等[17-18]研究了2種規(guī)則堆積顆粒床層GBF和隨機(jī)堆積顆粒床層GBF對(duì)細(xì)顆粒物的過濾情況;Yokoo等[19]基于CFD-DEM方法研究了流化床GBF中氣體流速、流化狀態(tài)、細(xì)顆粒物粒徑對(duì)過濾效率的影響;Xie等[20]在CFD-DEM模型的基礎(chǔ)上開發(fā)了一種平滑體積分布模型(smoothed volume distribution model,SVDM)方法,將堆積顆粒球的體積光滑分布到幾倍其粒徑的空間中以識(shí)別更精細(xì)的網(wǎng)格,獲得更高的計(jì)算精度和更好的適用性,之后基于該方法研究了細(xì)顆粒物在顆粒床層中的運(yùn)動(dòng)遷移情況。此外,更為精細(xì)的格子玻爾茲曼-離散元法(lattice boltzmann method,LBM)也開始應(yīng)用于研究了多孔介質(zhì)內(nèi)細(xì)顆粒物的運(yùn)動(dòng)沉積過程[21-23]。
近年來,靜電除塵技術(shù)因壓降小、無堵塞、能耗少和效率高的優(yōu)點(diǎn)而被廣泛應(yīng)用到除塵領(lǐng)域。在堆積顆粒層過濾中,通過施加外部靜電場或者顆粒預(yù)荷電的方式來提高細(xì)顆粒物的捕集效率也是重要的研究方向,同樣產(chǎn)生了不少有價(jià)值的科研成果[24-25]。例如,Xiao等[12]總結(jié)了細(xì)顆粒物荷電對(duì)GBF過濾效率的影響并提出了預(yù)測公式;Xi等[26]構(gòu)建了3種實(shí)驗(yàn)裝置——傳統(tǒng)的GBF、單獨(dú)的靜電除塵器、靜電增強(qiáng)型GBF,結(jié)果表明,靜電增強(qiáng)型GBF擁有明顯更高的過濾效率。總體而言,目前對(duì)外加電場作用下顆粒層除塵的研究還較少,且大多停留在實(shí)驗(yàn)層面,對(duì)顆粒床層內(nèi)部細(xì)顆粒物的分布情況認(rèn)識(shí)不足。基于此,本文中建立了固定床GBF的三維過濾模型,并構(gòu)建了電場力模型,數(shù)值研究了有或無外加電場及不同電場強(qiáng)度情況下GBF對(duì)細(xì)顆粒物的過濾效率及顆粒床層內(nèi)部細(xì)顆粒物的分布情況。
1模型的構(gòu)建與驗(yàn)證
1.1幾何模型
圖1所示為三維GBF幾何模型。模型整體呈圓管狀,尺寸為5.8Dg×17Dg(管徑×管長,Dg為堆積顆粒球的直徑,本文中統(tǒng)一為10 mm),由下到上依次分為入口段、堆積顆粒層段(過濾層段)和出口段,長度依次為5Dg、4Dg和8Dg,外加電場在圓管壁面(集塵極)與中心軸線(電暈極)之間施加。模型中,堆積顆粒層基于DEM模型[27]使用傾倒法生成(為保證堆積的隨機(jī)性,需隨機(jī)賦予每個(gè)顆粒球一定范圍內(nèi)的初始速度(-0.03 m/s,0.03 m/s),為保證堆積的合理性,若堆積后的顆粒層上表面有明顯凹陷或突起,則認(rèn)為堆積不合理,需重新堆積)。
GBF運(yùn)行時(shí),同一粒徑(1~21μm,單次模擬僅使用1種粒徑)的細(xì)顆粒物(密度為2 100 kg/m3,質(zhì)量流量為382 mg/min)在GBF底部的入口處隨機(jī)生成(0~0.2 s),并由氣流(進(jìn)口氣流速度為0.345 m/s,熱力學(xué)溫度為300 K)攜帶穿越堆積顆粒層區(qū)域后由頂部的出口處離開GBF。在此過程中,部分細(xì)顆粒物被過濾層捕集,細(xì)顆粒物與堆積顆粒球發(fā)生接觸即視為被捕集(細(xì)顆粒物與GBF壁面的碰撞做反彈處理),因模擬的GBF過濾時(shí)間很短(過濾層捕集的細(xì)顆粒物的量極為有限),細(xì)顆粒物被捕集之后便不再計(jì)算,即忽略其對(duì)其他細(xì)顆粒物和流場的影響,過濾效率η表示為
η=×100%,(1)
式中:ρin、ρout分別為GBF入、出口處細(xì)顆粒物的平均質(zhì)量濃度。
1.2數(shù)學(xué)模型
1.2.1電場力模型
細(xì)顆粒物在GBF內(nèi)部所受電場力Fd由GBF內(nèi)部的電場強(qiáng)度E及細(xì)顆粒物的荷電量q共同決定。確定了GBF內(nèi)部的電場強(qiáng)度及細(xì)顆粒物的荷電量后,由Fd=qE確定GBF內(nèi)部所受電場力(方向指向GBF壁面)。
目前,顆粒荷電模型的主流是電場荷電模型和擴(kuò)散荷電模型的結(jié)合。模型認(rèn)為:顆粒的粒徑是影響顆粒荷電方式的最主要因素,對(duì)于粒徑大于0.5μm的顆粒,顆粒荷電方式以電場荷電為主,本文中研究的細(xì)顆粒物的粒徑均大于1μm,故荷電方式只考慮電場荷電。考慮到電場荷電的時(shí)間一般不超過1 s,故細(xì)顆粒物在抵達(dá)過濾層前,其電荷量已經(jīng)達(dá)到飽和,即細(xì)顆粒物的電荷量為
q=3πε0 E0 dp(2),(2)
式中:ε0為真空介電常數(shù),ε0=8.85×10-12 F/m;E0為荷電的電場強(qiáng)度,E0=34 482.7 V/m;dp為細(xì)顆粒物粒徑;εe為相對(duì)介電常數(shù),εe=5.5。
參考管線式電除塵器,GBF內(nèi)部電場強(qiáng)度分布可表示為
式中:U0為電極電壓;r0為電暈極半徑;R為集塵極半徑;ρ為空間電荷密度;r為空間中任一點(diǎn)至電暈極的距離。
1.2.2氣-固耦合模型
本文中研究的細(xì)顆粒物的粒徑為1~21μm,在氣流中的體積分?jǐn)?shù)遠(yuǎn)小于1%,屬于極稀相,故本文中的氣-固耦合模型采用單向耦合,即只考慮氣體對(duì)細(xì)顆粒物的曳力作用而忽略細(xì)顆粒物對(duì)流場的影響,同時(shí)忽略細(xì)顆粒物之間的相互作用。
含塵氣流通過顆粒床層為典型的湍流流動(dòng),綜合考慮計(jì)算精度和計(jì)算資源,本文中氣相(連續(xù)相)采用以標(biāo)準(zhǔn)k-ε雙方程作為封閉模型的雷諾時(shí)均模擬(reynolds average navier-stokes,RANS)。
質(zhì)量守恒方程:
+??(ρgug)=0,(4)
式中:ρg為氣體密度;ug為氣體速度矢量;t為時(shí)間。
動(dòng)量守恒方程:
(ρgui)+(ρguiuj)=-+(μ+μt)+-ρg kδij,(5)
式中:ui、uj為x、y、z方向的時(shí)均速度;xi、xj為x、y、z方向的距離;p為氣體平均壓力;μ為氣體動(dòng)力黏度;μt為湍流黏度;k為湍動(dòng)能;δij為0(i≠j時(shí))或1(i=j時(shí))。
k-ε方程:
+??(ρgkui)=??(μ+??k+Gk-ρgε,(6)
+??(ρgεui)=??(μ+??ε+C 1εGk-C2ερg,(7)
式中:σk、σε為湍動(dòng)能k和湍動(dòng)能耗散率ε的湍流Prandtl數(shù),σk=1,σε=1.33;Gk為由平均速度梯度產(chǎn)生的湍動(dòng)能;ε為湍動(dòng)能耗散率;C 1ε、C2ε為常數(shù),C 1ε=1.44,C2ε=1.92。其中:
Gk=μt+,
μt=Cμρ,
式中,Cμ為常數(shù),取0.09。
GBF中細(xì)顆粒物的運(yùn)動(dòng)情況基于牛頓第二定律進(jìn)行確定計(jì)算,表示為
式中:mp為細(xì)顆粒物質(zhì)量;up為細(xì)顆粒物速度;ρp為細(xì)顆粒物密度;g為重力加速度;Ff為流體曳力,采用Wen等[28]提出的關(guān)聯(lián)式計(jì)算。
1.3模型驗(yàn)證
本文中選取了10種不同堆積形態(tài)的顆粒層劃分流場計(jì)算GBF網(wǎng)格——非結(jié)構(gòu)性四面體網(wǎng)格,網(wǎng)格尺寸為2.1 mm,其中,堆積顆粒層段及其附近0.5Dg區(qū)域內(nèi)的網(wǎng)格進(jìn)行局部加密,尺寸為0.08Dg(0.8 mm)。相關(guān)研究表明,該尺寸的網(wǎng)格能同時(shí)保證計(jì)算精度和計(jì)算量[5-6]。基于建立的模型在同條件下展開模擬與課題組前期的實(shí)驗(yàn)結(jié)果進(jìn)行對(duì)比[6],結(jié)果如圖2所示。
由圖2可知,總體來看,模擬平均值和實(shí)驗(yàn)所得的過濾效率曲線具有相似的變化趨勢,且不同粒徑細(xì)顆粒物的過濾效率極為接近,最大偏差僅為5.1%。考慮到模擬與實(shí)驗(yàn)之間的存在的偏差及數(shù)值模擬與實(shí)驗(yàn)本身存在的誤差,可以認(rèn)為本文中建立和使用的過濾模型是合理、可靠的。同時(shí),鑒于8號(hào)顆粒層模型的模擬值與模擬平均值之間的最大偏差僅為0.84%,相較其他模型更低,因此后續(xù)研究基于8號(hào)顆粒層模型。
2結(jié)果與分析
2.1外加電場對(duì)GBF過濾效率的影響
過濾效率是衡量GBF過濾性能的最重要的參數(shù)之一,本文中基于選定的顆粒層模型,在進(jìn)口氣流速度為0.345 m/s、熱力學(xué)溫度為300 K的條件下,研究了不同外加電場強(qiáng)度下(電極電壓分別為0、1 000、2 000、3 000 V)GBF對(duì)不同粒徑(1~21μm)細(xì)顆粒物的過濾情況,結(jié)果如圖3所示。
由圖3可知,外加電場的存在能夠顯著提高過濾層對(duì)1~21μm細(xì)顆粒物的過濾效率。與不加電場的情況相比較,外加電場的電極電壓為3 000 V時(shí),過濾層對(duì)粒徑為1~21μm內(nèi)的細(xì)顆粒物的過濾效率平均提升了24.5%,最高提升達(dá)34.9%,粒徑為21μm細(xì)顆粒物在外加電場的電極電壓為3 000 V的作用下過濾效率已經(jīng)達(dá)到了98.8%,接近100%。外加電場強(qiáng)度越大,細(xì)顆粒物過濾效率提升越明顯,但當(dāng)外加電場的電極電壓超過1 000 V后,再增加電壓對(duì)過濾效率的影響有限。如:外加電場的電極電壓由1 000 V提升到2 000 V或由2 000 V提升到3 000 V時(shí),GBF對(duì)各粒徑細(xì)顆粒物過濾效率提升基本上不超過5%。
另外,同強(qiáng)度的外加電場對(duì)不同粒徑細(xì)顆粒物過濾效率的影響也存在差異性。對(duì)于粒徑為1~3μm細(xì)顆粒物,外加電場對(duì)GBF過濾效率的影響相對(duì)較為微弱,且外加電場強(qiáng)度的變化對(duì)GBF過濾效率的影響也較小;對(duì)于粒徑為gt;3~11μm的細(xì)顆粒物,隨著細(xì)顆粒物粒徑的增大,外加電場對(duì)細(xì)顆粒物過濾效率的影響也在逐漸增強(qiáng);相比無外加電場,有外加電場情況下,細(xì)顆粒物過濾效率隨粒徑上升的趨勢更為明顯;細(xì)顆粒物粒徑大于11μm后,外加電場的存在對(duì)不同粒徑細(xì)顆粒物過濾效率的影響開始趨于穩(wěn)定,如:相比于無外加電場(0 V),外加電場的電極電壓為1 000 V時(shí),粒徑為11~21μm的細(xì)顆粒物的過濾效率均提升了26%左右,外加電場的電極電壓為3 000 V時(shí),粒徑為11~21μm的細(xì)顆粒物的過濾效率均提升了32%左右。
從機(jī)理上看,外加電場的存在加強(qiáng)了細(xì)顆粒物的徑向運(yùn)動(dòng)(垂直于氣流的來流方向),使其更易被過濾層捕集,從而提高了過濾效率。對(duì)小粒徑細(xì)顆粒物,因其自身良好的氣流跟隨性和所受電場力較小,外加電場對(duì)過濾效率影響有限;之后,隨著粒徑的增大,細(xì)顆粒物的氣流跟隨性快速減弱,所受電場力作用愈發(fā)明顯,徑向運(yùn)動(dòng)極大加強(qiáng),細(xì)顆粒物過濾效率提升明顯,尤其是對(duì)于粒徑大于11μm的細(xì)顆粒物。
2.2 GBF內(nèi)部不同粒徑的細(xì)顆粒物的分布情況
研究GBF內(nèi)部(尤其是顆粒床層內(nèi)部)細(xì)顆粒物的分布情況對(duì)認(rèn)識(shí)GBF的過濾機(jī)制具有重要意義。圖4所示為GBF對(duì)粒徑為4μm細(xì)顆粒物的過濾情況(進(jìn)口氣流速度為0.345 m/s,熱力學(xué)溫度為300 K,無外加電場,為便于觀察,對(duì)細(xì)顆粒物進(jìn)行一定程度的放大處理),由圖可知:0.1 s時(shí)刻,最先進(jìn)入GBF的細(xì)顆粒物(圖中紅色顆粒)與堆積顆粒層開始大規(guī)模接觸,GBF出口段基本無細(xì)顆粒物存在;0.2 s時(shí)刻,此時(shí)細(xì)顆粒物已停止進(jìn)入GBF,已進(jìn)入GBF的細(xì)顆粒群完全籠罩整個(gè)堆積顆粒層,GBF入口段、過濾段、出口段均有大量細(xì)顆粒物分布;0.3 s時(shí)刻,細(xì)顆粒物主要集中在GBF出口段,并持續(xù)大量地從出口處離開,但最后進(jìn)入GBF的細(xì)顆粒物(圖中藍(lán)色顆粒)仍與堆積顆粒層發(fā)生較大規(guī)模地接觸,GBF入口段仍有少量地細(xì)顆粒物存在;0.4 s時(shí)刻,細(xì)顆粒群已基本與堆積顆粒層脫離接觸,只有極少數(shù)的細(xì)顆粒物仍然滯留在堆積顆粒層中,GBF入口段已無細(xì)顆粒物,過濾段也只有極少量細(xì)顆粒物存在。
為了進(jìn)一步觀察堆積顆粒層內(nèi)部的細(xì)顆粒物的分布情況,本文中選取GBF在0.1、0.3 s時(shí)刻,z=60、70 mm截面(以GBF進(jìn)口平面的中心為坐標(biāo)原點(diǎn))上的細(xì)顆粒物與氣流速度場的分布情況進(jìn)行展示,結(jié)果如圖5所示。從氣流速度場分布情況而言,z=60、70 mm截面上氣流速度均發(fā)生劇烈變化,能在僅幾毫米的有限區(qū)域內(nèi)由0變化至近1.6 m/s(幾乎是5倍于進(jìn)口氣流大小)。在此劃分3個(gè)速度區(qū)域,即:低流速區(qū)域(0~0.4 m/s)、中流速區(qū)域(gt;0.4~1.0 m/s)、高流速區(qū)域(gt;1.0~1.6 m/s)。
由圖5(a)、(b)可知,0.1 s時(shí),z=60 mm截面上,細(xì)顆粒物數(shù)量較多且分布規(guī)律,基本上均勻分布在中、高氣流速度區(qū)域;而z=70 mm截面上,細(xì)顆粒物則相對(duì)較少,主要分布在截面外圍區(qū)域的高氣流速度區(qū)域,尤其是在壁面附近的高氣流速度區(qū)域,而在中部區(qū)域和低流速區(qū)域則幾乎沒有細(xì)顆粒物分布,這是由于0.1 s時(shí),細(xì)顆粒物尚未完全運(yùn)動(dòng)到z=70 mm截面上。該現(xiàn)象一方面體現(xiàn)了高速度氣流對(duì)細(xì)顆粒物的更好的裹挾作用,另一方面也說明,顆粒球與壁面之間的空隙比堆積顆粒層顆粒球之間的空隙似乎更容易使細(xì)顆粒物通過,這在圖4中也得到了很好的展示:靠近GBF壁面處的孔隙通道最先有細(xì)顆粒物通過(0.1 s時(shí)刻)。
由圖5(c)可知,0.3 s時(shí),z=60 mm截面上細(xì)顆粒物的數(shù)量相較于0.1 s時(shí)已大大減少,且主要集中在壁面附近及中等氣流速度區(qū)域,甚至在低氣流速度區(qū)域也有一定數(shù)量的細(xì)顆粒物分布,高氣流速度區(qū)域反而沒有細(xì)顆粒物出現(xiàn),這是由于此時(shí)GBF已處于過濾的收尾階段,絕大部分細(xì)顆粒物已經(jīng)通過z=60 mm截面,少部分細(xì)顆粒物未被過濾和滯留(未通過)是因?yàn)樗鼈兊倪\(yùn)動(dòng)路徑并非為堆積顆粒層內(nèi)部的高氣流速度通道(需要更多時(shí)間來通過GBF),故在截面上主要分布在中、低流速區(qū)域。
由圖5(d)可知,0.3 s時(shí),z=70 mm截面上細(xì)顆粒物的數(shù)量較多,主要分布在中、高氣速區(qū)域,但分布散亂,且有少數(shù)細(xì)顆粒物分布在低氣流速度區(qū)域。這是因?yàn)榻?jīng)過前段過濾層后,過濾層內(nèi)部的流場結(jié)構(gòu)已發(fā)生劇烈變化,相應(yīng)地,細(xì)顆粒物的運(yùn)動(dòng)狀態(tài)也受到很大擾動(dòng),導(dǎo)致一部分的細(xì)顆粒物被過濾層捕集,而剩余部分的細(xì)顆粒物在過濾層內(nèi)部的分布則更為散亂。
細(xì)顆粒物的粒徑是影響其在GBF內(nèi)部分布情況的主要參數(shù),圖6、7所示為GBF內(nèi)部粒徑為11、21μm細(xì)顆粒物的分布情況。
由圖6(a)可知,0.1 s時(shí),z=60 mm截面上外圍區(qū)域粒徑為11μm細(xì)顆粒物的分布規(guī)律與同條件下粒徑為4μm細(xì)顆粒物分布規(guī)律基本相同,只是數(shù)量較少且更加集中,但在截面中部區(qū)域,細(xì)顆粒物分布明顯減少,說明堆積顆粒層中部區(qū)域?qū)?xì)顆粒物有更好的過濾效果,而堆積顆粒層邊緣區(qū)域的通道則更容易使細(xì)顆粒物通過,即過濾層中部區(qū)域相比邊緣區(qū)域有著更好的過濾效果。這可能是因?yàn)椋啾冗^濾層內(nèi)部堆積顆粒球與堆積顆粒球之間,過濾層外部堆積顆粒球與GBF壁面之間更容易形成穩(wěn)定的通道供細(xì)顆粒物通過。
由圖6(b)可知,0.1 s時(shí),z=70 mm截面上粒徑為11μm細(xì)顆粒物的數(shù)量明顯少于同條件下粒徑為4μm細(xì)顆粒物數(shù)量,且更加集中在壁面附近的高氣流速度區(qū)域,說明細(xì)顆粒物的氣流跟隨性較差,此時(shí)只有較少數(shù)量的該顆粒物在高速度氣流的攜帶下到達(dá)該截面,也體現(xiàn)了壁面附近通道更好的通過效果。
由圖6(c)、(d)可知,0.3 s時(shí),z=60、70 mm截面上粒徑為11μm細(xì)顆粒物的分布情況與粒徑為4μm細(xì)顆粒物分布規(guī)律基本相同,只是數(shù)量上存在細(xì)微差異,但更為集中在高氣流速度區(qū)域,在低流速區(qū)域(藍(lán)色)幾乎無細(xì)顆粒物分布,不像同條件下粒徑為4μm細(xì)顆粒物的分布較為散亂,說明堆積顆粒層內(nèi)部的低速度氣流已經(jīng)無法起到裹挾細(xì)顆粒物通過堆積顆粒層的作用了。
對(duì)于粒徑為21μm細(xì)顆粒物,由于其氣流跟隨性較差,0.1 s時(shí),細(xì)顆粒群基本未抵達(dá)z=60 mm截面,此時(shí),只有極少數(shù)顆粒物分布在z=60 mm截面上且都集中在壁面附近的有限的高氣流速度區(qū)域內(nèi),而在z=70 mm截面上,則沒有細(xì)顆粒物分布,如圖7(a)、(b)所示,該現(xiàn)象再次驗(yàn)證了堆積顆粒層與GBF壁面處的間隙更容易使細(xì)顆粒物通過,尤其是對(duì)于大粒徑細(xì)顆粒物。如圖7(c)、(d)所示,0.3 s時(shí),z=60、70 mm截面上有較多數(shù)量的細(xì)顆粒物分布,但相比條件下粒徑為4、11μm細(xì)顆粒物的數(shù)量明顯更少,且更加集中在GBF壁面附近區(qū)域和高氣流速度區(qū)域,說明此時(shí)堆積顆粒層內(nèi)部只有高速度氣流通道(尤其是靠近GBF壁面的)才有細(xì)顆粒物通過。
2.3外加電場作用下GBF內(nèi)部不同粒徑的細(xì)顆粒物的分布情況
外加電場對(duì)粒徑為1~21μm粒徑的細(xì)顆粒物的過濾效率均有顯著影響,為了進(jìn)一步研究外加電場對(duì)堆積顆粒層內(nèi)部的細(xì)顆粒物分布的影響,選取粒徑為11μm的細(xì)顆粒物,分析外加電場電極電壓為1 000 V時(shí),其在堆積顆粒層的分布情況,結(jié)果如圖8所示。
由圖8(a)、(b)可知,0.1 s時(shí),z=60、70 mm 2個(gè)截面上的細(xì)顆粒物數(shù)量相比無外加電場情況下的明顯減少,且分布更加靠近壁面附近區(qū)域。該現(xiàn)象充分反映了外加電場作用下,堆積顆粒層對(duì)細(xì)顆粒物有更好的過濾效果,但整體而言,此時(shí),外加電場的存在對(duì)堆積顆粒層內(nèi)部細(xì)顆粒物的分布影響有限,差別主要體現(xiàn)在細(xì)顆粒物的數(shù)量上。
由圖8(c)、(d)可知,0.3 s時(shí),外加電場情況下,z=60、70 mm 2個(gè)截面中部區(qū)域的細(xì)顆粒物要明顯少于無外加電場情況下的,但在GBF壁面附近空隙區(qū)域有大量細(xì)顆粒物聚集,數(shù)量要明顯超越無外加電場情況下,尤其是在z=70 mm截面上,且分布極為散亂,規(guī)律性不強(qiáng),甚至在壁面附近的低氣流速度區(qū)域有相當(dāng)數(shù)量的細(xì)顆粒物分布,該現(xiàn)象充分體現(xiàn)了電場力作用下細(xì)顆粒物的徑向運(yùn)動(dòng)。
對(duì)于粒徑為11μm細(xì)顆粒物,電場力的存在極大地加劇了細(xì)顆粒物的徑向運(yùn)動(dòng),一方面使得細(xì)顆粒物更易被過濾層捕集(尤其是中部區(qū)域的細(xì)顆粒物向四周運(yùn)動(dòng)時(shí)),極大地提升了過濾效率;另一方面,也使過濾層邊緣區(qū)域的細(xì)顆粒物在GBF壁面處大量團(tuán)聚,且隨著電場力對(duì)細(xì)顆粒物作用時(shí)間的增加,這種聚集現(xiàn)象愈發(fā)明顯。
圖9所示為外加電場電極電壓為1 000 V作用下,0.3 s時(shí)刻,粒徑為4、21μm的細(xì)顆粒物在GBF內(nèi)部的分布情況示意圖。由圖可知:相對(duì)于粒徑為11μm細(xì)顆粒物,粒徑為21μm細(xì)顆粒物在GBF壁面處的聚集更為明顯,但粒徑為4μm的細(xì)顆粒物則不會(huì)在GBF壁面處的聚集,甚至其在GBF壁面處的數(shù)量相比無外加電場情況下要更少,這是因?yàn)閷?duì)于粒徑為4μm細(xì)顆粒物,其所受電場力較小,在接觸GBF壁面后能發(fā)生反彈較遠(yuǎn)距離而離開GBF壁面(或被捕集),而粒徑為11、21μm細(xì)顆粒物應(yīng)所受電場力較大,接觸GBF壁面后則難以離開(圖中表現(xiàn)為細(xì)顆粒物在GBF壁面處發(fā)生聚集)。
3結(jié)論
1)外加電場的存在能顯著提高GBF對(duì)細(xì)顆粒物的過濾效率,且外加電場強(qiáng)度越大,細(xì)顆粒物過濾效率提升越明顯,此外,對(duì)于不同粒徑的細(xì)顆粒物,外加電場對(duì)過濾效率的影響也是不同的。
2)隨著粒徑的增大,細(xì)顆粒物在堆積顆粒層內(nèi)部的分布更加集中在高氣流速度區(qū)域,此外,堆積顆粒層與GBF壁面之間形成的通道更容易使細(xì)顆粒物通過,尤其是大粒徑細(xì)顆粒物。
3)外加電場的存在會(huì)使得堆積顆粒層內(nèi)部的細(xì)顆粒物數(shù)量大大減少,且分布更為散亂,同時(shí)也會(huì)引發(fā)大粒徑(11、21μm)細(xì)顆粒物在GBF壁面空隙處大量聚集。
利益沖突聲明(Conflict of Interests)
所有作者聲明不存在利益沖突。
All authors disclose no relevant conflict of interests.
作者貢獻(xiàn)(Author’s Contributions)
蔡杰、朱康寧和顧中鑄進(jìn)行了方案設(shè)計(jì),朱康寧、吳晶晶和李源負(fù)責(zé)具體工作,朱康寧、蔡杰和沈小又參與了論文的寫作和修改。所有作者均閱讀并同意了最終稿件的提交。
The study was designed by CAI Jie,ZHU Kangning and GU Zhongzhu.The specific work is carried out by ZHU Kangning,WU Jingjing and LI Yuan.The manuscript was written and revised by ZHU Kangning,CAI Jie and SHEN Xiaoyou.All authors have read the last version of paper and consented for submission.
參考文獻(xiàn)(References)
[1]CHENG Y,YU H M,XIE S,et al.Study on the coal dust deposition fraction and site in the upper respiratory tract under different particle sizes and labor intensities[J].Science of the Total Environment,2023,868:161617.
[2]KHAZINS V M,SOLOV’EV S P,LOKTEV D N,et al.Nearsurface air layer pollution with micronic dust particles in large-scale blasting in open pit mining[J].Journal of Mining Science,2022,58(4):676-689.
[3]栗海潮.煤礦粉塵職業(yè)危害防治技術(shù)探討[J].技術(shù)與市場,2021,28(11):98-99.
LI H C.Discussion on prevention and control technology of coal mine dust occupational hazard[J].Technology and Market,2021,28(11):98-99.
[4]YU Y,TAO Y,WANG F L,et al.Filtration performance of the granular bed filter used for industrial flue gas purification:a review of simulation and experiment[J].Separation and Purification Technology,2020,251:117318.
[5]陳俊霖.含塵高溫?zé)煔忸w粒床內(nèi)除塵及換熱特性研究[D].北京:中國科學(xué)院大學(xué),2019.
CHEN J L.Study on the collection efficiency and heat transfer characteristics of hot dusty gas flowing through the packed granular bed[D].Beijing:University of Chinese Academy of Sciences,2019.
[6]官蕾.細(xì)顆粒物在隨機(jī)堆積顆粒層中分離過濾特性的動(dòng)力學(xué)研究[D].南京:東南大學(xué),2020.
GUAN L.Kinetic research on the deposition fine particles on the randomly packed granular bed filter[D].Nanjing:South-east University,2020.
[7]XIAO S R.Effect of filter layer thickness on the filtration characteristics of dual layer granular beds[J].Powder Technol-ogy,2018,335:344-353.
[8]SHIH,YANG G,YAO Z,et al.Semi-coke powder filtration experiments using a dual layer granular bed filter[J].Advanced Powder Technology,2018,29(12):3257-3264.
[9]SHEN W J,YANG G H,LIU P,et al.Effects of temperature on the filtration characteristics of a dual-layer granular bed filter[J].Chemical Engineering and Technology,2018,41(9):1759-1766.
[10]CHEN Y S,CHYOU Y P,LI S C.Hot gas clean-up technology of dust particulates with a moving granular bed filter[J].Applied Thermal Engineering,2015,74:146-155.
[11]MACIAS-MACHIN A,SOCORRO M,VERONA J M,et al.New granular material for hot gas filtration:use of the“Lapilli”[J].Chemical Engineeringamp;Processing Process Intensification,2006,45(9):719-727.
[12]XIAO G,WANG X,ZHANG J,et al.Granular bed filter:a promising technology for hot gas clean-up[J].Powder Tech?nology,2013,244(4):93-99.
[13]LV H,F(xiàn)AN Y,XING K.Effects of operating parameters on the performance of moving bed filter[J].Powder Technology,2023,419:118327.
[14]MA H,HRADISKY M,JOHNSON W P.Extending applicability of correlation equations to predict colloidal retention in porous media at low fluid velocity[J].Environmental Scienceamp;Technology,2013,47(5):2272-2278.
[15]KIKUCHI S,KON T,UEDA S,et al.Analysis of powder motion in a packed bed of blast furnace using the discrete element method[J].Isij International,2015,55(6):1313-1320.
[16]CHEN J,LI X,HUAI X,et al.Collection efficiency in a three-dimensional randomly arranged dual-layer granular bed filter[J].Particuology,2019,49:88-94.
[17]WANG F L,TANG S Z,HE Y L,et al.Parameter study of filtration characteristics of granular filters for hot gas clean-up[J].Powder Technology,2019,353:267-275.
[18]WANG F L,HE Y L,TANG S Z,et al.Particle filtration characteristics of typical packing granular filters used in hot gas clean-up[J].Fuel,2018,234:9-19.
[19]YOKOO K,KISHIDA M,YAMAMOTO T.Numerical investigation of PM filtration in fluidized-bed-type PM removal device based on force balance via CFD-DEM simulation[J].Powder Technology,2020,380:506-517.
[20]XIE Z,WANG S,SHEN Y.CFD-DEM modelling of the migration of fines in suspension flow through a solid packed bed[J].Chemical Engineering Science,2021,231.
[21]FARAHANI M V,F(xiàn)OROUGHI S,NOROUZI S,et al.Mechanistic study of fines migration in porous media using lattice Boltzmann method coupled with rigid body physics engine[J].Journal of Energy Resources Technology,2019,141(12):123001.
[22]PARVAN A,JAFARI S,RAHNAMA M,et al.Insight into particle retention and clogging in porous media:a pore scale study using lattice Boltzmann method[J].Advances in Water Resources,2020,138(1):103530.
[23]XIA T,F(xiàn)ENG Q,WANG S,et al.A numerical study of particle migration in porous media during produced water reinjec?tion[J].Journal of Energy Resources Technology,2022,144(7):29-31.
[24]BEMER D,SUBRA I,MORELE Y,et al.Experimental study of granular bed filtration of ultrafine particles emitted by a thermal spraying process[J].Journal of Aerosol Science,2013,63:25-37.
[25]GIVEHCHI R,LI Q,TAN Z.The effect of electrostatic forces on filtration efficiency of granular filters[J].Powder Tech?nology,2015,277:135-140.
[26]XI J F,GU Z Z,CAI J,et al.Filtration of dust in an electrostatically enhanced granular bed filter for high temperature gas cleanup[J].Powder Technology,2020,368:105-111.
[27]KAWAGUCHI T,TANAKA T,TSUJI Y.Numerical simulation of two-dimensional fluidized beds using the discrete ele?ment method(comparison between the two-and three-dimensional models)[J].Powder Technology,1998,96(2):129-138.
[28]WEN C Y,YU Y H.Mechanics of fluidization[J].Chem Eng Prog Sump Ser,1966,162:100-111.
Numerical study on filtration performance ofgranular bed filter under applied electric field
ZHU Kangning,LI Yuan,SHEN Xiaoyou,WU Jingjing,CAI Jie,GU Zhongzhu School of Energy and Mechanical Engineering,Nanjing Normal University,Nanjing 210023,China
Abstract
Objective Fine particles are ubiquitous in various settings including industrial production,daily activities,and natural environ?ments,exerting a profound influence on atmospheric conditions,industrial operations,and human health.Notably,PM2.5,in particular,poses significant health risks,such as cardiopulmonary dysfunction,respiratory ailments,and cardiovascular dis?eases,thus necessitating urgent attention to their mitigation.The granular bed filter(GBF)emerges as a promising solution by employing granular materials like silica sand,gravel,slag,or coke to form an efficient filter layer capable of capturing fine par?ticles from polluted air streams.Owing to its adeptness in dust removal,along with its resilience to elevated temperatures and pressures,corrosion,and abrasion,as well as its cost-effectiveness and simplistic design,GBF technology has garnered rapid adoption across diverse sectors encompassing energy,chemical processing,metallurgy,and environmental conservation.How?ever,current comprehension of the dust removal mechanisms and operational dynamics of GBF remains inadequate,necessitat?ing further research.This paper aims to advance our understanding of GBF technology,thereby facilitating its progress and application.
Methods This paper established a three-dimensional filtering model for fixed bed granular bed filters(GBF),incorporationg both geometric and mathematical aspects.The geometric model,illustrated in Fig.1,portrayed the entire structure as a cylin?drical tube with three distinct sections:entrance,filter layer(composed of stacked granular material),and exit.Themathemati?cal model adopted a gas-solid unidirectional coupling approach,focusing solely on the influence of airflow on fine particles,while disregarding the reverse effect.Gas phase dynamics were simulated using the Reynolds-averaged Navier-Stokes(RAN)method with standard equations serving as the closed model,while the solid phase(fine particles)was analyzed via Lagrange-based force calculations.The model's accuracy was verified experimentally,as depicted in Fig.2.Subsequently,the paper investigated the filtration efficiency of GBF for fine particles ranging from 1 to 21μm in diameter,with a density of 2 100 kg/m3 and under varying electric field intensities(0,1 000,2 000,3 000 V).Furthermore,the distribution of fine particles with dif?ferent sizes(4,11,21μm)within the stacked granular layer was examined and compared.
Results and Discussion As depicted in Fig.3,the introduction of an applied electric field yielded a notable enhancement in the filtration efficiency of the filter layer,particularly for fine particles ranging from 1 to 21μm,with a more pronounced effect observed for particles larger than 3μm.Moreover,applied electric field correlated positively with greater efficiency.Notably,at 3 000 V,the filtration efficiency for 21μm fine particles reached 98.8%,nearing full efficiency.However,while 1 000 V significantly enhanced filtration efficiency,further increases in electric field intensities exhibited diminishing returns.For instance,transitioning from 1 000 V to 2 000 V or 2 000 V to 3 000 V only resulted in a marginal improvement of no more than 5%infiltration efficiency for fine particles ranging from 1 to 21μm.Fig.4,5,6,and 7 illustrated that as the size of fine par?ticles increased,their distribution within the stacked granular layer became more concentrated in regions with higher gas flow velocities,particularly near the GBF walls.This phenomenon was attributed to the porous channels between the GBF walls and the stacked particle spheres,which facilitated the passage of larger fine particles.Fig.8 indicated that,compared to scenarioswithout an applied electric field,an electric field of 1 000 V minimally altered the distribution of 11μm fine particles within the stacked granular layer at 0.1 s,primarily leading to a reduction in the quantity of fine particles.This reduction reflected an enhanced filtration efficiency due to the applied electric field.However,at 0.3 s,the applied electric field induced a more dis?persed distribution of 11μm fine particles within the GBF walls,accompanied by a mass accumulation near the GBF walls,even in low-velocity regions.Fig.9 revealed that at the same time point(0.3 s),the applied electric field caused a more pro?nounced accumulation of 21μm fine particles near the GBF walls compared to those of 11μm fine particles,while 4μm fine particles did not exhibit significant accumulation.
Conclusion The primary conclusions drawn from this study areas follows:1)The applied electric field substantially enhance the filtration efficiency of GBF for fine particles.Furthermore,the improvement in filtration efficiency is directly proportional to field intensity.Additionally,its impact varies depending on fine particles sizes.2)Fine particles exhibit a tendency to accumu?late in high-velocity regions within the stacked granular layer.Moreover,larger fine particles demonstrate a greater propensity to traverse channels between the stacked granular layer and the GBF walls.3)The applied electric field significantly reduces the quantity of fine particles within the stacked granular layer,leading to a more dispersed distribution.Notably,fine particles with larger particle sizes(11μm and 21μm)tend to aggregate near the GBF walls under the influence of the applied electric field.
Keywords:granular bed filter;electric field;fine particle;filtration efficiency;numerical simulation
(責(zé)任編輯:王雅靜)