999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

叢枝菌根真菌在提高植物抗逆性與土壤改良中的作用與機(jī)制研究進(jìn)展

2024-09-24 00:00:00楊沐郭寰段國(guó)珍王占林樊光輝李建領(lǐng)
中國(guó)粉體技術(shù) 2024年2期

摘要: 【目的】 為深入了解植物抗逆性及土壤生態(tài)修復(fù)的機(jī)制,開展叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)在分子水平上的研究,以實(shí)現(xiàn)對(duì)植物生長(zhǎng)發(fā)育及抗逆性和土壤生態(tài)改良的精準(zhǔn)調(diào)控。【研究現(xiàn)狀】綜述AMF對(duì)宿主植物抗逆性和土壤生態(tài)改良的影響,概括AMF抵御生物脅迫和非生物脅迫的作用機(jī)制,總結(jié)AMF在非侵染性病害、土壤生態(tài)結(jié)構(gòu)改良等方面的作用機(jī)制和實(shí)際應(yīng)用潛力。【展望】提出AMF在植物抗逆性提升與土壤生態(tài)結(jié)構(gòu)改良方面的作用是生態(tài)學(xué)與農(nóng)學(xué)研究的熱點(diǎn),繼續(xù)研究AMF如何在分子層面影響植物的應(yīng)激反應(yīng)、免疫機(jī)制、與土壤微生物相互作用等方面的具體機(jī)制;AMF在不同植物種類、土壤類型和環(huán)境條件下的適用性也需要深入研究。未來的研究應(yīng)更加側(cè)重AMF與植物互作的分子機(jī)制,特別是AMF在基因調(diào)控和信號(hào)傳導(dǎo)方面的作用;探索AMF在干旱、高鹽、重金屬污染等極端環(huán)境下的功能多樣性和適應(yīng)性;AMF作為一種新興的有機(jī)菌肥,將有助于推動(dòng)農(nóng)業(yè)的可持續(xù)發(fā)展,為應(yīng)對(duì)全球農(nóng)業(yè)面臨的挑戰(zhàn)提供新的解決方案。

關(guān)鍵詞: 叢枝菌根真菌; 抗逆性; 土壤改良; 土壤團(tuán)粒

中圖分類號(hào): Q939.96; TB4 文獻(xiàn)標(biāo)志碼:A

引用格式:

楊沐, 郭寰, 段國(guó)珍, 等. 叢枝菌根真菌在提高植物抗逆性與土壤改良中的作用與機(jī)制研究進(jìn)展[J]. 中國(guó)粉體技術(shù),2024, 30(2): 164-172.

YANG M, GUO H, DUAN G Z, et al. Role and mechanism of arbuscular mycorrhizal fungi in enhancing plant stress resistanceand soil improvement: a review[J]. China Powder Science and Technology, 2024, 30(2): 164?172.

土壤微生物在調(diào)控生態(tài)系統(tǒng)功能和推動(dòng)農(nóng)業(yè)可持續(xù)發(fā)展方面發(fā)揮著至關(guān)重要的作用。土壤微生物通過調(diào)節(jié)生態(tài)系統(tǒng)內(nèi)的營(yíng)養(yǎng)物質(zhì)循環(huán)和有機(jī)質(zhì)降解等途徑,對(duì)生態(tài)系統(tǒng)的演變產(chǎn)生深遠(yuǎn)影響[1] 。由于土壤微生物對(duì)土壤生態(tài)環(huán)境的高度敏感,使其能夠快速反映土壤退化程度,因此常被視為衡量生態(tài)環(huán)境功能的重要指標(biāo)之一。叢枝菌根真菌(arbuscular mycorrhizal fungi,AMF)是一類古老的內(nèi)生真菌,可與陸地上90%以上的維管植物形成叢枝菌根結(jié)構(gòu),該結(jié)構(gòu)可以提高宿主植物對(duì)微量元素的吸收能力[2] 。AMF能夠擴(kuò)大宿主植物的根表面積,有助于植物的生長(zhǎng)發(fā)育和生物量的積累,且對(duì)土壤生態(tài)有修復(fù)作用。AMF在植物病害防治方面取得了很好的成效,具有很好的應(yīng)用前景[3] 。當(dāng)AMF侵染宿主植物后,宿主植物能夠激活防御機(jī)制,增加對(duì)病原物的抵抗性,并且AMF占據(jù)侵染位點(diǎn),減少了病原物的侵入。AMF侵染宿主植物后可以固定大氣中的N 2 ,土壤內(nèi)的細(xì)菌通過生物固氮作用獲取氮素,并將固定的N以NH 4 + 的形式分泌,被菌絲吸收,進(jìn)而通過菌絲運(yùn)輸?shù)剿拗髦参矬w內(nèi),直接發(fā)揮改善土壤生態(tài)環(huán)境、促進(jìn)植物生長(zhǎng)的作用[4] 。

AMF作為常見的微生物大量存在于維管植物根系微生態(tài)的系統(tǒng)中,AMF的接種對(duì)植物的協(xié)同效應(yīng)主要表現(xiàn)在促進(jìn)N和P的吸收與利用,提高植物生物量等方面[5] 。充分發(fā)揮AMF與植物的生物固氮與營(yíng)養(yǎng)吸收等作用,能夠減少化肥對(duì)環(huán)境的負(fù)面效應(yīng),對(duì)保障糧食生產(chǎn)和農(nóng)業(yè)可持續(xù)發(fā)展有重要意義。

深入分析植物與微生物的相互作用,可以幫助學(xué)者預(yù)測(cè)與應(yīng)對(duì)氣候變化和環(huán)境效應(yīng)對(duì)植物的影響,迫切需要對(duì)AMF-宿主植物的抗病機(jī)制及AMF對(duì)土壤生態(tài)改良中的相互作用進(jìn)行歸納總結(jié),以期為農(nóng)業(yè)可持續(xù)發(fā)展提供新的思路,也為陸地生態(tài)系統(tǒng)中植物-土壤反饋效應(yīng)和碳氮循環(huán)領(lǐng)域的相關(guān)研究提供理論參考。

1 AMF防治植物病害的機(jī)制

1968年,人們首次報(bào)道了摩西球囊霉可以減輕土棘殼對(duì)洋蔥根系的侵害, 此后人們逐漸開始關(guān)注AMF在植物病害防治方面的效果。 現(xiàn)如今有大量報(bào)道指出, AMF可以有效增強(qiáng)植物的抗病性, 減輕由病原菌導(dǎo)致的危害[6] 。 大蒜接種泡囊叢枝菌根后, 能夠增強(qiáng)對(duì)尖孢鐮孢菌的耐受性, 這一結(jié)論得到了Ravnskov等[7] 的支持。 研究發(fā)現(xiàn),AMF對(duì)存在于草莓、 黃瓜和鷹嘴豆中的尖孢鐮孢菌有抑制作用;對(duì)存在于木瓜中的瓜果腐霉、 葡萄藤中的蜜環(huán)菌、 番茄中的寄生疫霉和豌豆中的真菌病也均有抑制作用[8-9] 。

AMF能夠誘導(dǎo)宿主植物產(chǎn)生抗性以抵抗根部的病原體,防止根部壞死。當(dāng)黃瓜受到尖孢鐮刀菌、立枯絲核菌和終極腐霉感染時(shí),AMF可以抵御這類病原菌使黃瓜根系健康[10] 。AMF還能有效抵御番茄中的瓜果腐霉和三葉草中的終極腐霉對(duì)宿主植物的影響[11] 。Elshahawy等 [12] 研究發(fā)現(xiàn),接種近明球囊霉可以有效抵御番茄根腐病對(duì)宿主植物帶來的危害。黃瓜接種AMF也會(huì)影響對(duì)終極青霉的耐受性。Ravnskov等[13] 研究發(fā)現(xiàn),接種不同種AMF對(duì)黃瓜根腐病有不同的影響,認(rèn)為接種摩西管柄囊霉可以完全抵御病害;接種異形根孢囊霉可以抵御病害對(duì)黃瓜的負(fù)面影響,但是接種該AMF也會(huì)抑制黃瓜的生長(zhǎng)發(fā)育;接種近明球囊霉對(duì)病害無影響同時(shí)會(huì)抑制黃瓜的生長(zhǎng)發(fā)育;接種終極腐霉對(duì)病害沒有防治作用同時(shí)也不能對(duì)植物的生長(zhǎng)發(fā)育起作用。

隨著農(nóng)業(yè)可持續(xù)進(jìn)程的不斷推進(jìn),AMF受到越來越多的重視,AMF防治植物病害的作用機(jī)制也逐漸被解析:可以促進(jìn)宿主植物生長(zhǎng)發(fā)育,延長(zhǎng)宿主植物的壽命;可以改變宿主植物根系形態(tài);可以與病原物競(jìng)爭(zhēng)宿主植物光合產(chǎn)物和侵染位點(diǎn);可以激活宿主植物的防御機(jī)制等。

1.1 AMF改善宿主植物的營(yíng)養(yǎng)、 水分狀況

AMF通過與植物根系建立共生關(guān)系,提高宿主植物對(duì)水分和P、 N等元素的吸收效率。這種互惠共生關(guān)系增強(qiáng)了宿主植物的生長(zhǎng)發(fā)育和繁殖能力,從而提高其在逆境環(huán)境中的存活率[14] 。AMF對(duì)P元素的吸收會(huì)引起根際分泌物的改變,從而抑制病原物孢子的萌發(fā)[15] 。AMF侵染宿主植物后會(huì)促進(jìn)宿主植物對(duì)礦質(zhì)元素的吸收,特別是在低肥力的土壤中,菌根的形成可以增強(qiáng)宿主植物對(duì)難溶性磷的吸收,促進(jìn)宿主植物的生長(zhǎng)[16] 。AMF也可以通過提高宿主植物吸收關(guān)鍵養(yǎng)分的能力,抑制病原菌吸收營(yíng)養(yǎng)的能力,間接提高宿主植物的耐病性。AMF通過根上和根外菌絲的擴(kuò)展在土壤里形成龐大的菌絲網(wǎng)絡(luò),提高根細(xì)胞活力,從而顯著提高宿主植物對(duì)P、 Zn等元素的吸收,增強(qiáng)宿主植物的活力,提升宿主植物的抗病性[17] 。謝琳淼等 [18] 研究發(fā)現(xiàn),幾種AMF混合可以共同抵御土傳病害的病原體,從而對(duì)宿主植物起到保護(hù)作用,根內(nèi)球囊霉、 摩西球囊霉等AMF混合使用可以提高AMF定制率,提高P利用率,改善營(yíng)養(yǎng)狀況,增強(qiáng)宿主植物對(duì)病原菌的拮抗作用。

大量的根外菌絲增大了根系與土壤的接觸面積,擴(kuò)大了根系的吸收面積,增強(qiáng)了宿主植物對(duì)水分的吸收能力,有助于提高宿主植物生物量,從而提高宿主植物的抗病性。AMF有減少根尖的分生組織活性的潛力,導(dǎo)致不定根的形成。這些AMF介導(dǎo)的根系形態(tài)修飾可能有助于干旱脅迫下宿主植物的水分平衡[19] 。王曉念 [20] 研究指出,AMF在水分脅迫條件下可以提高桑樹苗的生存能力。

1.2 AMF改變宿主植物根系形態(tài)

宿主植物因AMF定殖于根系而引起根系形態(tài)的變化。AMF以休眠孢子在土壤中存在,在適宜的條件下萌發(fā)并侵入宿主植物根系細(xì)胞的細(xì)胞壁內(nèi),在細(xì)胞膜外形成叢枝結(jié)構(gòu),增強(qiáng)細(xì)胞壁的結(jié)構(gòu)抗性,使植物根系變長(zhǎng),莖粗增加,根系側(cè)枝增多。AMF可以促進(jìn)根系生長(zhǎng)、 增粗和分枝,加速細(xì)胞壁木質(zhì)化,增厚根尖表皮和細(xì)胞層數(shù),這些變化有效地減緩了病原體對(duì)根系的感染過程[21] 。研究人員通過顯微觀察發(fā)現(xiàn), 球囊霉屬等不同真菌形成菌根網(wǎng)絡(luò)后, 其菌絲會(huì)發(fā)生融合、 菌絲壁溶解、 細(xì)胞核遷移和原生質(zhì)體流動(dòng)等變化, 促進(jìn)了菌種之間的物質(zhì)交流。棉花與摩西球囊霉和幼套球囊霉共生時(shí), 宿主植物的根系木質(zhì)部結(jié)構(gòu)改變, 細(xì)胞變形和收縮, 細(xì)胞壁顯著增厚, 這些結(jié)構(gòu)變化可以提高棉花對(duì)枯萎病的抵抗力[22-23] 。

1.3 AMF與病原物競(jìng)爭(zhēng)宿主植物光合產(chǎn)物和侵染位點(diǎn)

AMF與病原物均需靠宿主植物提供營(yíng)養(yǎng)物質(zhì)來生存,它們相互競(jìng)爭(zhēng)宿主的光合產(chǎn)物和根系的碳水化合物,當(dāng)AMF獲取必需的礦質(zhì)元素后,病原物因得不到必需的礦質(zhì)元素而抑制生長(zhǎng)。科研人員首先觀察到,病原物和真菌侵染同一組織后,它們會(huì)在不同的根皮層中發(fā)育,說明二者存在著空間競(jìng)爭(zhēng)關(guān)系。AMF侵入宿主植物,會(huì)占據(jù)相應(yīng)的生態(tài)位點(diǎn),而減少宿主根系的病原菌數(shù)量。研究表明,一些病原物無法穿過含有叢枝結(jié)構(gòu)的根系皮層細(xì)胞[24] 。接種AMF和未接種AMF的對(duì)照植株對(duì)尖孢鐮刀菌侵染植物后產(chǎn)生的反應(yīng)結(jié)果表明,在接種AMF組中病原菌的生長(zhǎng)僅限于表皮和皮層組織中;而對(duì)照組根系內(nèi)病原菌不斷生長(zhǎng)侵染到維管柱中[25] 。

1.4 AMF激活宿主植物的防御機(jī)制

植物本身擁有一些復(fù)雜的防御機(jī)制,能夠?qū)Σ≡锏那秩井a(chǎn)生防御反應(yīng)。這些防御機(jī)制可以在病害發(fā)生之前或發(fā)生途中被非病原微生物或環(huán)境因子激活。AMF的侵入,可以提高宿主植物防御酶的活性、誘導(dǎo)病程相關(guān)蛋白的合成,從而激活宿主植物的防御機(jī)制,增強(qiáng)宿主植物對(duì)病原物的防御能力。當(dāng)宿主植物受到病原菌的侵入后,病原菌侵染部位會(huì)聚集大量植保素、纖維素酶、幾丁質(zhì)酶水解病原菌細(xì)胞壁,這些化合物都會(huì)對(duì)病原菌產(chǎn)生破壞作用,抵御病原菌的侵害。Devi等[26] 研究發(fā)現(xiàn),構(gòu)建AMF-番茄共生體后,接種尖孢鐮刀菌時(shí),果膠酶、 纖維素酶含量顯著上升。劉萌等[27] 研究發(fā)現(xiàn),AMF侵入宿主植物后,通過提高抗氧化酶活性和病程相關(guān)基因的表達(dá),增強(qiáng)煙草對(duì)青枯病的抵抗力。林熠斌等[28] 研究發(fā)現(xiàn),將摩西斗管囊霉接種在受茄鏈格孢菌侵染的番茄根系時(shí),丙二烯氧化物環(huán)化酶等關(guān)鍵酶的活性顯著提高,茉莉酸信號(hào)受體基因表達(dá)顯著上調(diào),推測(cè)摩西斗管囊霉可以通過調(diào)控茉莉酸介導(dǎo)的植物防御體系,來增強(qiáng)番茄對(duì)茄鏈格孢菌的抗病性。

2 AMF在非生物脅迫中的作用

非侵染性病害是由不良環(huán)境引起的病害,往往大面積發(fā)生,不具備相互傳染的能力,在植物體內(nèi)分離不到任何病原物。研究表明,AMF可以顯著改善植物對(duì)多種環(huán)境壓力的適應(yīng)能力,如干旱、鹽堿、重金屬污染等,減緩由不良環(huán)境引起的非侵染性病害[29] 。

2.1 抗旱性

國(guó)內(nèi)外研究普遍認(rèn)為,AMF通過改變宿主植物根系形態(tài)和根系周圍的微環(huán)境,可以促進(jìn)宿主植物對(duì)水分的吸收,提高植物的抗旱性[30] 。熊丙全等 [31] 通過實(shí)驗(yàn)證明供水正常和干旱條件下AMF都能影響葡萄苗的水分代謝,改善葉片水分狀況,增強(qiáng)蒸騰作用,從而增強(qiáng)其抗旱能力。研究發(fā)現(xiàn),在水分脅迫下,AMF改善宿主植物水分狀況的作用強(qiáng)于正常水分狀況下。在干旱脅迫條件下,葡萄苗接種AMF后蒸騰速率及氣孔導(dǎo)度顯著提高,抗旱性增強(qiáng), 說明AMF在逆境條件下能更好發(fā)揮作用[32] 。研究發(fā)現(xiàn),通過單獨(dú)接種和混合接種AMF于連翹幼苗,在干旱脅迫下,隨著菌根數(shù)量的增多,苗木枯死率下降,減緩了宿主植物受害的速度,且混合接種AMF的連翹幼苗抗干旱效果最明顯[33] 。

2.2 耐鹽堿性

鹽脅迫降低了枯葉的分解、養(yǎng)分的釋放以及刺槐生長(zhǎng)速率。接種AMF可以加速枯葉中的K和有機(jī)碳的釋放,不僅提高了枯葉的分解,又顯著提高了刺槐吸收養(yǎng)分的能力[34] 。劉耀臣等 [35] 發(fā)現(xiàn),隨著鹽脅迫程度的增加,芹菜的生長(zhǎng)和生理指標(biāo)受抑制越來越嚴(yán)重,接種AMF可以促進(jìn)鹽脅迫下的芹菜植株生長(zhǎng),減緩芹菜受鹽脅迫的傷害。譚英等[36] 發(fā)現(xiàn)AMF能夠增加紫花苜蓿對(duì)N、 P、 K等養(yǎng)分的吸收量,從而降低對(duì)Na的吸收量,顯著提高抗鹽性。

2.3 耐重金屬性

在土壤重金屬污染修復(fù)方面,AMF能夠減少植物對(duì)重金屬的吸收和積累。AMF侵入植物在重金屬污染土壤上的作用主要表現(xiàn)在2個(gè)方面。首先,菌根結(jié)構(gòu)能極大提高宿主植物在重金屬污染土壤的耐受性;其次,接種AMF后,宿主植物與菌根真菌會(huì)產(chǎn)生“菌根”這一共生體結(jié)構(gòu),使得重金屬在宿主植物體內(nèi)中的分布部位有所改變。AMF可以通過改變重金屬在土壤中的賦存形態(tài),降低重金屬對(duì)植物的毒性。王磊等[37] 研究AMF促進(jìn)植物對(duì)金屬Cd的抗性,發(fā)現(xiàn)AMF能夠直接吸收、 固持Cd,改變宿主植物根際的土壤微環(huán)境,促進(jìn)土壤中有益微生物的增長(zhǎng),從而影響Cd的形態(tài)和生物活性,增強(qiáng)宿主植物對(duì)Cd脅迫的抗性,增強(qiáng)土壤的自凈能力。張翔宇[38] 通過盆栽實(shí)驗(yàn)證實(shí)Pb脅迫下接種AMF可以提高蒺藜苜蓿的耐鉛能力,發(fā)現(xiàn)接種AMF后,蒺藜苜蓿的活性氧顯著下降,細(xì)胞壁的Pb固定能力增強(qiáng),黑色素積累增多,從而提高耐Pb能力。周民[39] 通過盆栽實(shí)驗(yàn)發(fā)現(xiàn),接種AMF可以促進(jìn)水稻對(duì)Sb的吸收,使土壤的pH減小,有助于土壤中離子態(tài)Sb的析出。

3 AMF在土壤生態(tài)結(jié)構(gòu)改良中的作用

AMF在改善土壤生態(tài)結(jié)構(gòu)中的作用是近年來生態(tài)學(xué)和土壤學(xué)研究的一個(gè)重要方向,AMF通過改變土壤理化性質(zhì)和增強(qiáng)土壤生物多樣性,對(duì)土壤結(jié)構(gòu)和功能產(chǎn)生影響。AMF能提高土壤的團(tuán)粒結(jié)構(gòu),增加土壤的保水能力和通透性,從而促進(jìn)宿主植物根系的發(fā)育和土壤微生物的活性。Balestrini等[40] 研究發(fā)現(xiàn),AMF能通過其廣泛的菌絲網(wǎng)絡(luò)改善土壤的物理結(jié)構(gòu),增加土壤的團(tuán)聚性。這些菌絲網(wǎng)絡(luò)不僅增強(qiáng)了土壤的結(jié)構(gòu)穩(wěn)定性,還提高了土壤的水分保持能力和空氣滲透性,對(duì)于保持土壤健康和提高生產(chǎn)力至關(guān)重要。Van等[41] 發(fā)現(xiàn),AMF能顯著提高植物對(duì)土壤養(yǎng)分的吸收,尤其是對(duì)P和N的吸收。這種方法不僅可以促進(jìn)宿主植物生長(zhǎng),還可以促進(jìn)宿主植物根系分泌物和死亡根系的分解,使根系可以在土壤中帶回更多的養(yǎng)分,從而促進(jìn)了土壤肥力的提升。

Xie等[42] 研究發(fā)現(xiàn),AMF可以與土壤中其他微生物相互作用,促進(jìn)土壤中有機(jī)物的分解和養(yǎng)分的循環(huán),對(duì)生態(tài)系統(tǒng)的健康和穩(wěn)定性具有深遠(yuǎn)影響。隨著氣候變化和人類活動(dòng)對(duì)土壤環(huán)境的影響日益加劇,AMF在土壤修復(fù)中發(fā)揮著越來越重要的作用。AMF可以在重金屬污染或土壤退化的環(huán)境中促進(jìn)植物生長(zhǎng),提高土壤的復(fù)原能力。AMF在土壤修復(fù)及改良土壤生態(tài)結(jié)構(gòu)方面的作用至關(guān)重要,它們通過改善土壤物理性質(zhì)、促進(jìn)養(yǎng)分循環(huán)和增強(qiáng)生物多樣性,為維持土壤健康和生態(tài)系統(tǒng)平衡發(fā)揮重要作用[43] 。

3.1 AMF促進(jìn)土壤團(tuán)粒結(jié)構(gòu)的形成和穩(wěn)定

AMF在促進(jìn)土壤團(tuán)粒結(jié)構(gòu)的形成和穩(wěn)定方面起著重要作用。AMF通過其菌絲網(wǎng)絡(luò)直接與土壤顆粒相互作用,影響土壤的團(tuán)聚和結(jié)構(gòu)穩(wěn)定性。AMF的菌絲能夠有效地“縫合”土壤顆粒,形成較大的土壤團(tuán)粒,對(duì)于增強(qiáng)土壤結(jié)構(gòu)穩(wěn)定性有著至關(guān)重要的作用[44] 。AMF還可以促進(jìn)土壤中有機(jī)物質(zhì)的積累,這些有機(jī)物質(zhì)在土壤顆粒間起到“黏合劑”的作用,保持土壤團(tuán)粒的穩(wěn)定性和持久性。Li等[45] 研究發(fā)現(xiàn),AMF的菌根及其根外菌絲可以分泌有機(jī)酸、多胺等作為黏合劑,進(jìn)一步提升土壤顆粒間的黏附力。

這種黏合力的提升有助于土壤抵御水蝕和風(fēng)蝕,對(duì)于防止土地退化尤為重要[46] 。在AMF對(duì)土壤團(tuán)粒結(jié)構(gòu)的影響中,植物根系也起著重要的協(xié)同作用。 Pauwels等[47] 研究表明,植物根系和AMF共同促進(jìn)土壤團(tuán)聚體的形成,AMF的菌絲為宿主植物根系提供物理支撐,同時(shí)AMF通過增加宿主植物的根系分泌物,促進(jìn)了土壤團(tuán)粒內(nèi)聚力的提升。AMF在土壤團(tuán)聚過程中不僅提供了物理結(jié)構(gòu)的支撐,還通過有關(guān)化學(xué)反應(yīng)影響土壤的化學(xué)性質(zhì)[48] 。Li等 [49] 的研究也能證實(shí),AMF的存在能夠提高土壤微生物的多樣性和活性,這些土壤微生物同樣能夠產(chǎn)生胞外多糖,促進(jìn)土壤中有機(jī)質(zhì)的分解和轉(zhuǎn)化,從而提高土壤肥力和團(tuán)聚體的穩(wěn)定性。

3.2 AMF對(duì)土壤微生物多樣性和功能的影響

AMF與土壤中的其他微生物共存,形成復(fù)雜的生態(tài)網(wǎng)絡(luò),對(duì)土壤微生態(tài)環(huán)境產(chǎn)生深遠(yuǎn)影響。AMF通過其菌絲網(wǎng)絡(luò)不僅能夠直接影響宿主植物根際區(qū)的微生物組成,還能夠通過分泌物質(zhì)(如葡聚糖和各種酶類)間接影響土壤微生物群落的結(jié)構(gòu)和功能。這些分泌物不僅有助于宿主植物養(yǎng)分的吸收,還能作為微生物的能源和營(yíng)養(yǎng)物質(zhì),促進(jìn)土壤中有益微生物的生長(zhǎng)和繁殖[50] 。

Josémiguel等[51] 發(fā)現(xiàn),AMF通過形成菌根網(wǎng)絡(luò)促進(jìn)了不同微生物群落之間的相互作用,增強(qiáng)了土壤生態(tài)系統(tǒng)的功能。AMF能夠與固氮菌和溶磷菌等其他土壤微生物共同作用,協(xié)助植物吸收更多的N和P。這種相互作用不僅提高了植物的養(yǎng)分吸收效率,還增強(qiáng)了土壤的養(yǎng)分循環(huán)能力[52] 。此外,AMF還對(duì)土壤中有機(jī)物的分解和養(yǎng)分循環(huán)過程產(chǎn)生影響。Rilling等[53] 的研究表明,AMF能夠影響土壤有機(jī)物的分解速率和模式,進(jìn)而影響土壤養(yǎng)分的吸收,這對(duì)于維持土壤肥力和生物多樣性具有重要意義。

4 結(jié)論與展望

1)AMF在植物抗逆性提升與土壤生態(tài)結(jié)構(gòu)改良方面的作用一直是生態(tài)學(xué)與農(nóng)學(xué)研究的熱點(diǎn)。近年來的研究取得了顯著進(jìn)展,然而現(xiàn)有研究的局限主要體現(xiàn)在對(duì)AMF作用機(jī)制的深入理解上,AMF在分子水平上如何影響植物的生長(zhǎng)、 發(fā)育和抗逆性,尚未有更多研究。

2)當(dāng)前研究集中于AMF對(duì)宿主植物的生物量增加和病害抵抗力提高等方面的影響,而對(duì)于AMF如何在分子層面影響植物的應(yīng)激反應(yīng)、 免疫機(jī)制、 與土壤微生物相互作用等方面的具體機(jī)制尚不明確。

3)AMF在不同植物種類、 土壤類型和環(huán)境條件下的適用性也需要更多的實(shí)驗(yàn)證據(jù)支持。未來的研究應(yīng)更加注重AMF與宿主植物互作的分子機(jī)制,特別是AMF在基因調(diào)控和信號(hào)傳導(dǎo)方面的作用。深入了解AMF如何通過分子層面的相互作用調(diào)控植物基因表達(dá)將有助于揭示AMF對(duì)植物生長(zhǎng)和抗逆性的影響。這一領(lǐng)域的研究將有助于拓展我們對(duì)AMF作用機(jī)制的認(rèn)識(shí),為更精準(zhǔn)地調(diào)控植物與AMF互作關(guān)系提供基礎(chǔ)。

4)盡管AMF在植物抗逆性提升和土壤修復(fù)方面表現(xiàn)出巨大潛力,但仍存在一些挑戰(zhàn)和限制。例如,AMF的應(yīng)用效果受到環(huán)境條件和污染程度的影響。如何有效地將AMF應(yīng)用于大面積的土壤修復(fù)工程,以及如何在不同環(huán)境條件下保持AMF的活性和效率,仍然是未來研究的重點(diǎn)。同時(shí),持續(xù)探索AMF在不同環(huán)境條件下的功能多樣性和適應(yīng)性,有助于更全面地了解AMF在各種環(huán)境中的實(shí)際應(yīng)用潛力。

5)作為一種新興的有機(jī)菌肥,AMF可以顯著提升植物的生長(zhǎng)效率,減少農(nóng)業(yè)對(duì)化肥和農(nóng)藥的依賴,不僅對(duì)農(nóng)業(yè)生產(chǎn)具有潛在的經(jīng)濟(jì)和生態(tài)效益,也有助于減輕化肥和農(nóng)藥對(duì)環(huán)境的不利影響,這將有助于推動(dòng)農(nóng)業(yè)的可持續(xù)發(fā)展,并為應(yīng)對(duì)全球農(nóng)業(yè)面臨的挑戰(zhàn)提供新的解決方案。

利益沖突聲明(Conflict of Interests)所有作者聲明不存在利益沖突。

All authors disclose no relevant conflict of interests.

作者貢獻(xiàn)(Author’s Contributions)

楊沐完成了論文的寫作,郭寰、 段國(guó)珍、 王占林、 樊光輝、 李建領(lǐng)完成了論文的修改,所有作者均閱讀

并同意了最終稿件的提交。

The manuscript was written and revised by YANG Mu,GUO Huan,DUAN Guozhen,WANG Zhanlin,F(xiàn)ANGuanghui,LI Jianling. All authors have read the last version of paper and consented for submission.

參考文獻(xiàn)(References)

[1]BAUER J, BLUMENTHAL N, MILLER A, et al. Effects of between-site variation in soil microbial communities and plant-

soil feedbacks on the productivity and composition of plant communities[J]. Journal of Applied Ecology, 2017, 54(4):1028-1039.

[2]邱佳佳. 叢枝菌根真菌與玉米互作影響磷吸收的機(jī)制研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2017.

QIU J J. Study on the mechanism of arbuscular mycorrhizal fungi affecting phosphorus absorption in interaction with maize [D].Taian:Shandong Agricultural University, 2017.

[3]黃銘慧. 大豆尖鐮孢根腐病拮抗菌X2生防菌劑的研制與應(yīng)用[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2017.

HUANG M H. Research and application on antagonisticbacteria(X2)powder for suppressing soybean root rot induced by

Fusariumoxysporum[D]. Haerbin: Northeast Agricultural University, 2017.

[4]石晶晶, 張林, 江飛焰, 等. AM真菌菌絲際細(xì)菌具有固氮解磷雙重功能[J]. 土壤學(xué)報(bào), 2021, 58(5): 1289-1298.

SHI J J, ZHANG L, JIANG F Y, et al. Dualfunctions of bacteria colonized on AM fungal hyphae-fixing N 2 and solubilizing

phosphate[J]. Acta PedologicaSinica, 2021, 58(5): 1289-1298.

[5]PEREIRA S, MUCHAA,MARQUES G, et al. Improvement of some growth and yield parameters of faba bean (viciafaba) by

inoculation with rhizobium laguerreae and arbuscular mycorrhizal fungi[J]. Cropand Pasture Science, 2019, 70(7):595-605.

[6]PU C, GE Y, YANG G, et al. Arbuscular mycorrhizal fungi enhance disease resistance of salvia miltiorrhiza to fusarium wilt [J]. Frontiers in Plant Science, 2022, 13: 975558.

[7]RAVNSKOV S,LARSEN J. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition[J]. Plant Biology, 2016, 18(5): 816-823.

[8]RITA B, ELENA B, SILVIA V, et al. Soil-plant interaction mediated by indigenous AMF in grafted and own-rooted grape

vines under field conditions [J]. Agriculture, 2023, 13(5): 1051.

[9]SHSFIEIF,SHAHIDI-NOGHABI S, SEDAGHATI E. The impact of arbuscular mycorrhizal fungi on tomato plant resistance against tuta absoluta (meyrick) in greenhouse conditions [J]. Journal of Asia-Pacific Entomology, 2022, 25(3): 101971.

[10]AHAMMED G J, MAO Q, YAN Y, et al. Role of melatonin in arbuscular mycorrhizal fungi-induced resistance to fusarium wilt in cucumber [J]. Phytopathology, 2020, 110(5): 999-1009.

[11]ZHANG P, ZHANG W J, HU S J. Fungivorous nematode Aphelenchus avenae and collembola Hypogastruraperplexa allevi?ate damping-off disease caused by Pythium ultimum in tomato[J]. Plant and Soil, 2022, 482(1): 175-189.

[12]ELSHAHAWY I, EL-MOHAMEDY R S,etal. Biological control of pythium damping-off and root-rot diseases of tomato using trichoderma isolates employed alone or in combination[J]. Journal of Plant Pathology, 2019, 101(3): 597-608.

[13]RAVNSKOV S, CABRAL C, LARSEN J. Mycorrhiza induced tolerance in cucumis sativus against root rot caused by pythium ultimum depends on fungal species in the arbuscular mycorrhizal symbiosis[J]. Biological Control,2020, 141:104133.

[14]DUAN W, LI X, LI Q, et al. Arbuscular mycorrhizal fungal community association determines the production of flavonoids and chlorogenic acid in Acer truncatumbunge[J]. Industrial Crops and Products, 2024, 208: 117858.

[15]王蕾, 張春楠, 李洪波, 等. 叢枝菌根真菌在蔬菜生產(chǎn)中的研究進(jìn)展[J]. 微生物學(xué)通報(bào), 2021, 48(11): 4282-4295.

WANG L, ZHANG C N, LI H B, et al. Research progress on arbuscular mycorrhizal fungi in vegetable production[J].

Microbiology China, 2021, 48(11): 4282-4295.

[16]ABDEL-MAWGOUD M, BOUQELLAH N A, KORANY S M, et al. Arbuscular mycorrhizal fungi as an effective approach

to enhance the growth and metabolism of soybean plants under thallium(TI)toxicity [J]. Plant Physiology and Biochemistry,2023, 203: 108077.

[17]ZHANG X, AN Z, CAO M M, et al. Arbuscular mycorrhizal hyphal respiration makes a large contribution to soil respira?tion in a subtropical forest under various N input rates[J]. Science of the Total Environment, 2022, 852: 158309.

[18]謝琳淼, 常春麗, 姚志紅, 等. 哈茨木霉對(duì)紫羊茅和草地早熟禾的促生及抗性誘導(dǎo)作用[J]. 草業(yè)科學(xué), 2018,35(9): 2079-2086.

XIE L M, CHANG C L, YAO Z H, et al. Growth promotion and resistance induction effect of Trichoderma harzianum on Festuca rubra and Poa pratensis [J]. Pratacultural Science, 2018, 35(9): 2079-2086

[19]DIAGNE N, NGOM M, DJIGHALY P, et al. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation[J]. Diversity, 2020, 12(10): 370.

[20]王曉念. 水分脅迫下叢枝菌根真菌對(duì)桑樹苗的促生作用研究[D]. 重慶: 重慶三峽學(xué)院, 2023.

WANG X N. Study on the promotion of mulberry seedlings by arbuscular mycorrhizal fungi under water stress [D].Chongqing: Chongqing Three Gorges University, 2023.

[21]FERREIRA D A, DA S T F, PYLRO V S, et al. Soil microbial diversity affects the plant-root colonization by arbuscular mycorrhizal fungi [J]. Microbial Ecology, 2021, 82(1): 100-103.

[22]WENG W F, YAN J, ZHOU M L, et al. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases [J]. Microorganisms, 2022, 10(7): 1266.

[23]ZUBEK S, KAPUSTA P, RO?EK K, et al. Fungal root colonization and arbuscular mycorrhizal fungi diversity in soils of grasslands with different mowing intensities[J]. Applied Soil Ecology, 2022, 172: 104358.

[24]BENNETT A E, GROTEN K. The costs and benefits of plant-arbuscular mycorrhizal fungal interactions[J]. Annu Rev Plant Biol, 2022, 73(1): 649-672.

[25]MEDDAD-HAMZA A, BENZINA F, MEDDAD C, et al. Biological control of arbuscular mycorrhizal fungi and trichoder?maharzianum against fusarium oxysporum and verticillium dahliae induced wilt in tomato plants[J]. Egyptian Journal of Biological Pest Control, 2023, 33(1): 91.

[26]DEVI N O, TOMBISANA D R K, DEBBARMA M, et al. Effect of endophytic bacillus and arbuscular mycorrhiza fungi(AMF)against fusarium wilt of tomato caused by Fusarium oxysporum f. sp. lycopersici [J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 1.

[27]劉萌, 邵晨陽, 王瀟笛, 等. 兩種內(nèi)生真菌聯(lián)合使用對(duì)煙草抗青枯病的影響[J]. 中國(guó)植保導(dǎo)刊, 2023, 43(7):11-15, 20.

LIU M, SHAO C Y, WANG X D, et al. Effect of two endophytic fungi on the eesistance of tobacco to bacterial wilt [J].China Plant Protection Guide, 2023, 43(7): 11-15, 20.

[28]林熠斌, 楊玉瑞, 黃榮雪, 等. 茉莉酸介導(dǎo)叢枝菌根真菌誘導(dǎo)番茄抗早疫病的機(jī)制[J]. 生態(tài)學(xué)報(bào), 2020, 40(7):2407-2416.

LIN Y B,YANG Y R,HUANG R X, et al. Mechanism of jasmonic acid mediated induction of disease resistance against early blight by arbuscular mycorrhizal fungus in tomato plants[J]. Acta Ecologica Sinica, 2020, 40(7): 2407-2416.

[29]李晴, 段文艷, 李鑫, 等. 叢枝菌根真菌對(duì)元寶楓生長(zhǎng)及其根系形態(tài)的影響[J]. 咸陽: 西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版), 2024(1): 1-8.

LI Q, DUAN W Y, LI X, et al. Effects of arbuscular mycorrhizal fungi on the growth and root morphology of Acer trun?catum[J]. Xianyang:Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2024(1): 1-8.

[30]許平輝. 叢枝菌根真菌(AMF)對(duì)水分脅迫下茶樹生長(zhǎng)及抗旱性的影響[D]. 咸陽: 西北農(nóng)林科技大學(xué), 2017.

XU P H. Effects of arbuscular mycorrhizal fungi (AMF) on the growth and drought resistance of tea trees under water stress [D]. Xianyang: Xian Northwest Agriculture and Forestry University, 2017.

[31]熊丙全, 余東, 陽淑, 等. 叢枝菌根真菌對(duì)葡萄幼苗抗旱性的影響研究[J]. 中國(guó)果樹, 2018(2): 8-12.

XIONG B Q, YU D, YANG S, et al. Study on the effect of arbuscular mycorrhizal fungi on the drought resistance of grape seedlings [J]. China Fruits, 2018(2): 8-12.

[32]葉秋紅. 叢枝菌根真菌對(duì)釀酒葡萄生長(zhǎng)及抗旱性的影響[D]. 咸陽: 西北農(nóng)林科技大學(xué), 2022.

YE Q H. Effects of arbuscular mycorrhizal fungi on the growth and drought resistance of wine grapes [D]. Xianyang: Xian

Northwest Agriculture and Forestry University, 2022.

[33]張宸瑞, 李曉崗, 顧雯, 等. 叢枝菌根真菌促進(jìn)植物抵抗生物脅迫作用機(jī)制的研究進(jìn)展[J]. 中草藥, 2023, 54(9):3022-3031.

ZHANG C R, LI X G, GU W, et al. Research progress on mechanism of arbuscular mycorrhizal fungi promoting plant resistance to biological stress[J]. Chinese Herbal Medicine, 2023, 54(9): 3022-3031.

[34]師艷麗. 離子型稀土廢棄礦區(qū)AM真菌多樣性及對(duì)寬葉雀稗氮降解能力的影響[D]. 贛州: 江西理工大學(xué), 2020.

SHI Y L. Diversity of AM fungi in ion-type rare earth mine wasteland and their effect on nitrogen degradation capacity of broadleaf carpetgrass [D]. Ganzhou: Jiangxi University of Science and Technology, 2020.

[35]劉耀臣, 王震, 王策, 等. 叢枝菌根真菌對(duì)鹽脅迫下芹菜生長(zhǎng)和生理指標(biāo)的影響[J]. 北方園藝, 2019(18): 47-51.

LIU Y C, WANG Z, WANG C, et al. Effect of arbuscular mycorrhizal fungi on the growth and physiological indicators of celery under salt stress [J]. Northern Horticulture, 2019(18): 47-51.

[36]譚英, 尹豪. 鹽脅迫下根施AMF和褪黑素對(duì)紫花苜蓿生長(zhǎng)、 光合特征以及抗氧化系統(tǒng)的影響[J]. 草業(yè)學(xué)報(bào), 2024,33(6): 1-12.

TAN Y, YIN H. Effects of root application of AMF and melatonin on growth, photosynthetic characteristics, and antioxi?dant system of medicagosativa under salt stress[J]. Acta Prataculturae Sinica, 2024, 33(6): 1-12.

[37]王磊, 吳子龍, 張浩, 等. 叢枝菌根真菌促進(jìn)植物抗重金屬鎘的研究進(jìn)展[J]. 北方園藝, 2021(1): 137-142.

WANG L, WU Z L, ZHANG H, et al. Research progress on arbuscular mycorrhizal fungi promoting plant resistance to heavy metal cadmium [J]. Northern Horticulture, 2021(1): 137-142.

[38]張翔宇. 叢枝菌根真菌提高蒺藜苜蓿耐鉛機(jī)制的研究[D]. 咸陽: 西北農(nóng)林科技大學(xué), 2020.

ZHANG X Y. Study on the mechanism of arbuscular mycorrhizal fungi enhancing lead tolerance in medicago sativa [D].

Xianyang: Xian Northwest Agriculture and Forestry University, 2020.

[39]周民. 銻脅迫條件下接種AM真菌對(duì)水稻生理生態(tài)和吸收積累銻的影響[D]. 青島: 青島理工大學(xué), 2018.

ZHOU M. Effects of AM fungi inoculation on the physio-ecology of rice and accumulation of antimony under antimony stress [D]. Qingdao: Qingdao University of Technology, 2018.

[40]BALESTRINI R, LUMINI E. Focus on mycorrhizal symbioses [J]. Applied Soil Ecology, 2018, 123: 299-304.

[41]VAN D H M G A , MARTIN F M ,SELOSSE M, et al. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist, 2015, 205(4): 1406-1423.

[42]XIE K, REN Y H, CHEN A Q, et al. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi [J]. Journal of Plant Physiology, 2022, 269: 153591.

[43]CAVAGNARO T R, BENDER S F, ASGHARI H R,et al. The role of arbuscular mycorrhizas in reducing soil nutrient loss [J]. Trends in Plant Science, 2015, 20(5): 283-290.

[44]ZENG J Y, MA S L, LIU J, et al. Organic materials and AMF addition promote growth of taxodium ‘zhongshanshan’ by improving soil structure[J]. Forests, 2023, 14(4): 731.

[45]LI Z, WU S, LIU Y, et al. Arbuscular mycorrhizal symbiosis enhances water stable aggregate formation and organic matter stabilization in Fe ore tailings[J]. Geoderma, 2022, 406: 115528.

[46]MORRIS E K, MORRIS D J P, VOGT S, et al. Visualizing the dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi [J]. The ISME Journal, 2019, 13(7): 1639-1646.

[47]PAUWELS R, GRAEFE J, BITTWELICH M. An arbuscular mycorrhizal fungus alters soil water retention and hydraulic conductivity in a soil texture specific way [J]. Mycorrhiza, 2023, 33(3): 165-179.

[48]WU Y T, DENG M F, HUANG J S, et al. Global patterns in mycorrhizal mediation of soil carbon storage, stability, and nitrogen demand: a meta-analysis [J]. Soil Biology and Biochemistry, 2022, 166: 108578.

[49]LI J, COOPER J M, LI Z A,et al. Soil microbial community structure and function are significantly affected by long-term organic and mineral fertilization regimes in the North China Plain [J]. Applied Soil Ecology, 2015, 96: 75-87.

[50]ZHOU J Q, WILSON G W T, COBB A B, et al. Mycorrhizal and rhizobial interactions influence model grassland plant community structure and productivity [J]. Mycorrhiza, 2022, 32(1): 15-32.

[51]JOSéMIGUEL B,MARíA J P,ROSARIOA,et al. Microbial co-operation in the rhizosphere[J] Journal of Experimental Botany,2005, 56(417): 1761-1778.

[52]FAGHIHINIA M, JANSA J, HALVERSON L J, et al. Hyphosphere microbiome of arbuscular mycorrhizal fungi: a realm of unknowns [J]. Biology and Fertility of Soils, 2022, 59(1): 17-34.

[53]RILLING M C, WRIGHT S F, NICHOLS K A,et al. Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils [J]. Plant and Soil, 2001, 233(2): 167-177.

Role and mechanism of arbuscular mycorrhizal fungi in enhancing plant

stress resistance and soil improvement:a review

YANG Mu 1a,2 , GUO Huan 1a,2 , DUAN Guozhen 1b,2 , WANG Zhanlin 1b,2 , FAN Guanghui 1b,2 , LI Jianling 1b,2

(1. a. College of Agriculture and Animal Husbandry, b. Academy of Agricultural and Forestry Sciences,University of Qinghai,Xining 810016, China;2. Laboratory of Forest Genetics and Breeding of Qinghai Plateau, Xining 810016, China)

AbstractSignificance Arbuscular mycorrhizal fungi (AMF) represent an ancient group of endomycorrhizal fungi capable of forming sym?biotic associations with over 90% of vascular plants in terrestrial ecosystems. AMF hyphae contribute to the acquisition of min?eral nutrients by host plant roots and improve soil ecological structure. Following AMF colonization of host plants, the activationof defense mechanisms in host plants enhances resistance against pathogens. Additionally, AMF occupation of colonization sitesreduces the invasion of pathogens. These achievements have demonstrated significant efficacy in plant disease control, indicat?ing promising prospects for practical applications. Hence, it is imperative to systematically synthesize the mechanisms underly?ing disease resistance in the context of AMF and their host plants, as well as the reciprocal interactions influencing soil ecologi?cal amelioration by AMF. This endeavor aims to contribute novel perspectives to sustainable agricultural development and serveas a theoretical foundation for pertinent studies in the fields of plant-soil feedback effects and carbon-nitrogen cycling within ter?restrial ecosystems.

Progress In this work,AMF are explored for their roles in enhancing plant nutrition, facilitating damage compensation, extend?ing plant lifespan, and influencingfactors such as competition for root colonization sites and host photosynthate with soil-bornepathogens. This paper delves into thefunctionsof AMF in promotingplant growth and improving soil ecological structure. Particu?larly, it focuses on their contributions to enhancing plant resistance to diseases, improving soil physical properties, and promot?ing soil biodiversity. AMF engage in interactions with other soil microorganisms, thereby facilitating the decomposition of organiccompounds and the cycling of nutrients, which has profound ramifications on the health and stability of ecosystems. The pivotalrole of AMF in soil remediation and the enhancement of soil ecological structure cannot be overstated. Their contributions encom?pass the amelioration of soil physical properties, facilitation of nutrient cycling, and augmentation of biodiversity. These multi?faceted functions play a crucial role in sustaining soil health and fostering ecological equilibrium.

Conclusions and Prospects The role of AMF in enhancing plant stress resistance and improving soil ecological structure has gar?nered significantattention in ecological and agricultural research. Significant progress has been made in recent years, limitationsin current research primarily lie in a more in-depth understanding of the mechanisms underlying the actions of AMF. This reviewhighlights the potential application value of AMF in sustainable agricultural development and ecosystem health maintenance byanalyzing its mechanisms in altering plant root morphology, competing with pathogens, and activating plant defense mecha?nisms. A deeper understanding of the molecular mechanisms of AMF and its adaptability under different environmental condi?tions is crucial for future research in agricultural ecology. Continued exploration of the functional diversity and adaptability ofAMF under different environmental conditions contributes to a more comprehensive understanding of the practical applicationpotential of AMF across various environments. As an emerging organic microbial fertilizer, AMF exhibits considerable potentialto significantly enhance plant growth efficiency and reduce the reliance on chemical fertilizers and pesticides in agriculture. Thisnot only presents potential economic and ecological benefits for agricultural production but also contributes to mitigating adverseenvironmental impacts associated with chemical fertilizers and pesticides. Understanding the capabilities of AMF serves to pro?pel agriculture towards sustainable development and offers novel solutions to the diverse challenges facing global agriculture.Keywords: arbuscular mycorrhizal fungi; resistance; soil improvement; soil aggregates

(責(zé)任編輯:吳敬濤)

主站蜘蛛池模板: 乱人伦99久久| 99久久精品久久久久久婷婷| 美女内射视频WWW网站午夜| 欧美日韩国产综合视频在线观看| 伊人久久综在合线亚洲91| 2020精品极品国产色在线观看 | 国产成人调教在线视频| 国产美女视频黄a视频全免费网站| 国产精品美女在线| 欧美日本在线一区二区三区| 久久美女精品国产精品亚洲| 在线观看国产黄色| 中国黄色一级视频| 国产欧美日韩va另类在线播放| 制服丝袜国产精品| 视频一区视频二区中文精品| 2019国产在线| 欧美日韩专区| 久久美女精品| 亚洲VA中文字幕| 中文字幕 91| 3344在线观看无码| 日本人妻一区二区三区不卡影院 | 丁香婷婷久久| 丰满人妻中出白浆| 色妞永久免费视频| 欧美国产菊爆免费观看| 国产一区二区三区精品久久呦| 免费a在线观看播放| 91精品综合| 色噜噜在线观看| 国产aaaaa一级毛片| 亚洲中文字幕23页在线| 9啪在线视频| 找国产毛片看| 久久成人国产精品免费软件| 成人福利免费在线观看| 谁有在线观看日韩亚洲最新视频| 福利片91| 国产精品自在自线免费观看| 精品一区二区无码av| www欧美在线观看| 夜夜操天天摸| 国产区免费精品视频| 狂欢视频在线观看不卡| 国产00高中生在线播放| 91视频99| 亚洲Aⅴ无码专区在线观看q| 91年精品国产福利线观看久久| 国产区精品高清在线观看| 亚洲一区二区约美女探花| 成人综合久久综合| 国产成人1024精品| 日韩黄色大片免费看| 亚洲第一天堂无码专区| 国产农村精品一级毛片视频| 福利在线免费视频| 午夜一区二区三区| 色欲色欲久久综合网| 国产美女自慰在线观看| 亚洲精品成人7777在线观看| 香蕉久久国产精品免| 免费福利视频网站| 91精品免费高清在线| 国产高清自拍视频| 青青国产视频| 精品久久人人爽人人玩人人妻| 欧美色视频网站| 国产欧美视频综合二区| 99视频在线看| 成人亚洲视频| 在线无码九区| AV老司机AV天堂| 99re精彩视频| 亚洲VA中文字幕| 全色黄大色大片免费久久老太| 亚洲第一视频网| 免费人欧美成又黄又爽的视频| 四虎国产成人免费观看| 国产人成乱码视频免费观看| 手机在线国产精品| 欧美黄网在线|