

【摘要】阿霉素是目前應(yīng)用最廣泛的抗腫瘤藥,但其心臟毒性限制了臨床療效。阿霉素可引起心肌細(xì)胞損傷、心臟進(jìn)行性擴(kuò)大和不可逆的心肌損傷,最終導(dǎo)致擴(kuò)張型心肌病及充血性心力衰竭,稱為阿霉素心肌病(DIC)。DIC的發(fā)病機(jī)制包括鈣處理異常、氧化應(yīng)激、線粒體破壞、凋亡和自噬等。近期多項(xiàng)研究報(bào)道了一種新的調(diào)節(jié)性細(xì)胞死亡——鐵死亡參與其發(fā)病。現(xiàn)描述鐵死亡的主要機(jī)制,并總結(jié)鐵超載、PRMT4、Sirt1/Nrf2/Keap1通路、FUNDC2、METTL14介導(dǎo)的鐵死亡在DIC中的作用機(jī)制,旨在對(duì)DIC病理生理機(jī)制有進(jìn)一步的認(rèn)識(shí),為DIC治療及預(yù)防提供新的潛在有效靶點(diǎn)。
【關(guān)鍵詞】鐵死亡;阿霉素心肌病;機(jī)制
【DOI】10.16806/j.cnki.issn.1004-3934.2024.04.005
Mechanisms of Ferroptosis in Doxorubicin-Induced Cardiomyopathy
SONG Zichong1,WANG Jingyi2,ZHANG Lijun1
(1.Department of Geriatrics,Renmin Hospital of Wuhan University,Wuhan 430060,Hubei,China;2.Department of Neurology,Tongji Hospital,Tongji Medical College,Huazhong University of Science and Technology,Wuhan 430030,Hubei,China)【Abstract】Doxorubicin (DOX) is the most widely used antitumor drug,but its cardiotoxicity limits clinical efficacy.DOX can cause cardiomyocyte loss,progressive cardiac enlargement,and irreversible myocardial injury,ultimately leading to dilated cardiomyopathy and congestive heart failure,called DOX-induced cardiomyopathy (DIC).Several recent studies have reported the involvement of a new type of regulated cell death,ferroptosis,in its pathogenesis.This review describes the major mechanisms of ferroptosis and summarize the mechanisms of iron overload,PRMT4,Sirt1/Nrf2/Keap1 pathway,F(xiàn)UNDC2,and METTL14 mediated ferroptosis in DIC,aiming to gain further insights into the pathophysiological mechanisms of DIC,and to provide a new and potentially effective target for DIC treatment and prevention.
【Keywords】Ferroptosis;Doxorubicin-induced cardiomyopathy;Mechanism
近年來,隨著分子靶向藥物和免疫檢查點(diǎn)抑制劑以及常規(guī)化療的發(fā)展,癌癥的藥物治療取得顯著進(jìn)展,癌癥患者存活率顯著提高,但抗癌藥物治療所導(dǎo)致心血管疾病風(fēng)險(xiǎn)增加的問題受到越來越多關(guān)注。多柔比星又稱阿霉素(doxorubicin,DOX),是一種從鏈霉菌中提取的高效抗腫瘤蒽環(huán)類抗生素,廣泛應(yīng)用于癌癥治療[1]。然而,DOX的臨床應(yīng)用在很大程度上受到其劑量依賴性心臟毒性的限制,表現(xiàn)為心肌細(xì)胞損傷、心臟進(jìn)行性擴(kuò)大和不可逆的心肌損傷,最終導(dǎo)致擴(kuò)張型心肌病及充血性心力衰竭,稱為阿霉素心肌病(doxorubicin-induced cardiomyopathy,DIC)[2]。DIC的發(fā)病機(jī)制復(fù)雜,包括鈣處理異常、氧化應(yīng)激、線粒體破壞等[3]。最近多項(xiàng)研究表明,鐵死亡在DIC中發(fā)揮重要作用。鐵死亡最早由Dixon等[4]提出,被定義為鐵依賴性調(diào)節(jié)性細(xì)胞死亡,其特征是脂質(zhì)活性氧(reactive oxygen species,ROS)積累和多不飽和脂肪酸(polyunsaturated fatty acid,PUFA)的消耗。作為一種新發(fā)現(xiàn)的調(diào)節(jié)性細(xì)胞死亡,鐵死亡已被證明在腫瘤、神經(jīng)系統(tǒng)疾病及心血管系統(tǒng)疾病中發(fā)揮重要作用。為進(jìn)一步了解DIC發(fā)病機(jī)制,并為 DIC治療提供有效策略,現(xiàn)總結(jié)鐵死亡在DIC發(fā)病機(jī)制中的作用。
1 鐵死亡的主要機(jī)制
1.1 鐵代謝
鐵是所有生物必需的微量元素,體內(nèi)鐵含量異常會(huì)導(dǎo)致多種疾病。機(jī)體每天需要通過食物補(bǔ)充1~2 mg鐵[5]。體內(nèi)鐵有兩種形式:三價(jià)鐵離子(Fe3+)和亞鐵離子(Fe2+)。當(dāng)食物到達(dá)小腸近端,細(xì)胞色素b將Fe3+還原為Fe2+,經(jīng)二價(jià)金屬離子轉(zhuǎn)運(yùn)體1被腸上皮細(xì)胞吸收,隨后經(jīng)鐵轉(zhuǎn)運(yùn)蛋白輸出細(xì)胞。進(jìn)入血液的Fe2+被銅藍(lán)蛋白氧化為Fe3+,與轉(zhuǎn)鐵蛋白(transferrin,TF)結(jié)合形成TF-Fe3+復(fù)合體,開始鐵循環(huán)[6]。隨后,TF-Fe3+復(fù)合體與細(xì)胞膜表面的轉(zhuǎn)鐵蛋白受體(transferrin receptor,TFRC)1結(jié)合,通過內(nèi)吞作用進(jìn)入細(xì)胞核內(nèi)體。Fe3+被前列腺六跨膜上皮抗原3還原為Fe2+進(jìn)入細(xì)胞質(zhì)后,可被各種生物過程利用,也可保存在鐵蛋白中或形成細(xì)胞質(zhì)不穩(wěn)定鐵池,多余的鐵通過鐵轉(zhuǎn)運(yùn)蛋白運(yùn)輸?shù)郊?xì)胞外,繼續(xù)參與鐵循環(huán)[6]。生理狀況下,鐵的體內(nèi)平衡是通過復(fù)雜的級(jí)聯(lián)過程來維持。病理狀況下,鐵超載參與芬頓反應(yīng)和哈勃-韋斯反應(yīng)產(chǎn)生羥基自由基(·OH),促進(jìn)細(xì)胞內(nèi)ROS積累,誘發(fā)鐵死亡[7]。此外,ROS的積累會(huì)導(dǎo)致氧化應(yīng)激,產(chǎn)生大量超氧化物和過氧化物,引起鐵蛋白、鐵硫簇、血紅素等各種含鐵物質(zhì)釋放Fe2+,加重鐵超載,加重氧化應(yīng)激,形成惡性循環(huán)[8]。
1.2 脂質(zhì)過氧化
無限制的脂質(zhì)過氧化是鐵死亡的標(biāo)志。PUFA含有特定碳原子,其附著的氫原子易被過氧基取代而過氧化[9]。脂質(zhì)過氧化可通過酶促或非酶促反應(yīng)實(shí)現(xiàn)。在酶依賴性脂質(zhì)過氧化反應(yīng)中,酰基輔酶A合成酶長鏈家族成員4可酰化PUFA生成PUFA-CoA,其與溶血磷脂酰膽堿酰基轉(zhuǎn)移酶3催化的膜磷脂結(jié)合生成含PUFA的膜磷脂,最終在脂氧合酶參與下被氧化為有毒的磷脂過氧化產(chǎn)物[8,10]。在非酶依賴性脂質(zhì)過氧化反應(yīng)中,磷脂的多不飽和脂肪酰基上的兩個(gè)碳-碳雙鍵之間的雙烯丙基氫原子可被去除,形成碳中心磷脂自由基,其與氧分子反應(yīng)生成磷脂過氧基,并與從多不飽和脂肪酸酰基中去除的氫原子結(jié)合生成磷脂氫過氧化物(phospholipid hydroperoxide,PLOOH)。隨著PLOOH的積累,PLOOH和脂質(zhì)自由基繼續(xù)與磷脂的多不飽和脂肪酰基發(fā)生反應(yīng),重復(fù)脫氫和氧化過程,加劇PLOOH生成[11]。雖然酶促和非酶促反應(yīng)的機(jī)制復(fù)雜且研究較少,但可以肯定的是,脂質(zhì)過氧化的積累可生成高細(xì)胞毒性產(chǎn)物,如4-羥基壬烯醛(4-hydroxynonenal,4-HNE)和丙二醛(malondialdehyde,MDA),引起細(xì)胞膜、蛋白質(zhì)和DNA破壞[12]。
1.3 GPX4/GSH/System Xc-通路
谷胱甘肽過氧化酶4(glutathione peroxidase 4,GPX4)在鐵死亡中有重要的調(diào)節(jié)作用。GPX4是一種磷脂氫過氧化物酶,可催化脂質(zhì)過氧化產(chǎn)物生成相應(yīng)的無毒脂質(zhì)醇,降低細(xì)胞對(duì)鐵死亡的敏感性[13]。GPX4亦可減少ROS產(chǎn)生,保護(hù)細(xì)胞免受脂質(zhì)氫過氧化物損害[14]。GPX4對(duì)脂質(zhì)氫過氧化物的還原需要谷胱甘肽(glutathione,GSH)或某些硫醇提供電子。GSH是一種關(guān)鍵的抗氧化劑,由半胱氨酸、甘氨酸和谷氨酸組成,直接影響GPX4的活性[15]。細(xì)胞內(nèi)半胱氨酸的生成是GSH生物合成的必要條件,這需要胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體(cystine-glutamate antiporter,System Xc-)參與。System Xc-是磷脂雙分子層中鈉依賴性胱氨酸/谷氨酸反轉(zhuǎn)運(yùn)蛋白,細(xì)胞可通過該轉(zhuǎn)運(yùn)蛋白吸收胞外胱氨酸并輸出谷氨酸[16]。胱氨酸進(jìn)入細(xì)胞后被還原為半胱氨酸,在GSH合成酶和谷氨酸-半胱氨酸連接酶的催化下,與谷氨酸、甘氨酸合成GSH。最后,GPX4將還原型GSH氧化為氧化型GSH,并將細(xì)胞毒性脂質(zhì)氫過氧化物還原為相應(yīng)的脂質(zhì)醇[17]。調(diào)節(jié)GPX4/GSH/System Xc-通路可有效調(diào)控鐵死亡。RSL3、ML162、ML210、DPI7、DPI10、FIN56和FINO2等分子可直接或間接抑制GPX4活性,促進(jìn)鐵死亡[18-20]。
2 鐵死亡在DIC中的作用機(jī)制
2.1 鐵代謝異常介導(dǎo)的鐵死亡
DOX可直接導(dǎo)致非血紅素鐵在DIC心肌細(xì)胞線粒體中積聚[21]。DOX本身是Fe3+的螯合劑,可直接從鐵蛋白中提取Fe3+,形成DOX-Fe3+絡(luò)合物[22]。DOX-Fe3+絡(luò)合物以氧濃度依賴的方式被還原為DOX-Fe2+絡(luò)合物,通過參與芬頓反應(yīng)產(chǎn)生·OH,促進(jìn)ROS積累,導(dǎo)致脂質(zhì)過氧化,引發(fā)鐵死亡,最終導(dǎo)致DIC[21](圖1)。向紅菲咯啉可與Fe2+螯合抑制DOX-Fe2+,有效阻止DOX誘導(dǎo)的脂質(zhì)過氧化物的產(chǎn)生。
線粒體鐵異常積聚也與血紅素加氧酶-1(heme oxygenase-1,Hmox1)相關(guān)。DOX增加核轉(zhuǎn)錄因子紅系2相關(guān)因子2(nuclear factor-erythroid 2-related factor 2,Nrf2)的核轉(zhuǎn)位,Nrf2與包括Hmox1在內(nèi)的幾個(gè)抗氧化基因上游啟動(dòng)子區(qū)域的抗氧化反應(yīng)元件(antioxidant response element,ARE)結(jié)合,啟動(dòng)Hmox1轉(zhuǎn)錄,促進(jìn)其表達(dá)上調(diào)。Hmox1在心肌細(xì)胞中降解血紅素并釋放游離鐵,后者積聚在線粒體中,導(dǎo)致線粒體膜脂質(zhì)過氧化,引起鐵死亡和DIC[23](圖1)。值得注意的是,小鼠低鐵飲食可減少DOX誘導(dǎo)的心臟毒性并增加生存率[23],這提示靶向心臟鐵代謝途徑可能具有臨床治療意義。
2.2 蛋白質(zhì)精氨酸甲基轉(zhuǎn)移酶4介導(dǎo)的鐵死亡
蛋白質(zhì)精氨酸甲基轉(zhuǎn)移酶4(protein arginine methyltransferase 4,PRMT4)是一種與細(xì)胞分化、代謝、細(xì)胞凋亡和氧化應(yīng)激相關(guān)的多功能轉(zhuǎn)錄輔因子,參與氧化應(yīng)激和自噬的調(diào)節(jié)[24]。近期研究[25]發(fā)現(xiàn)PRMT4促進(jìn)DOX介導(dǎo)的心肌細(xì)胞損傷,加重DIC進(jìn)展,而其基因敲除或抑制其表達(dá)可緩解DIC的進(jìn)展。此外,Wang等[25]通過體內(nèi)外實(shí)驗(yàn)發(fā)現(xiàn):PRMT4的過表達(dá)可加劇DOX誘導(dǎo)的鐵死亡,而PRMT4的減少則抑制了心肌細(xì)胞鐵死亡,且在DOX存在的情況下,PRMT4的過表達(dá)與較高的ROS水平和較低的心肌細(xì)胞存活率相關(guān)。Nrf2是一種關(guān)鍵的抗氧化成分,可促進(jìn)GPX4的轉(zhuǎn)錄以抑制鐵死亡[26]。進(jìn)一步實(shí)驗(yàn)明確了PRMT4可與Nrf2相互作用,催化Nrf2甲基化,限制Nrf2核轉(zhuǎn)位,從而抑制GPX4的表達(dá),促進(jìn)心肌細(xì)胞鐵死亡,加劇DIC的進(jìn)展[25](圖1)。PRMT4所致的DIC心肌損傷可被鐵死亡抑制劑Ferrostatin-1拮抗。PRMT4/Nrf2/GPX4軸在DIC中的作用可為DIC臨床預(yù)防及治療提供新的潛在靶點(diǎn)。
2.3 Sirt1/Nrf2/Keap1通路介導(dǎo)的鐵死亡
去乙酰化酶1(sirtuin 1,Sirt1)是一種高度保守的氧化型輔酶Ⅰ依賴的蛋白質(zhì)脫乙酰酶,在代謝過程和應(yīng)激反應(yīng)中起關(guān)鍵的調(diào)節(jié)作用[27]。Sirt1是哺乳動(dòng)物中研究最多的脫乙酰酶,對(duì)心血管功能可產(chǎn)生有益影響[28]。Sirt1是小檗堿[29]和紫檀芪[30]減輕DOX引起的心臟毒性的潛在分子靶點(diǎn)。近期Wang等[31]的研究為Sirt1與DIC之間的關(guān)系提供了直接的證據(jù)。DOX刺激心臟特異性Sirt1基因敲除的小鼠可導(dǎo)致其心功能降低、心肌纖維化以及線粒體結(jié)構(gòu)異常,而Sirt1的激活可明顯減輕DOX引起的心臟損傷,這表明Sirt1在DIC中具有保護(hù)作用[31]。此外,在DOX處理的小鼠和H9c2細(xì)胞中表現(xiàn)出鐵死亡相關(guān)蛋白的變化,如GSH和GPX4下調(diào),MDA和4-HNE上調(diào),而特異性敲除Sirt1基因或抑制Sirt1顯著加劇了這些變化,并伴隨ROS水平明顯上調(diào)[31]。這表明Sirt1通過調(diào)節(jié)鐵死亡影響DOX的心臟毒性。值得注意的是,Sirt1在DOX誘導(dǎo)的小鼠心臟組織和H9c2細(xì)胞中表達(dá)顯著降低[31]。Kelch 樣環(huán)氧氯丙烷相關(guān)蛋白1(Kelch-like epichlorohydrin associated protein 1,Keap1)是Nrf2的下游基因[32],Sirt1/Nrf2/Keap1通路與氧化應(yīng)激和脂質(zhì)過氧化相關(guān)[33]。通過siRNA轉(zhuǎn)染降低H9c2細(xì)胞Sirt1水平,并用DOX刺激H9c2細(xì)胞,發(fā)現(xiàn)Sir1的減少增加Nrf2在細(xì)胞質(zhì)中積聚,Keap1在細(xì)胞質(zhì)中的表達(dá)趨勢與Nrf2相似。進(jìn)一步下調(diào)細(xì)胞質(zhì)中Nrf2表達(dá)水平則逆轉(zhuǎn)DOX誘導(dǎo)的H9c2細(xì)胞中MDA和4-HNE的水平[31]。這表明Sirt1缺乏可增加Nrf2在細(xì)胞質(zhì)中積聚,影響其下游分子Keap1,促進(jìn)ROS生成以及脂質(zhì)過氧化,導(dǎo)致心肌細(xì)胞鐵死亡(圖1)。
2.4 線粒體外膜蛋白FUN14結(jié)構(gòu)域蛋白2介導(dǎo)的鐵死亡
FUN14結(jié)構(gòu)域蛋白2(FUN14 domain containing 2,F(xiàn)UNDC2)是一種線粒體外膜蛋白,具有兩個(gè)跨膜區(qū),在脊椎動(dòng)物中高度保守并高表達(dá)于心臟組織[34]。Ta等[35]首次發(fā)現(xiàn)FUNDC2在DIC中的作用。該團(tuán)隊(duì)通過向野生型和FUNDC2基因敲除(FUNDC2-KO)小鼠注射DOX發(fā)現(xiàn)FUNDC2-KO可改善DIC心功能異常,且DOX誘導(dǎo)的野生型小鼠心臟鐵死亡標(biāo)志物Ptgs2 mRNA顯著上調(diào)近三倍,而在FUNDC2-KO小鼠中并未觀察到Ptgs2 mRNA的變化,4-HNE和MDA也表現(xiàn)出類似變化,表明FUNDC2-KO改善DOX誘導(dǎo)的鐵死亡來改善心功能。此外,野生型小鼠心臟以及線粒體GSH水平經(jīng)DOX處理后降低50%左右,但在FUNDC2-KO小鼠心臟中未發(fā)現(xiàn)降低。進(jìn)一步實(shí)驗(yàn)發(fā)現(xiàn)FUNDC2可與線粒體內(nèi)膜GSH轉(zhuǎn)運(yùn)體SLC25A11特異性相互作用,而這種相互作用可被鐵死亡誘導(dǎo)劑erastin增強(qiáng)。值得注意的是,使用shRNA方法敲除野生型和FUNDC2-KO小鼠胚胎成纖維細(xì)胞(mouse embryo fibroblast,MEF)中的SLC25A11,發(fā)現(xiàn)SLC25A11缺乏降低了野生型和FUNDC2-KO MEF中線粒體的GSH水平,SLC25A11過表達(dá)則增加了野生型和FUNDC2-KO MEF的線粒體GSH水平。體內(nèi)外實(shí)驗(yàn)還發(fā)現(xiàn)FUNDC2-KO可提高SLC25A11的水平[35]。因此最終得出結(jié)論:FUNDC2 通過抑制SLC25A11降低線粒體GSH水平,促進(jìn)線粒體ROS產(chǎn)生,介導(dǎo)心肌細(xì)胞鐵死亡和心肌細(xì)胞損傷,最終導(dǎo)致DIC(圖1)。
2.5 甲基轉(zhuǎn)移酶樣14介導(dǎo)的鐵死亡
轉(zhuǎn)錄和表觀遺傳因子的協(xié)同激活可導(dǎo)致基因表達(dá)異常,如組蛋白、DNA和非編碼RNA的化學(xué)修飾可能會(huì)導(dǎo)致心肌病和心臟損傷[36]。RNA修飾介導(dǎo)的基因表達(dá)調(diào)控正受到越來越多的關(guān)注。在100多種不同的化學(xué)修飾中,N6-甲基腺嘌呤(N6-methyladenosine,m6A)是mRNA和非編碼RNA中最常見的化學(xué)修飾,具有調(diào)節(jié)炎癥、細(xì)胞增殖、遷移、凋亡、自噬和鐵死亡等功能[37]。甲基轉(zhuǎn)移酶樣14(methyltransferase like 14,METTL14)是一種重要的m6A甲基化酶,是m6A修飾的主要“編寫者”[38]。最近Zhuang等[39]的研究證實(shí)了其介導(dǎo)的m6A修飾在DIC心肌細(xì)胞鐵死亡中發(fā)揮重要作用。KCNQ1OT1是一種長非編碼RNA,是METTL14的底物,DOX可誘導(dǎo)心肌細(xì)胞高表達(dá)METTL14,介導(dǎo)KCNQ1OT1在細(xì)胞核中進(jìn)行高水平m6A修飾,修飾后的KCNQ1OT1進(jìn)入細(xì)胞質(zhì)與microRNA-7-5P(miR-7-5p)相互作用抑制miR-7-5p活性[39-40]。miR-7-5p的抑制可刺激TFRC表達(dá)上調(diào),TFRC活性增加有助于細(xì)胞外鐵進(jìn)入細(xì)胞質(zhì),提高細(xì)胞內(nèi)游離鐵水平、ROS產(chǎn)生、脂質(zhì)過氧化,最終引起心肌細(xì)胞鐵死亡,加重心肌纖維化及心肌重構(gòu)[39]。此外,miR-7-5p也可靶向METTL14,miR-7-5p活性降低會(huì)進(jìn)一步促進(jìn)KCNQ1OT1的m6A修飾,從而建立一種參與心肌細(xì)胞鐵死亡發(fā)作的正反饋機(jī)制[39](圖1)。總之,Zhuang等[39]的研究證實(shí)了METTL14/KCNQ1OT1/miR-7-5p/TFRC信號(hào)通路在DIC心肌細(xì)胞鐵死亡中起著關(guān)鍵作用,但具體潛在機(jī)制仍需進(jìn)一步研究。
3 結(jié)論和展望
DIC發(fā)病機(jī)制復(fù)雜,已知有鈣處理異常、氧化應(yīng)激、線粒體破壞等,最終導(dǎo)致細(xì)胞死亡,如細(xì)胞凋亡、壞死和自噬。本文總結(jié)了鐵超載、PRMT4、Sirt1/Nrf2/Keap1通路、FUNDC2、METTL14介導(dǎo)的鐵死亡在DIC中的作用機(jī)制,鐵死亡的特征是ROS積累、脂質(zhì)過氧化和過度的氧化應(yīng)激,線粒體是DIC鐵死亡的主要場所,線粒體膜脂質(zhì)過氧化的同時(shí)伴隨著線粒體破壞(圖2)。
在各項(xiàng)機(jī)制中均發(fā)現(xiàn)針對(duì)相應(yīng)靶點(diǎn)所帶來的DIC鐵死亡抑制效應(yīng),這為DIC治療提供了新的潛在的靶點(diǎn),為減輕DOX心臟毒性的同時(shí)保持DOX高效的抗腫瘤效果提供了可能。然而,關(guān)于DIC機(jī)制知之甚少,仍需更多的基礎(chǔ)及臨床研究探索具體信號(hào)通路及新的細(xì)胞死亡方式(如銅死亡)。
參考文獻(xiàn)
[1]Hawas SS,El-Sayed SM,Elzahhar PA,et al.New 2-alkoxycyanopyridine derivatives as inhibitors of EGFR,HER2,and DHFR:synthesis,anticancer evaluation,and molecular modeling studies[J].Bioorg Chem,2023,141:106874.
[2]Shipra,Tembhre MK,Hote MP,et al.PGC-1α agonist rescues doxorubicin-induced cardiomyopathy by mitigating the oxidative stress and necroptosis[J].Antioxidants (Basel),2023,12(9):1720.
[3]Robert Li Y,Traore K,Zhu H.Novel molecular mechanisms of doxorubicin cardiotoxicity:latest leading-edge advances and clinical implications[J].Mol Cell Biochem,2023.DOI:10.1007/s11010-023-04783-3.
[4]Dixon SJ,Lemberg KM,Lamprecht MR,et al.Ferroptosis:an iron-dependent form of nonapoptotic cell death[J].Cell,2012,149(5):1060-1072.
[5]Zeidan RS,Han SM,Leeuwenburgh C,et al.Iron homeostasis and organismal aging[J].Ageing Res Rev,2021,72:101510.
[6]Dutt S,Hamza I,Bartnikas TB.Molecular mechanisms of iron and heme metabolism[J].Annu Rev Nutr,2022,42:311-335.
[7]Zhao T,Yang Q,Xi Y,et al.Ferroptosis in rheumatoid arthritis:a potential therapeutic strategy[J].Front Immunol,2022,13:779585.
[8]Stockwell BR.Ferroptosis turns 10:emerging mechanisms,physiological functions,and therapeutic applications[J].Cell,2022,185(14):2401-2421.
[9]Xu S,He Y,Lin L,et al.The emerging role of ferroptosis in intestinal disease[J].Cell Death Dis,2021,12(4):289.
[10]Tang D,Chen X,Kang R,et al.Ferroptosis:molecular mechanisms and health implications[J].Cell Res,2021,31(2):107-125.
[11]Jiang X,Stockwell BR,Conrad M.Ferroptosis:mechanisms,biology and role in disease[J].Nat Rev Mol Cell Biol,2021,22(4):266-282.
[12]Zhang X,Hou L,Guo Z,et al.Lipid peroxidation in osteoarthritis:focusing on 4-hydroxynonenal,malondialdehyde,and ferroptosis[J].Cell Death Discov,2023,9(1):320.
[13]Nishida Xavier da Silva T,F(xiàn)riedmann Angeli JP,Ingold I.GPX4:old lessons,new features[J].Biochem Soc Trans,2022,50(3):1205-1213.
[14]Xu C,Sun S,Johnson T,et al.The glutathione peroxidase Gpx4 prevents lipid peroxidation and ferroptosis to sustain Treg cell activation and suppression of antitumor immunity[J].Cell Rep,2021,35(11):109235.
[15]Niu B,Liao K,Zhou Y,et al.Application of glutathione depletion in cancer therapy:enhanced ROS-based therapy,ferroptosis,and chemotherapy[J].Biomaterials,2021,277:121110.
[16]Liu MR,Zhu WT,Pei DS.System Xc-:a key regulatory target of ferroptosis in cancer[J].Invest New Drugs,2021,39(4):1123-1131.
[17]Liu J,Kang R,Tang D.Signaling pathways and defense mechanisms of ferroptosis[J].FEBS J,2022,289(22):7038-7050.
[18]Li S,He Y,Chen K,et al.RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma[J].Oxid Med Cell Longev,2021,2021:2915019.
[19]Costa I,Barbosa DJ,Benfeito S,et al.Molecular mechanisms of ferroptosis and their involvement in brain diseases[J].Pharmacol Ther,2023,244:108373.
[20]Sun Y,Berleth N,Wu W,et al.Fin56-induced ferroptosis is supported by autophagy-mediated GPX4 degradation and functions synergistically with mTOR inhibition to kill bladder cancer cells[J].Cell Death Dis,2021,12(11):1028.
[21]Tadokoro T,Ikeda M,Ide T,et al.Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity[J].JCI Insight,2023,8(6):e169756.
[22]Du Y,Guo Z.Recent progress in ferroptosis:inducers and inhibitors[J].Cell Death Discov,2022,8(1):501.
[23]Fang X,Wang H,Han D,et al.Ferroptosis as a target for protection against cardiomyopathy[J].Proc Natl Acad Sci U S A,2019,116(7):2672-2680.
[24]Zhong Y,Wang Y,Li X,et al.PRMT4 facilitates white adipose tissue browning and thermogenesis by methylating PPARγ[J].Diabetes,2023,72(8):1095-1111.
[25]Wang Y,Yan S,Liu X,et al.PRMT4 promotes ferroptosis to aggravate doxorubicin-induced cardiomyopathy via inhibition of the Nrf2/GPX4 pathway[J].Cell Death Differ,2022,29(10):1982-1995.
[26]Ge MH,Tian H,Mao L,et al.Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway[J].CNS Neurosci Ther,2021,27(9):1023-1040.
[27]Opstad TB,Papotti B,?kra S,et al.Sirtuin1,not NAMPT,possesses anti-inflammatory effects in epicardial,pericardial and subcutaneous adipose tissue in patients with CHD[J].J Transl Med,2023,21(1):644.
[28]Wang AJ,Tang Y,Zhang J,et al.Cardiac SIRT1 ameliorates doxorubicin-induced cardiotoxicity by targeting sestrin 2[J].Redox Biol,2022,52:102310.
[29]Wu YZ,Zhang L,Wu ZX,et al.Berberine ameliorates doxorubicin-induced cardiotoxicity via a SIRT1/p66Shc-mediated pathway[J].Oxid Med Cell Longev,2019,2019:2150394.
[30]Liu D,Ma Z,Xu L,et al.PGC1α activation by pterostilbene ameliorates acute doxorubicin cardiotoxicity by reducing oxidative stress via enhancing AMPK and SIRT1 cascades[J].Aging(Albany NY),2019,11(22):10061-10073.
[31]Wang W,Zhong X,F(xiàn)ang Z,et al.Cardiac sirtuin1 deficiency exacerbates ferroptosis in doxorubicin-induced cardiac injury through the Nrf2/Keap1 pathway[J].Chem Biol Interact,2023,377:110469.
[32]Ulasov AV,Rosenkranz AA,Georgiev GP,et al.Nrf2/Keap1/ARE signaling:towards specific regulation[J].Life Sci,2022,291:120111.
[33]Tanase DM,Gosav EM,Anton MI,et al.Oxidative stress and NRF2/KEAP1/ARE pathway in diabetic kidney disease(DKD):new perspectives[J].Biomolecules,2022,12(9):1227.
[34]Mao Y,Ren J,Yang L.FUN14 domain containing 1 (FUNDC1):a promising mitophagy receptor regulating mitochondrial homeostasis in cardiovascular diseases[J].Front Pharmacol,2022,13:887045.
[35]Ta N,Qu C,Wu H,et al.Mitochondrial outer membrane protein FUNDC2 promotes ferroptosis and contributes to doxorubicin-induced cardiomyopathy[J].Proc Natl Acad Sci U S A,2022,119(36):e2117396119.
[36]Wu Y,Zhan S,Xu Y,et al.RNA modifications in cardiovascular diseases,the potential therapeutic targets[J].Life Sci,2021,278:119565.
[37]Cheng Y,Wang M,Zhou J,et al.The important role of N6-methyladenosine RNA modification in non-small cell lung cancer[J].Genes(Basel),2021,12(3):440.
[38]Guo W,Zhang C,F(xiàn)eng P,et al.M6A methylation of DEGS2,a key ceramide-synthesizing enzyme,is involved in colorectal cancer progression through ceramide synthesis[J].Oncogene,2021,40(40):5913-5924.
[39]Zhuang S,Ma Y,Zeng Y,et al.METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis[J].Cell Biol Toxicol,2023,39(3):1015-1035.
[40]Cagle P,Qi Q,Niture S,et al.KCNQ1OT1:an oncogenic long noncoding RNA[J].Biomolecules,2021,11(11):1602.
收稿日期:2023-09-27