



【摘要】目的 探討絲裂原激活蛋白激酶14(MAPK14)在血管緊張素Ⅱ(AngⅡ)誘導的大鼠心房顫動(AF)中的作用及潛在機制。方法 構建AngⅡ誘導的大鼠AF易感模型,使用SB203580抑制MAPK14的表達,采用彩色超聲顯像儀器評估左心房內徑和左室射血分數等;電生理儀檢測心房有效不應期、AF誘發率及AF平均持續時間等電生理指標;透射電鏡觀察線粒體結構;Masson染色檢測左心房纖維化程度;免疫組織化學染色檢測微管相關蛋白1輕鏈3表達;Western blot檢測MAPK14、p-MAPK14和線粒體自噬標志parkin及P62的表達水平。結果 與對照組相比,AngⅡ組大鼠心房組織中MAPK14和p-MAPK14表達上調(P均lt;0.005)。與AngⅡ組相比,抑制MAPK14能夠改善AF誘發率及AF持續時間(P均lt;0.000 5),并減輕大鼠心房組織的線粒體自噬(P均lt;0.05),且顯著改善心臟和線粒體結構受損(P均lt;0.05)。結論 抑制MAPK14可通過減輕線粒體自噬改善AngⅡ誘導的大鼠AF。
【關鍵詞】心房顫動;線粒體自噬;絲裂原激活蛋白激酶14;血管緊張素Ⅱ
【DOI】10.16806/j.cnki.issn.1004-3934.2024.04.019
Inhibition of MAPK14 Improves AngⅡ-Induced Atrial Fibrillation
by Reducing Mitophagy
WANG Lu1,SANG Wanyue1,JIAN Yi1,HAN Yafan2,WANG Feifei1,LI Yaodong1
(1.Department of Pacing and Electrophysiology,Xinjiang Key Laboratory of Cardiac Electrophysiology and Remodeling,The First Affiliated Hospital of Xinjiang Medical University,Urumqi 830054,Xinjiang,China;2.Shandong First Medical University Affiliated Provincial Hospital,Jinan 250117,Shandong,China)【Abstract】Objective To explore the role and potential mechanism of mitogen-activation protein kinase 14(MAPK14) in angiotensin Ⅱ(AngⅡ)-induced atrial fibrillation (AF) in rats.Methods To establish a rat model of AF susceptibility induced by Ang Ⅱ,SB203580 was used to inhibit the expression of MAPK14.The left atrial dimension and left ventricular ejection fraction were evaluated by color Doppler ultrasound.Electrophysiological indexes such as atrial effective refractory period,AF induction rate and average duration of AF were measured by electrophysiological instrument.The structure of mitochondria was observed by transmission electron microscope.The degree of left atrial fibrosis was detected by Masson staining.The expression of LC3 was detected by immunohistochemical staining.The expression levels of MAPK14,p-MAPK14,mitophagy markers parkin and P62 were detected by Western blot.Results Compared with the control group,the expression of MAPK14 and p-MAPK14 in atrial tissue of AF rats was up-regulated in Ang Ⅱ group (Plt;0.005).Compared with Ang Ⅱ group,inhibition of MAPK14 could improve the induction rate of AF and the duration of AF (Plt;0.000 5),reduce mitophagy in rat atrium (Plt;0.05),and significantly improve the structural damage of heart and mitochondrial (Plt;0.05).Conclusion Inhibition of MAPK14 could improve AngⅡ-induced AF of rats by reducing mitophagy.
【Keywords】Atrial fibrillation;Mitophagy;Mitogen-activation protein kinase 14;Angiotensin Ⅱ
心房顫動(atrial fibrillation,AF)是一種全球流行性心律失常,其逐年上升的發病率、致殘率和死亡率加重了家庭和社會的經濟負擔[1-2]。眾所周知,心肌細胞線粒體功能障礙、氧化應激、自噬、線粒體自噬和自主神經功能障礙終將導致心律失常,這對AF的發生發展具有重要意義[3]。線粒體自噬是一種自噬反應,專門針對因受損而具有潛在細胞毒性的線粒體,它在線粒體質量控制和線粒體功能維護中起著至關重要的作用[4-5]。雖然線粒體自噬和AF間的關系已有少量研究,但研究結果仍存在爭議。有研究[6-7]表明,AF時線粒體自噬受損導致毒性產物積累、線粒體膜電位崩潰,最終使心肌細胞死亡。相反,也有研究[8-10]表明,線粒體過度自噬繼發的氧化應激、能量代謝失調及鈣穩態失衡等效應促進了AF的發展。因此,本研究擬進一步探討二者間的關系。
絲裂原激活蛋白激酶(mitogen-activation protein kinase,MAPK)14,又稱p38α-MAPK,是MAPK家族中的一員,也被稱為細胞因子抑制性抗炎藥物結合蛋白,是一種滲透調節蛋白激酶,其激活受多種類型的細胞應激刺激[11-12]。既往研究[13-15]表明,MAPK14一旦受細胞外刺激而激活,即可磷酸化多種底物從而調節線粒體自噬、細胞凋亡等多種細胞功能,使線粒體自噬靶標帕金蛋白(parkin)和微管相關蛋白1輕鏈3(microtubule-associated protein 1 light chain 3,LC3)表達上調的同時使自噬選擇性底物P62降解。
本課題組前期通過生物信息學分析發現線粒體自噬在AF樣本中被顯著富集和激活,同時發現MAPK14在AF風險預測模型的構成中起重要作用,提示其可能是AF進展的潛在靶標[16]。盡管已有部分研究[17-20]證實,MAPK14通過介導心房纖維化、氧化應激和炎癥反應參與AF進程,但其介導的線粒體自噬在AF中的潛在作用目前尚無報道。血管緊張素Ⅱ(angiotensinⅡ,AngⅡ)作為主要的纖維原性細胞膜受體,可通過直接激活成纖維細胞合成并釋放促纖維化介質,也可通過誘導線粒體活性氧(reactive oxygen species,ROS)從而激活促纖維化的信號分子,直接參與AF、心房結構重構和電重構[21-22]。目前,利用AngⅡ構建的大鼠AF易感模型已得到廣泛認可[23-24],因此,本研究擬利用此模型探索MAPK14在AF中的作用及潛在機制。
1 材料與方法
1.1 動物與分組
本研究遵從《美國國立衛生研究院實驗動物研究指南》,并通過中國新疆醫科大學第一附屬醫院動物實驗醫學倫理委員會審批(批號:A2310-20)。40只(5±1)周齡的健康成年雄性Sprague Dawley大鼠購自中國新疆醫科大學動物實驗中心,體重(230±20)g,隨機分為4組(每組10只):對照(CT)組、CT+MAPK14抑制劑SB203580(CS)組、AngⅡ誘導AF(AngⅡ)組和AngⅡ+SB203580(AS)組。AngⅡ組和AS組采用AngⅡ(0.15 mg·kg-1·d-1,腹腔注射持續3周)誘導的大鼠AF易感模型[23-24],另外兩組注射同等劑量的生理鹽水;造模結束后CS組和AS組注射MAPK14抑制劑SB203580(0.5 mg·kg-1·d-1,腹腔注射持續2周)進行干預治療[25-26],另外兩組注射同等劑量的生理鹽水。
1.2 材料與試劑
多道生理記錄儀(LEAD7000,四川錦江電子),呼吸機(R407,深圳瑞沃德),多集電極(Millar 1.1F,美國美敦力),自動研磨儀(Tissvelyser-24L,上海凈信),電子壓片成像儀(e-BLOT,上海易孛特光電)。一抗:抗MAPK14抗體(1:1 000,14064-1-AP,武漢三鷹),抗磷酸化的MAPK14(p-MAPK14)抗體(1:2 000,28796-1-AP,武漢三鷹),抗parkin抗體(1:4 000,66674-1-Ig,武漢三鷹),抗P62抗體(1:1 000,sabbiotech,abcam),抗甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)抗體(1:10 000,AB-P-R 001,杭州賢至),抗LC3抗體(1:100,14600-1-AP,武漢三鷹)。山羊抗兔二抗(1:10 000,A0208,上海碧云天)及山羊抗鼠二抗(1:10 000,SA00001-1,武漢三鷹)。
1.3 超聲心動圖評估
使用新鮮配制的2%戊巴比妥鈉以腹腔注射(劑量50 mg/kg)的方式麻醉實驗大鼠,使用彩色超聲顯像儀器(HD11XE,美國飛利浦)。探頭(L15-7io、S12-4)置于胸骨旁左室長軸切面,在二維超聲引導下,行M型超聲觀察其心臟結構,分別于基線期和5周末測量心率(heart rate,HR)、左心房內徑(left atrial dimension,LAD)、左心室舒張末期內徑(left ventricular end-diastolic dimension,LVEDd)和左心室收縮末期內徑(left ventricular end-systolic dimension,LVESd),左室射血分數(left ventricular ejection fraction,LVEF),由Teichholz校正公式計算[27]。每一結果均連續測量3個心動周期取平均值。
1.4 在體電生理檢測
先將大鼠麻醉后進行有創呼吸通氣(仰臥位),隨后開胸暴露心臟,使用LEAD-7000電生理儀檢測心房有效不應期(atrial effective refractory period,AERP)、AF誘發率及AF持續時間等電生理參數[28]。通過高于基礎HR 20%頻率起搏的S1S1刺激誘導,S1S2間期從120 ms逐次遞減(步長5 ms),直至達到不能被奪獲的最長S1S2間期稱為AERP。短陣快速脈沖刺激(burst刺激)10次(S1S1=50 ms,持續10 s)出現AF的次數占總刺激次數的百分比定義為AF誘發率。根據每只動物10次突發起搏后累積的AF次數計算AF持續時間。AF定義為具有f波和RR間期絕對不規則的快速房性心律失常持續時間≥1 s。
1.5 組織學研究
開胸后迅速取心臟,用含肝素的生理鹽水沖洗殘余血液,部分左心房組織使用戊二醛固定后用于透射電鏡觀察。部分左心房組織用多聚甲醛固定,常規石蠟包埋后用于Masson染色和免疫組織化學染色,應用圖像采集系統進行圖像采集,使用Image J軟件定量分析膠原容積分數及LC3在心房組織中的表達情況。
1.6 Western blot檢測
取綠豆大小的各組心房肌組織,加入配好的放射免疫沉淀分析裂解液,研磨成勻漿置于冰上30 min后離心5 min,提取上清并使用二喹啉甲酸試劑盒進行蛋白定量,提取的蛋白上清中加入上樣緩沖液煮沸10 min備用,凝膠電泳并轉至聚偏二氟乙烯膜,用5%脫脂奶粉的封閉液室溫水平搖床封閉2 h(磷酸化蛋白用1%的牛血清白蛋白封閉液),加入一抗并4 ℃孵育過夜,三乙醇胺緩沖鹽水溶液+吐溫20溶液充分洗滌后加入二抗室溫搖床孵育2 h,使用顯色工作液顯影條帶,使用Image J軟件分析灰度值,最終以各組目的蛋白與GAPDH的灰度比值進行統計分析。
1.7 統計分析
使用SPSS 26.0統計分析數據。呈正態分布的計量資料以±s表示,采用t檢驗比較兩組間差異,采用單因素方差分析比較多組間差異,隨后對總體有差異的采用Bonferroni法進行兩兩比較。以頻數和百分比(%)表示計數資料,采用Kruskal-Wallis檢驗進行多組間比較,并使用Bonferroni法進行校正。所有統計分析基于雙側假設檢驗,P<0.05認為具有統計學差異。
2 結果
2.1 抑制MAPK14改善AF誘發率及AF持續時間
課題組前期通過實驗驗證MAPK14在AF犬和小鼠心房肌細胞AF模型中表達顯著上調[16]。隨后檢測了MAPK14和p-MAPK14在4組大鼠心房組織中的表達情況,結果發現其在AngⅡ組中的表達(0.79±0.03和0.63±0.08)均明顯高于CT組(0.54±0.05和0.21±0.05)(t=7.74和7.95,P均lt;0.005),AS組中的表達(0.64±0.02和0.38±0.03)均明顯低于AngⅡ組(0.79±0.03和0.63±0.08)(t=7.09和5.22,P均lt;0.05)(圖1A~C)。在體電生理檢測結果表明,與CT組相比,Ang Ⅱ組AERP縮短,而AF持續時間延長,AF誘發率增高;與Ang Ⅱ組相比,AS組AERP延長,相應地,AF持續時間縮短,AF誘發率降低(P均lt;0.000 5)(圖1D~G)。因此,抑制MAPK14可能對Ang Ⅱ誘導的AF具有保護作用。
2.2 抑制MAPK14顯著改善心臟和線粒體結構受損
心臟超聲結果顯示,各組基線數據均無統計學差異(F=3.592,P=0.065 8)。5周末時,相較于CT組,AngⅡ組HR加快,LAD擴大,LVEF值下降,LVEDd和LVESd值升高(t=4.30、4.21、5.66、3.18、5.23,P均lt;0.05);相較于AngⅡ組,AS組HR減慢,LAD減小,LVEF值升高,LVEDd和LVESd值下降(t=8.78、3.09、5.55、12.36、7.46,P均lt;0.05);同時,AngⅡ組各指標與同組基線相比均有統計學差異(t=4.34、5.04、6.13、6.69、5.99,P均lt;0.05),見表1。組織透射電鏡結果顯示,相較于CT組,AngⅡ組線粒體數量明顯減少,排列紊亂,空泡增多;AS組線粒體輕微腫脹,自噬較AngⅡ組有所緩解(圖2A)。Masson染色結果顯示AngⅡ組膠原蛋白沉積(29.11±2.22)較CT組(8.72±0.90)增多(t=14.73,P=0.000 1),而AS組膠原蛋白沉積(11.79±1.57)較AngⅡ組(29.11±2.22)減少(t=11.03,P=0.000 4)。這些結果表明MAPK14可能在AngⅡ誘導的AF發生發展中發揮重要作用。
2.3 抑制MAPK14減輕線粒體自噬
為評估MAPK14參與AF進程的情況,檢測了線粒體自噬靶標parkin和P62在4組心房組織中的表達情況,結果發現parkin在AngⅡ組中的表達(0.86±0.11)明顯高于CT組(0.42±0.09)(t=5.51,P=0.005 3),P62在AngⅡ組中的表達(0.31±0.11)明顯低于CT組(0.66±0.07)(t=4.76,P=0.008 9);與AngⅡ組相比,AS組的parkin表達水平(0.61±0.01)下調且P62表達水平(0.10±0.16)上調(t=4.02、6.03,P均lt;0.05)(圖3A~C)。免疫組織化學染色結果也表明LC3在AngⅡ組中的表達(0.25±0.01)明顯高于CT組(0.12±0.01)(t=16.95,Plt;0.000 1);相較于AngⅡ組,AS組的LC3表達水平(0.19±0.01)下調(t=10.86,P=0.000 4)(圖3D~E)。這些結果表明MAPK14可能通過影響大鼠心房組織的線粒體自噬參與AngⅡ誘導的AF發生發展。
3 討論
本研究創新性地將MAPK14介導的線粒體自噬與AngⅡ誘導的AF聯系起來。基于課題組前期的生物信息學分析和實驗驗證,本研究成功構建AngⅡ誘導的大鼠AF易感模型,并證明MAPK14表達的上調。通過在體電生理檢測,證實了抑制MAPK14可改善AF誘發率及AF持續時間;通過心臟超聲、組織透射電鏡、Masson染色、免疫組織化學染色和Western blot,證明抑制MAPK14可能通過抑制線粒體過度自噬來減輕線粒體結構受損,進而改善心臟結構和功能。
MAPK14在心肌細胞中廣泛表達,大多數研究[29-32]表明,MAPK14的激活參與心律失常的發生發展,所涉及的機制包括心肌纖維化、鈣處理紊亂以及心肌細胞中縫隙連接的調節,但其在AF中的作用機制研究較少。本研究同樣發現在AngⅡ誘導的大鼠AF易感模型中,MAPK14表達上調,抑制MAPK14后AF誘發率及AF持續時間得到改善,同時,AngⅡ組左心房纖維化加重,抑制MAPK14后左心房纖維化程度有所減輕。MAPK家族既可直接與線粒體外膜相互作用,也可通過影響ROS和鈣信號進而影響線粒體介導的細胞存活和細胞死亡[33-34]。本研究結果發現,AngⅡ組線粒體自噬相關蛋白parkin顯著增加的同時自噬選擇性底物P62降解,且電鏡下結構顯著受損,而抑制MAPK14后,上述蛋白表達逆轉,心臟結構和功能也顯著好轉,這與上述MAPK家族的蛋白功能相吻合,說明了MAPK14在AngⅡ誘導的AF進展中的重要作用。
線粒體功能障礙與多種心血管疾病有關[35-36],線粒體功能障礙的病理生理作用是通過部分阻斷或下調線粒體鈣離子單向轉運蛋白和SS31(一種改善線粒體生物能量學的化合物)來防止線粒體鈣內流增加,從而減弱AF結構重構和電重構[8]。Yuan等[37-38]和Wiersma等[39]的研究表明自噬的激活通過影響鈣穩態來誘導心房電重構,然而Zhu等[7]的研究得出不同的結論,他們的研究表明促進線粒體自噬有助于防止線粒體功能障礙并抑制心房纖維化,因此線粒體自噬在AF中的作用仍存在爭議。即便如此,本研究結果顯示抑制MAPK14可減輕AngⅡ誘導的AF心臟組織的線粒體自噬,故筆者推測抑制MAPK14改善AngⅡ誘導的大鼠AF可能通過減輕線粒體過度自噬而發揮作用,線粒體不論是過度自噬還是自噬抑制均為線粒體功能障礙的表現,這有助于加深對MAPK14在AF中的作用機制的理解。
不足之處,首先,MAPK14家族亞型之間具有高度的相似性,本研究使用的是非特異性MAPK14抑制劑。這種非亞型特異性抑制劑可能促進毒性次級效應的發展,并可能觸發調節反饋回路,因此需要轉基因動物模型的進一步研究來明確MAPK14的復雜作用。其次,本研究檢測的線粒體自噬靶標偏少,后續研究將增加相關檢測以提供更多依據。
綜上所述,抑制MAPK14改善AngⅡ誘導的大鼠AF的機制可能與減輕線粒體自噬有關,其抗心律失常效應可能是開發潛在AF治療策略的關鍵靶點。
參考文獻
[1]Kornej J,B?rschel CS,Benjamin EJ,et al.Epidemiology of atrial fibrillation in the 21st century:novel methods and new insights[J].Circ Res,2020,127(1):4-20.
[2]Healey JS,Oldgren J,Ezekowitz M,et al.Occurrence of death and stroke in patients in 47 countries 1 year after presenting with atrial fibrillation:a cohort study[J].Lancet,2016,388(10050):1161-1169.
[3]Montaigne D,Marechal X,Lefebvre P,et al.Mitochondrial dysfunction as an arrhythmogenic substrate:a translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops[J].J Am Coll Cardiol,2013,62(16):1466-1473.
[4]Bravo-San Pedro JM,Kroemer G,Galluzzi L.Autophagy and mitophagy in cardiovascular disease[J].Circ Res,2017,120(11):1812-1824.
[5]Onishi M,Yamano K,Sato M,et al.Molecular mechanisms and physiological functions of mitophagy[J].EMBO J,2021,40(3):e104705.
[6]Zhou S,Dai W,Zhong G,et al.Impaired mitophagy:a new potential mechanism of human chronic atrial fibrillation[J].Cardiol Res Pract,2020,2020:6757350.
[7]Zhu Y,Gu Z,Shi J,et al.Vaspin attenuates atrial abnormalities by promoting ULK1/FUNDC1-mediated mitophagy[J].Oxid Med Cell Longev,2022,2022:3187463.
[8]Wiersma M,van Marion DMS,Wüst RCI,et al.Mitochondrial dysfunction underlies cardiomyocyte remodeling in experimental and clinical atrial fibrillation[J].Cells,2019,8(10):1202.
[9]Ozcan C,Li Z,Kim G,et al.Molecular mechanism of the association between atrial fibrillation and heart failure includes energy metabolic dysregulation due to mitochondrial dysfunction[J].J Card Fail,2019,25(11):911-920.
[10]Pabon MA,Manocha K,Cheung JW,et al.Linking arrhythmias and adipocytes:insights,mechanisms,and future directions[J].Front Physiol,2018,9:1752.
[11]Coulthard LR,White DE,Jones DL,et al.p38(MAPK):stress responses from molecular mechanisms to therapeutics[J].Trends Mol Med,2009,15(8):369-379.
[12]Marber MS,Rose B,Wang Y.The p38 mitogen-activated protein kinase pathway—A potential target for intervention in infarction,hypertrophy,and heart failure[J].J Mol Cell Cardiol,2011,51(4):485-490.
[13]Trempolec N,Dave-Coll N,Nebreda AR.SnapShot:p38 MAPK substrates[J].Cell,2013,152(4):924-924.e1.
[14]Cuadrado A,Nebreda AR.Mechanisms and functions of p38 MAPK signalling[J].Biochem J,2010,429(3):403-417.
[15]Wagner EF,Nebreda AR.Signal integration by JNK and p38 MAPK pathways in cancer development[J].Nat Rev Cancer,2009,9(8):537-549.
[16]Sang W,Wang L,Yan X,et al.Establishment of risk model and analysis of immunoinfiltration based on mitophagy-related associated genes in atrial fibrillation[J].J Inflamm Res,2023,16:2561-2583.
[17]Li SN,Zhang JR,Zhou L,et al.Sacubitril/valsartan decreases atrial fibrillation susceptibility by inhibiting angiotensinⅡ-induced atrial fibrosis through p-Smad2/3,p-JNK,and p-p38 signaling pathways[J].J Cardiovasc Transl Res,2022,15(1):131-142.
[18]Liang X,Zhang Q,Wang X,et al.Reactive oxygen species mediated oxidative stress links diabetes and atrial fibrillation[J].Mol Med Rep,2018,17(4):4933-4940.
[19]Liao J,Wu Q,Qian C,et al.TRPV4 blockade suppresses atrial fibrillation in sterile pericarditis rats[J].JCI Insight,2020,5(23):e137528.
[20]Wu Q,Liu H,Liao J,et al.Colchicine prevents atrial fibrillation promotion by inhibiting IL-1β-induced IL-6 release and atrial fibrosis in the rat sterile pericarditis model[J].Biomed Pharmacother,2020,129:110384.
[21]Youn JY,Zhang J,Zhang Y,et al.Oxidative stress in atrial fibrillation:an emerging role of NADPH oxidase[J].J Mol Cell Cardiol,2013,62:72-79.
[22]Chen Y,Surinkaew S,Naud P,et al.JAK-STAT signalling and the atrial fibrillation promoting fibrotic substrate[J].Cardiovasc Res,2017,113(3):310-320.
[23]Hasin T,Elhanani O,Abassi Z,et al.Angiotensin Ⅱ signaling up-regulates the immediate early transcription factor ATF3 in the left but not the right atrium[J].Basic Res Cardiol,2011,106(2):175-187.
[24]Xiao Z,Reddy DPK,Xue C,et al.Profiling of miR-205/P4HA3 following angiotensinⅡ-induced atrial fibrosis:implications for atrial fibrillation[J].Front Cardiovasc Med,2021,8:609300.
[25]Wang C,Li Y,Yi Y,et al.Hippocampal microRNA-26a-3p deficit contributes to neuroinflammation and behavioral disorders via p38 MAPK signaling pathway in rats[J].J Neuroinflammation,2022,19(1):283.
[26]Ye Q,Zeng C,Luo C,et al.Ferrostatin-1 mitigates cognitive impairment of epileptic rats by inhibiting P38 MAPK activation[J].Epilepsy Behav,2020,103(Pt A):106670.
[27]程育博,邢繼巖.超聲心動圖Teichholtz校正公式與左心室造影測量左室射血分數的對比分析[J].中西醫結合心腦血管病雜志,2010,8(9):1147-1148.
[28]韓亞凡,湯寶鵬,王菲菲,等.低強度耳屏迷走神經刺激通過減輕心房內質網應激緩解長程起搏誘導的心房顫動[J].心血管病學進展,2023,44(5):470-475.
[29]Molkentin JD,Bugg D,Ghearing N,et al.Fibroblast-specific genetic manipulation of p38 mitogen-activated protein kinase in vivo reveals its central regulatory role in fibrosis[J].Circulation,2017,136(6):549-561.
[30]Szokodi I,Kerkel? R,Kubin AM,et al.Functionally opposing roles of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in the regulation of cardiac contractility[J].Circulation,2008,118(16):1651-1658.
[31]Liu Q,Hofmann PA.Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes:role for p38 MAPK[J].Am J Physiol Heart Circ Physiol,2003,285(1):H97-H103.
[32]Yao J,Ke J,Zhou Z,et al.Combination of HGF and IGF-1 promotes connexin 43 expression and improves ventricular arrhythmia after myocardial infarction through activating the MAPK/ERK and MAPK/p38 signaling pathways in a rat model[J].Cardiovasc Diagn Ther,2019,9(4):346-354.
[33]Ballard-Croft C,Kristo G,Yoshimura Y,et al.Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments[J].Am J Physiol Heart Circ Physiol,2005,288(3):H1359-H1366.
[34]Wall JA,Wei J,Ly M,et al.Alterations in oxidative phosphorylation complex proteins in the hearts of transgenic mice that overexpress the p38 MAP kinase activator,MAP kinase kinase 6[J].Am J Physiol Heart Circ Physiol,2006,291(5):H2462-H2472.
[35]Yokota T,Wang Y.p38 MAP kinases in the heart[J].Gene,2016,575(2 Pt 2):369-376.
[36]Madkour MM,Anbar HS,El-Gamal MI.Current status and future prospects of p38α/MAPK14 kinase and its inhibitors[J].Eur J Med Chem,2021,213:113216.
[37]Yuan Y,Zhao J,Yan S,et al.Autophagy:a potential novel mechanistic contributor to atrial fibrillation[J].Int J Cardiol,2014,172(2):492-494.
[38]Yuan Y,Zhao J,Gong Y,et al.Autophagy exacerbates electrical remodeling in atrial fibrillation by ubiquitin-dependent degradation of L-type calcium channel[J].Cell Death Dis,2018,9(9):873.
[39]Wiersma M,Meijering RAM,Qi XY,et al.Endoplasmic reticulum stress is associated with autophagy and cardiomyocyte remodeling in experimental and human atrial fibrillation[J].J Am Heart Assoc,2017,6(10):e006458.
收稿日期:2023-10-18