














摘" 要:
為了實現對異步電機定子繞組匝間短路故障的可靠在線診斷,提出一種基于d-q變換及鯨魚優化算法(WOA)優化的長短期記憶網絡(LSTM)的故障診斷方法。通過理論推導可知,d-q變換可有效提取定子電流中的特征頻譜數據。采用鯨魚優化算法對長短期記憶網絡中的3個關鍵參數進行優化,建立WOA-LSTM故障分類模型。為了驗證基于d-q變換和WOA-LSTM故障診斷方法的有效性,分別以小波變換、快速傅里葉變換及d-q變換提取電流頻譜數據作為輸入數據集,以一臺YE2-100L1-4型異步電機為實驗對象進行實驗驗證。研究結果表明:相比于小波變換及快速傅里葉變換,采用d-q變換能更準確的提取出定子電流中的故障特征,更精確地反映電機故障狀態,有助于提高故障分類準確率;相比于傳統的LSTM算法,經WOA優化后的LSTM算法分類準確率可達98.3%,能可靠地實現不同程度匝間短路故障的診斷。
關鍵詞:異步電機;故障診斷;定子繞組匝間短路;d-q變換理論;鯨魚優化算法;長短期記憶神經網絡
DOI:10.15938/j.emc.2024.06.006
中圖分類號:TM343
文獻標志碼:A
文章編號:1007-449X(2024)06-0056-10
收稿日期: 2023-07-18
基金項目:
作者簡介:王喜蓮(1974—),女,博士,教授,博士生導師,研究方向為開關磁阻電機、無軸承電機及其控制、電機故障診斷;
秦嘉翼(1999—),女,碩士研究生,研究方向為電機故障診斷、在線故障診斷;
耿" 民(1980—),男,碩士,高級工程師,研究方向為高速動車組牽引系統、電機故障監測。
通信作者:王喜蓮
Asynchronous motor stator turn-to-turn short circuit fault diagnosis based on d-q transform and WOA-LSTM
WANG Xilian1," QIN Jiayi1," GENG Min2
(1.School of Electrical Engineering, Beijing Jiaotong University, Beijing 100044,China;
2.Motor Vehicle Maintenance Department, CRRC Tangshan Co., Ltd., Tangshan 063035, China)
Abstract:
In order to realize reliable online diagnosis of inter-turn short-circuit faults in asynchronous motor stator windings, a fault diagnosis method based on d-q transform and whale optimization algorithm (WOA) optimized long-short-term memory network (LSTM) was proposed. It is known through theoretical derivation that the d-q transform can effectively extract the characteristic spectral data in the stator current. The whale optimization algorithm was used to optimize the three key parameters in the long short-term memory network and the WOA-LSTM fault classification model was established. In order to verify the effectiveness of the fault diagnosis method based on d-q transform and WOA-LSTM, wavelet transform, fast Fourier transform and d-q transform were used to extract the current spectrum data as the input data set, and a YE2-100L1-4 asynchronous motor was used as the experimental object for experimental verification. The results show that compared with wavelet transform and fast Fourier transform, the d-q transform can more accurately extract the fault features in the stator current, more accurately reflect the fault state of the motor, and help to improve the fault classification accuracy. Compared with the traditional LSTM algorithm, the classification accuracy of LSTM algorithm optimized by WOA can reach 98.3%, which can reliably realize the diagnosis of inter-turn short-circuit faults of different degrees.
Keywords:asynchronous motor; fault diagnosis; stator winding turn-to-turn short circuit; d-q transform theory; whale optimization algorithm; long and short-term memory neural networks
0" 引" 言
隨著現代化社會的不斷發展,三相異步電機在工農業生產、電力系統及交通運輸等領域都占有一席之地,其消耗的電能在電網總負荷中占比過半。然而,由于頻繁啟動制動、運行工況不穩定以及制造工藝等的影響,電機發生故障的概率較高。研究表明,定子繞組匝間短路故障占異步電機總故障的38%[1]。當電機發生早期匝間短路故障時,若不及時對其進行診斷維修,往往會導致故障擴大,危及電機本身及整個系統的安全,所以進行異步電機定子匝間短路故障診斷的研究對電力系統的安全具有重大意義[2]。
國內外已經有許多學者為準確診斷匝間短路故障做出研究,相繼提出了多種各具特色的故障監測與診斷方法,主要可分為三類:基于特征信號的故障診斷、基于解析模型的故障識別、基于人工智能的故障監測。
國內外學者們對于基于特征信號的故障診斷方法一直保持著高度的關注。電機定子發生匝間短路故障后,會產生一系列變化特征量,通過采集信號,利用信號處理方法提取特征量以指示故障的變化。電機定子繞組匝間短路故障會引起電機氣隙磁場不平衡,從而在定子電流及轉矩中產生一定的諧波分量,因此有學者通過提取定子電流的諧波分量或轉矩信號中的二倍頻分量[3]來檢測匝間短路故障。由于電機運行條件多變,傅里葉分析無法準確提取諧波分量,為了解決該問題,專家們相繼提出了多種頻譜提取算法,如小波分析[4]、與差分算法結合的Prony算法[5]等,但上述頻譜分析算法較為復雜。為了提高故障診斷的高效性,有學者基于多次派克變換提取電流的特征諧波分量,提出了新的故障特征量,避免了復雜的譜分析,但該特征量仍受負載影響,可靠性有待提高[6]。由于定子匝間短路屬于不對稱故障,會使電機定子電流產生負序分量[7]。有學者對雙饋異步發電機在風速恒定時的匝間短路故障狀態進行了仿真分析,研究表明定子負序電流有利于輕載狀態時的故障診斷[8]。有學者研究了計及轉子故障時的異步電動機定子繞組匝間短路故障,并提出了濾除轉子故障的負序電流,提高了負序分量法檢測的可靠性[9]。此外,不對稱故障還會造成定子電流的帕克矢量軌跡發生畸變,因此可通過監測帕克矢量軌跡來診斷故障[10],但負序電流和帕克矢量軌跡均受電源電壓不平衡及負載變化的干擾。為了解決電壓不平衡時的故障診斷問題,許多學者提出了與阻抗相關的故障特征量。阻抗主要與電機的固有特性相關,受電機運行工況的影響較小,因此有學者以負序視在阻抗作為故障特征量來診斷異步電機匝間短路故障[11-12]。基于負序視在阻抗理論,有學者提出了擬序阻抗,將其應用至雙饋異步電機的故障診斷[13],但擬序阻抗的表達式涉及轉子電流,不適用于普通異步電機的故障診斷。由于電機固有不對稱、信號檢測及計算誤差等的影響,負序視在阻抗法的準確度有待提高。上述特征量及其信號提取方法都具有各自的局限性,特征量在不同工況下的通用性和可靠性,信號提取的準確度和復雜度等問題都亟待解決。
基于解析模型的方法核心在于利用已經建立的電機模型,其中匝間短路故障部分被視為關鍵辨識參數,通過比較辨識所得的值和實際監測的值判斷故障。有學者通過引入不對稱矩陣建立故障電機模型,對故障后的電機進行分析[12];也有學者采用多回路模型對故障瞬變過程進行數字仿真,對不同特征值的靈敏度和可靠性進行研究[14]。通過改變模型參數可以靈活的控制電機狀態,為早期故障診斷的研究提供了便捷的工具,但是由于數學模型受電機設計參數的影響較大,且無法模擬實際運行時的多種工況,導致解析模型無法精確建立,容易引起故障誤診斷。
隨著數據挖掘和智能算法的飛速發展,基于人工智能的診斷方法成為當前的研究熱點,不同的信號處理和智能算法可以衍生出多種分類模型,用于故障診斷。有學者利用支持向量機進行故障診斷,在不同負載電流大小時選取不同的特征值作為數據集,效果良好,但支持向量機依賴于參數調節和核函數的選擇,當特征數據過大時易出現過擬合[15]。有學者提出小波神經網絡對電機故障狀態進行識別,該方法采用小波分析處理數據,將特征信息作為BP神經網絡輸入,輸出故障類別,但是BP神經網絡容易陷入局部最優,不利于故障識別[16]。卷積神經網絡(convolutional neural networks,CNN)作為深度學習的基礎模型,在故障診斷領域也備受關注,有學者在傳統CNN模型的基礎上提出一種多尺度卷積核和多源機電信息融合的故障診斷方法,顯著提高了同步發電機的故障診斷準確率[17]。此外, 循環神經網絡(recurrent neural network,RNN)在處理長序列數據方面效果良好,但不適于對具有較大的時程數據進行分析。長短期記憶神經網絡(long-short term memory,LSTM)是RNN的一種特殊變體,其特殊的細胞狀態有效解決了RNN的長期依賴問題,已被應用至故障診斷領域。有學者提出一種基于深度遷移學習與LSTM相結合的微電網故障識別方法,提高了微電網故障診斷模型的精度[18];也有學者提出了一種基于快速傅里葉變換和LSTM的變速抽蓄機組轉子繞組短路故障和轉子偏心故障診斷方法,能夠克服測量噪聲和不同工況的影響,可靠性高[19]。
基于上述考慮,本文首先對電機故障前后的定子電流特征進行理論分析,得到故障后定子電流中的特征頻率,并通過理論推導提出以d-q變換提取特征頻譜的數據處理方法。在此基礎上,引入長短期記憶神經網絡,提取電機定子電流的特征頻譜數據作為數據集輸入至LSTM網絡中,并利用鯨魚優化算法(whale optimization algorithm,WOA)對模型中的3個關鍵參數(隱藏層神經元個數,初始學習率,學習率下降因子)進行優化,依據最優參數組合對LSTM進行訓練,網絡輸出為故障類型的診斷結果。經過實驗對比分析,結果表明,以d-q變換提取電流特征頻率作為數據預處理方法,比快速傅里葉變換和小波分析進行預處理的結果準確率高,且WOA-LSTM模型相較于原始LSTM模型,準確率顯著提高,能更為可靠的進行異步電機匝間短路故障診斷,為異步電機故障診斷提供新的思路和方法。
1" 定子電流特征頻率提取
1.1" 定子電流諧波特征
異步電機正常運行時,定子繞組通電,在轉子側感應出電動勢,定、轉子磁動勢合成了氣隙磁動勢。當定子某相繞組發生匝間短路,相當于在該相繞組上附加短路環,短路電流產生的磁動勢將使合成磁動勢發生畸變。
單匝線圈磁動勢幅值經過傅里葉分解可展開為
F(α1)=22I1πp∑υ1υkyυcos(υα1)。(1)
式中:I1為流過單匝線圈的電流有效值;p為極對數;kyυ為線圈節距因數;α1為線圈兩邊相隔的空間電角度;υ為諧波次數,υ=1p,2p,3p…,對于整距線圈υ≠2,4,6…。
設短路后疊加在短路匝上的電流為if=2Ifcos(ωt),短路匝沿氣隙圓周的空間電角度為α=pθ,短路電流產生的磁動勢傅里葉展開式如下:
F(t,θ)=2Iπp∑υ1υkyυcos(ωt±υpθ)。(2)
式中:I為流過線圈的電流有效值;θ為以定子坐標表示的機械角度;θ=θr+[(1-s)ωt]/p,θr為轉子坐標機械角度;s為轉差率;p為極對數;ω為角頻率。
該磁動勢在轉子繞組中感應的電流分量可表示為
iR=∑υ2IRυcos[ωt±(1-s)υωt]。(3)
式中IRυ是轉子側電流的有效值。
若電機轉子三相繞組對稱,則電流iR產生的磁動勢可表示為
Fr(t,θr)=
∑υ∑nFυ,ncos(ωt±(1-s)υωt-npθr)。(4)
式中:Fυ,n是n次諧波磁動勢的幅值;n是轉子諧波次數,n=6k±1,k=0,1,2,…。
其在定子坐標系下可表示為
Fr(t,θ)=
∑υ∑nFυ,ncos{[1+(n±υ)(1-s)]ωt-npθ}。(5)
根據上述分析可知,電機定子某相發生匝間短路故障后,將在定子側感應出頻率為[1+(n±υ)(1-s)]f1的電流諧波分量,f1為定子頻率。因此,當電機發生匝間短路故障后,定子電流的頻譜數據可以作為診斷故障的特征數據。
1.2" d-q變換提取電流頻譜特征
d-q變換是一種常用的分析交流電機模型的坐標變換方法,三相靜止坐標系下電流的基波正序分量通過d-q變換可以變為直流分量。坐標變換的原理圖如圖1所示。
設電流信號中含有角頻率為ω的基波分量及角頻率分別為ω1,ω2,…的諧波分量,則該電流可以表示為
is1=Imcos(ωt+θ)+I1cos(ω1t+θ1)+
∑∞n=2Incos(ωnt+θn)。(6)
式中:n為正整數;Im,I1,I2,…分別為基波、各諧波分量的幅值;ω,ω1,ω2,…分別為基波、各諧波分量的角頻率;θ,θ1,θ2,…分別為基波、各諧波分量的初始相位角。
設頻率為ω1的分量周期為T1,將電流信號is1在時間軸上向左移動2T1/3生成信號is2,向左移動4T1/3生成信號is3,則is1,is2及is3中角頻率為ω1的分量相位互差120°。其表達式如下:
is2=Imcos(ωt+θ+θ′)+I1cosω1t+θ1-2π3+
∑∞n=2Incos(ωnt+θn+θ′n);
is3=Imcos(ωt+θ+θ″)+I1cosω1t+θ1-4π3+
∑∞n=2Incos(ωnt+θn+θ″n)。(7)
式中:θ′,θ′n是is2中基波分量及各諧波分量相較于is1中各分量的相位差;θ″,θ″n是is3中基波分量及各諧波分量相較于is1中各分量的相位差。
is1,is2,is3組成了一組用于d-q變換的電流,記為轉子電流矩陣Is=is1is2is3T,對Is進行d-q變換,有
idiq=
23cos(ω′t)cos(ω′t-2π3)cos(ω′t+2π3)-sin(ω′t)-sin(ω′t-2π3)-sin(ω′t+2π3)Is。(8)
令ω′=ω1,d-q變換矩陣記為P3/2,將式(6)、式(7)代入上式整理可得
idiq=P3/2Imcos(ωt+θ)Imcos(ωt+θ+θ′)Imcos(ωt+θ+θ″)+23I1cos(-θ1)sin(-θ1)+
P3/2∑∞n=2Incos(ωnt+θn)∑∞n=2Incos(ωnt+θn+θ′n)∑∞n=2Incos(ωnt+θn+θ″n)。(9)
由上式可知,id、iq中除第二項之外,其余項均為周期分量。令idz、iqz分別為id、iq中的直流分量,即:
idz=23I1cos(-θ1);
iqz=23I1sin(-θ1)。(10)
其模值的平方和為
i2dz+i2qz=23I21。(11)
令Iz=i2dz+i2qz,則Iz表征了is1中角頻率為ω1的分量大小。
上述理論表明,is1中任意頻率的分量經過d-q變換可以變為id、iq中的直流分量,通過傅里葉頻譜提取出id、iq中的直流分量idz、iqz后,再經式(11)便可計算出該頻率分量的幅值。
綜上所述,通過d-q變換可以提取出電機定子電流故障后的諧波分量幅值,從而獲得電流的特征頻譜數據。
2" WOA-LSTM的分類算法
2.1" LSTM的基本原理
LSTM是一種特殊的循環神經網絡,它通過獨有的記憶網絡記錄歷史數據,并對當前時刻數據對歷史數據的影響程度進行控制。與經典的循環神經網絡相比,LSTM能夠快速捕捉到時序數據間的關聯信息,有效改善了經典循環神經網絡中梯度消失或梯度爆炸的問題。同時,LSTM的結構也更加復雜,主要包括遺忘門、輸入門、輸出門3個控制門,如圖2所示。
圖2中:xt,ht和Ct分別表示當前時刻的網絡輸入、輸出和細胞狀態;ht-1和Ct-1分別表示前一時刻的網絡輸出和細胞狀態;σ代表sigmoid激活函數,tanh代表雙曲正切激活函數。
在t時刻,LSTM的單元信息計算流程為:
ft=σ(Wf[ht-1,xt]+bf);
it=σ(Wi[ht-1,xt]+bi);
C~t=tanh(WC[ht-1,xt]+bC);
Ct=ftCt-1+itC~t;
ot=σ(Wo[ht-1,xt]+bo);
ht=ottanh(Ct)。(12)
式中:ft為遺忘系數;it為輸入系數;C~t為輸入數據;ot為輸出系數;Wf、Wi、WC和Wo分別為遺忘門權重、輸入門權重、輸入數據權重和輸出門權重;bf、bi、bC和bo分別為遺忘門偏置、輸入門偏置、輸入數據偏置和輸出門偏置。
在LSTM的計算過程中,遺忘門讀取前一時刻的輸出和當前時刻的輸入并進行非線性映射,其作用是丟棄無關信息,保留關鍵信息。輸入門的主要作用是將當前時刻的關鍵信息提取出來輸入到網絡中,最終由輸出門決定最終的分類結果。而細胞狀態可以視為存儲關鍵信息的庫,細胞狀態的更新過程是解決長期依賴問題的關鍵環節。
2.2" 鯨魚優化算法的基本原理
鯨魚優化算法主要通過模擬座頭鯨捕獵,采取隨機或最佳搜索代理的方式來模擬鯨魚捕獵行為,并采用螺旋攻擊模擬氣泡網攻擊機制,屬于元啟發式算法。與其他優化算法相比,WOA的優化機制簡單,尋優能力強且收斂速度快。WOA優化求解的過程主要包括3個階段:獵物搜索、包圍捕食和氣泡攻擊。
座頭鯨進行獵物搜索的過程,即WOA更新尋優的過程可表示為:
D=|CX*(t)-X(t)|;
X(t+1)=X*(t)-AD。(13)
式中:D為搜索空間維數;X*為最優解;X為當前解;A、C為系數向量。
當鯨魚鎖定新的獵物后,將對其進行攻擊圍捕。座頭鯨捕食的機制主要包括2種:包圍捕食和氣泡網捕食。當鯨魚采用螺旋攻擊方式(氣泡網捕食)時,運動方程為
X(t+1)=Deblcos(2πl)+X*(t)。(14)
式中:b為常數,表示螺線的形狀;l為隨機數,介于[-1,1]之間。
鯨魚在螺旋包圍獵物時,需要不斷收縮包圍圈,通過概率p選擇包圍機制和螺旋模型,即
X(t+1)=X*(t)-AD,p<0.5;
Deblcos(2πl)+X*(t),p≥0.5。(15)
式中p為隨機數,介于[0,1]之間。
隨著概率p的變化,鯨魚會不斷選擇不同的方式對自己的位置進行更新,直至達到最大迭代次數或適應度滿足要求。
2.3" 基于WOA-LSTM的故障分類算法
LSTM的訓練效果受網絡模型中參數的影響非常大,主要參數為隱藏層神經元個數,初始學習率及學習率下降因子,它們對神經網絡的分類精度有著不可忽視的影響。傳統LSTM分類模型中的參數主要依靠經驗進行調節,人為尋找其參數的最優組合費時費力,故引入鯨魚優化算法對LSTM模型中的參數進行自尋優,提高故障分類的準確率。利用WOA對網絡參數進行自尋優時,不同的優化方案可視作不同的鯨魚個體,神經網絡中需要優化的參數個數即為鯨魚所處空間的維數,所有的參數構成了鯨魚的位置,故對參數進行更新尋優的過程即為鯨魚位置的變化過程。
基于WOA-LSTM的故障分類算法流程如圖3所示。首先輸入采集到的定子電流數據,對原始數據進行數據預處理獲得定子電流的特征數據,將處理后的特征數據作為數據集輸入LSTM網絡中進行訓練。在訓練過程中通過WOA對LSTM參數進行優化,獲得適應度值最優的一組LSTM參數。最后采取最優參數組合進行LSTM模型訓練,獲得用于故障分類的LSTM神經網絡模型。
3" 實驗研究與結果分析
3.1nbsp; 數據采集及數據預處理
實驗所用電機型號為YE2-100L1-4型三相異步電動機,基本參數如表1所示。
實驗平臺如圖4所示。為了模擬異步電機定子繞組匝間短路這一故障,所用的實驗電機為經過特殊處理后的故障電機。在電機定子A相某線圈的2、3、5、7、12匝繞組選取一點破壞其絕緣。在每個點處接入導線,并延長至機殼外部以便對其進行操作,正常運行時用絕緣膠帶將6個引出線端子分別包裹,實現物理隔離。實驗中僅需將其中2個抽頭連接在一起,便能實現不同短路匝數的匝間短路,例如將第2匝和第7匝的引出線相連,可以實現5匝的短路故障。
由于實驗電機匝間短路故障模擬均為A相故障,故采集定子A相電流作為原始數據。采集異步電機在不同短路匝數下的定子A相電流,采樣頻率為10 kHz,采樣時間為100 s。將每次采樣數據切片以50個周期為單位長度的數據組,每個原始數據被切分為100個數據。在不同短路匝數下多次采樣并切片,共獲得3 000個樣本數據,并對不同的短路匝數劃分嚴重等級,對其進行類編碼,具體樣本分布及等級編碼如表2所示。
獲得電機定子電流數據后,還需對其進行數據預處理以降維。經過分析可知故障前后電機的定子電流頻譜會發生明顯變化,故對定子電流數據進行頻譜分析,選取前0~200 Hz的特征頻率幅值作為特征數據集,并隨機抽取2 100個數據樣本作為訓練集,900個數據樣本作為測試集。
3.2" 不同數據集下的LSTM訓練結果分析
為了評估所選數據預處理方法的性能,選取小波變換、快速傅里葉變換和d-q變換提取電流特征頻譜數據生成3類數據集,將其分別輸入至LSTM網絡中進行訓練。LSTM網絡模型的參數設為:初始學習率0.005;經700次訓練后學習率衰減,學習率下降因子0.01;最大迭代次數2 000次;求解器為Adam。將測試集樣本輸入已訓練完成的LSTM網絡中,引入混淆矩陣對訓練結果進行分析,3種數據集下的測試集混淆矩陣如圖5所示。
從圖5可知,以小波變換、快速傅里葉變換和d-q變換提取電流特征頻譜作為數據集時的測試集準確率分別為87.11%、92.56%、95.11%。以d-q變換提取電流特征頻譜數據作為數據集進行訓練時的訓練集混淆矩陣和損失函數如圖6所示,最終訓練集準確率達到96.86%,所有數據集的綜合準確率為96.33%。其中誤判類別最多的為輕微匝間短路和無故障電機,3匝及以上的短路嚴重程度僅有2組數據診斷錯誤。實驗結果表明,與小波變換,快速傅里葉變換相比,采用d-q變換提取電流頻譜數據能更好的表征故障特征變化,獲得更高的分類準確率。
為進一步驗證所選數據集的分類有效性,采用t分布隨機鄰域嵌入算法(t-distributed stochastic neighbor embedding,t-SNE)對原始電流數據和d-q變換處理后的電流特征頻譜數據進行可視化處理,結果如圖7所示。
將每組樣本可視化為二維平面中的一個數據點,不同形狀代表不同的故障嚴重程度,可以明顯看出,不同故障程度下的原始電流數據出現嚴重重疊,而經預處理后的數據類別劃分明顯,更好地體現了不同故障嚴重程度下的特征,從而有效提高故障分類的準確率。
3.3" WOA-LSTM網絡訓練結果分析
設置WOA算法參數:種群數量5、最大迭代次數30、維度3,以d-q變換進行數據預處理,選取LSTM訓練集均方誤差與測試集均方誤差之和作為適應度值,優化過程如圖8所示。
由圖8可知,迭代12次時適應度值收斂至最優值,所對應的均方誤差之和為0.036,經WOA優化后LSTM網絡故障分類的準確率顯著提升。優化前后網絡訓練過程中訓練集準確率和損失函數的變化如圖9所示。由圖可看出,WOA-LSTM模型的準確率較原始LSTM模型有所提升,損失函數值降低了0.03。
將訓練集和測試集輸入訓練好的WOA-LSTM模型進行分類預測,所得混淆矩陣如圖10所示。3 000個樣本中,2 949個樣本分類正確,僅有51個樣本分類錯誤,短路3匝及以上的故障分類準確率為100%,綜合準確率為98.3%,相較于原始LSTM模型提高了1.97%。
綜合上述分析,可得不同數據預處理方法及網絡模型時的訓練集和測試集準確率,列于表3中。由表3可知,采用d-q變換提取電流頻譜數據作為數據集,并用WOA優化LSTM網絡參數,可使模型的訓練集準確率達98.48%,測試集準確率達97.89%,較其他傳統方法出現了顯著提升,可以更為可靠地用于匝間短路故障分類領域。
4" 結" 論
針對三相異步電機定子匝間短路故障,本文提出了一種基于d-q變換理論和WOA-LSTM神經網絡的故障分類方法,經過實驗分析,得到如下結論:
1)采用d-q變換可以精確提取出定子電流中與故障相關的頻譜,與小波變換、快速傅里葉變換相比,將d-q變換作為數據預處理方法,能獲得更精確的特征信息,可以更好地表征故障,極大地提高了故障分類的準確率。
2)采用WOA對LSTM模型中的關鍵參數進行優化,在最優參數組合的基礎上訓練網絡,可以有效提高故障分類的精度。
3)實驗結果表明,以d-q變換作為數據預處理方法,輸入WOA-LSTM網絡訓練,綜合準確率可達98.3%,與其他數據預處理方法和傳統LSTM模型相比,故障分類準確率顯著提高。
參 考 文 獻:
[1]" 馬宏忠.電機狀態監測與故障診斷[M].北京:機械工業出版社,2008.
[2]" GANDHI A, CORRIGAN T, PARSA L. Recent advances in modeling and online detection of stator interturn faults in electrical motors[J]. IEEE Transactions on Industrial Electronics,2011,58(5):1564.
[3]" JOHN S H. Monitoring of defects in induction motors through air-gap torque observation[J]. IEEE Transactions on Industry Application,1995,31(5):1016.
[4]" WATSON S J, XIANG B J, YANG W, et al. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Transactions on Energy Conversion, 2010, 25(3):715.
[5]" 李俊卿,朱錦山.基于Prony算法的雙饋異步發電機定子匝間短路特征分析[J].電機與控制應用,2016,43(7):86.
LI Junqing, ZHU Jinshan. Characteristic analysis of stator inter-turn short circuit fault in doubly-fed induction generator based on Prony[J]. Electric Machines amp; Control Application, 2016, 43(7):86.
[6]" 陳眾,伍雅娜,冷鵬,等.異步電機定子繞組匝間短路故障診斷研究[J].電機與控制應用,2019,46(5):120.
CHEN Zhong, WU Yana, LENG Peng, et al. Diagnosis of inter-turn faults in stator windings of asynchronous motor[J]. Electric Machines amp; Control Application,2019,46(5):120.
[7]" 張世聰.大功率電力機車異步牽引電機的典型故障研究[J].北京交通大學學報,2018,42(2):122.
ZHANG Shicong. Research on typical of asynchronous traction motor for high power electric locomotive[J]. Journal of Beijing Jiaotong University,2018,42(2):122.
[8]" 馬宏忠,張志艷,張志新,等.雙饋異步發電機定子匝間短路故障診斷研究[J].電機與控制學報,2011,15(11):50.
MA Hongzhong, ZHANG Zhiyan, ZHANG Zhixin, et al. Research on DFIG stator winding inter-turn short circuit fault[J]. Electric Machines and Control,2011,15(11):50.
[9]" 李和明,孫麗玲,許伯強,等.異步電動機定子繞組匝間短路故障檢測新方法[J].中國電機工程學報,2008,28(21):73.
LI Heming, SUN Liling, XU Boqiang, et al. A novel detection method of stator winding inter-turn short circuit fault in induction motors[J]. Proceedings of the CSEE,2008,28(21):73.
[10]" 魏書榮,張路,符楊,等.基于派克矢量軌跡橢圓度的海上雙饋電機定子繞組匝間短路早期故障辨識[J].中國電機工程學報,2017,37(10):3001.
WEI Shurong, ZHANG Lu, FU Yang, et al. Early fault detection based on the Park’s vector locus ovality for inter-turn faults in stator windings of the offshore wind DFIG[J]. Proceedings of the CSEE,2017,37(10):3001.
[11]" CHENG S W, ZHANG P J, HABETLER T G. An impedance identification approach to sensitive detection and location of stator turn-to-turn faults in a closed-loop multiple motor drive[J]. IEEE Transactions on Industrial Electronics,2011,58(5):1545.
[12]" LEE S B, TALLAM R M, HABETLER T G. A robust,on-line turn-fault detection technique for induction machines based on monitoring the sequence component impedance matrix[J]. IEEE Transactions on Power Electronics,2003,18(3):865.
[13]" 魏書榮,張路,符楊,等.基于擬序阻抗的海上雙饋電機定子繞組匝間短路早期故障辨識[J].中國電機工程學報,2017,37(1):273.
WEI Shurong, ZHANG Lu, FU Yang, et al. Early fault detection based on the quasi-sequence impedance for inter-turn faults in stator windings of offshore wind DFIG[J]. Proceedings of the CSEE,2017,37(1):273.
[14]" 李俊卿,康文強,沈亮印.基于多回路理論的雙饋異步發電機定子繞組匝間短路故障分析[J].電機與控制應用,2016,43(9):99.
LI Junqing, KANG Wenqiang, SHEN Liangyin. Analysis of stator winding inter turn short circuit fault in doubly fed induction generator based on multi loop theory[J]. Electric Machines amp; Control Application,2016,43(9):99.
[15]" YAGAMI Y, ARAKI C, MIZUNO Y, et al. Turn-to-turn insulation failure diagnosis of stator winding of low voltage induction motor with the aid of support vector machine[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2015,22(6):3099.
[16]" HUA Su, KIL T C. Induction machine condition monitoring using neural network modeling[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1):241.
[17]" 馬明晗,侯岳佳,李永剛,等.基于MSK-CNN和多源機電信息融合的同步發電機故障診斷方法[J].電機與控制學報,2023,27(1):1.
MA Minghan, HOU Yuejia, LI Yonggang, et al. Synchronous generator fault diagnosis nethod based on MSK-CNN and multi-source electromechanical information fusion[J]. Electric Machines and Control,2023,27(1):1.
[18]" 吳忠強,盧雪琴.基于深度遷移學習和LSTM網絡的微電網故障診斷[J].計量學報,2023,44(4):582.
WU Zhongqiang, LU Xueqin. Microgrid fault diagnosis based on deep transfer learning and LSTM network[J]. Acta Metrologica Sinica,2023,44(4):582.
[19]" 尹項根,喬健,賀儒飛,等.基于FFT-LSTM的變速抽蓄機組轉子繞組短路故障和偏心故障診斷方法[J].電力系統保護與控制,2023,51(6):73.
YIN Xianggen, QIAO Jian, HE Rufei, et al. FFT-LSTM-based fault diagnosis method for a rotor winding short circuit fault and rotor eccentricity fault of a variable-speed pumped storage unit[J]. Power System Protection and Control,2023,51(6):73.
(編輯:劉琳琳)