常虹 吳冬梅 張力 龔香坤 徐劃龍 付明明



摘要:由于難以將行駛路線地形的影響從實際行駛排放(real driving emission,RDE)試驗的其他試驗邊界的影響中獨立出來,提出采用神經網絡輸入變量重要性算法以定量評估行駛路線地形試驗邊界對RDE試驗的影響強度。以重慶地區RDE試驗的37 256個數據窗口排放樣本為基礎,采用因子分析方法縮減數據并消除試驗邊界之間的信息重疊,建立神經網絡模型預測污染物排放,并計算輸入變量相對重要性占比。結果表明,行駛路線地形試驗邊界在二氧化碳(CO2)排放中起主導作用,它的相對重要性遠大于行程動力學試驗邊界。對于一氧化碳(CO)、顆粒數量(particle number,PN)、氮氧化物(NOx)污染物排放,地形因素的影響力仍不可忽視,特別是在車輛高速行駛條件下,它對車輛行駛排放的影響與行程動力學因素大致相當??傮w而言,在現有排放標準體系中,行駛路線地形試驗邊界對RDE試驗的影響被嚴重低估。
關鍵詞:實際行駛排放;排放模型;神經網絡;地形;行程動力學
中圖分類號:U448.213 ?????????文獻標志碼:A??????? 文章編號:1000-582X(2024)01-031-10
Effect of route topography on real driving emissions based on neural network models
CHANG Hong1, WU Dongmei2, ZHANG Li2, GONG Xiangkun1,
XU Hualong1, FU Mingming2
(1. China Automotive Engineering Research Institute Co., Ltd., Chongqing 401122, P. R. China;
2. School of Mechanical and Automotive Engineering, Chongqing University, Chongqing 400044, P. R. China)
Abstract: It is difficult to separate the effect of route topography from that of other test boundaries in real driving emission (RDE) tests. We proposed an artificial neural network (ANN) weight method to quantitatively evaluate the impact of route topography on RDE tests. Based on 37 256 data window samples of RDE tests in Chongqing, a factor analysis method was used to reduce data and eliminate information overlap between test boundaries. Additionally, a neural network model was also established to predict pollutant emissions and calculate the relative importance of input variables. The results show that route topography significantly affects CO2 emissions, with its relative importance far exceeding that of other test boundaries. Moreover, the influence of the route topography cannot be ignored for CO, PN (particle number), and NOx emissions, having an impact on vehicle driving emissions comparable to that of trip dynamics, especially under high-speed driving conditions. However, the existing regulatory emission standards seriously underestimate the impact of the route topography on vehicle driving emissions.
Keywords: RDE (real driving emission); emission model; artificial neural network; route topography; trip dynamics
國內外針對車輛污染物排放設立了各種強制性法規,涉及嚴格的排放限值和新車必須遵守的認證測試程序[1-3]。然而,大量的研究表明,排放法規所規定的試驗室標準駕駛循環缺乏車輛實際行駛狀態的完整代表性[4-6],基于試驗室標準駕駛循環的車輛排放測試難以充分和準確地反映現代交通系統中車輛實際行駛狀態下的真實污染物排放[7-9]。為此,歐洲和中國第六階段機動車污染物排放標準(簡稱國六)強制性引入實際行駛排放(RDE)測試程序[10-11]?!?br>