賈西瑞 劉莉潔
基金項目:國家自然科學基金資助項目(81970893,82171541,81670935);江蘇省重癥醫學重點實驗室自主課題(JSKLCCM-2022-02-002)
作者單位:1東南大學生命科學與技術學院(郵編210096);2江蘇省重癥醫學重點實驗室,東南大學醫學院
作者簡介:賈西瑞(1997),女,碩士在讀,主要從事小膠質細胞與膿毒癥相關性腦病研究。E-mail:1829071233@qq.com
△通信作者 E-mail:liulijie@seu.edu.cn
摘要:膿毒癥相關性腦病(SAE)是膿毒癥患者常見并發癥,以腦功能障礙為主要特征,且相當比例的患者存在長期認知功能障礙。中樞神經系統是較早受到膿毒癥引起的外周炎癥影響的區域之一。小膠質細胞作為中樞神經系統常駐免疫細胞,可協調腦內炎癥反應,在腦的固有免疫和適應性免疫應答中扮演重要角色,在SAE發生發展中起關鍵作用。就小膠質細胞功能表型及其在SAE中的作用進行綜述以探討小膠質細胞在SAE防治中的潛在價值。
關鍵詞:膿毒癥;小神經膠質細胞;膿毒癥相關性腦病;突觸;神經炎癥
中圖分類號:R631文獻標志碼:ADOI:10.11958/20231735
The role and research progress of microglia in sepsis related encephalopathy
JIA Xirui1, LIU Lijie2△
1 Department of Biology, School of Life Science and Technology, Southeast University, Nanjing 210096, China; 2 Department of Physiology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University
△Corresponding Author E-mail: liulijie@seu.edu.cn
Abstract: Sepsis associated encephalopathy (SAE) is a common complication in patients with sepsis. It is characterized by brain dysfunction, and a considerable proportion of patients have long-term cognitive impairment. The central nervous system is one of earliest regions affected by peripheral inflammation caused by sepsis. As resident immune cells of central nervous system, microglia can coordinate inflammatory responses in brain and play an important role in the innate and adaptive immune responses of brain. Therefore, it plays a crucial role in the occurrence and development of SAE. In this paper, the functional phenotypes of microglia and their role in SAE are reviewed to explore the potential value of microglia in the prevention and treatment of SAE.
Key words: sepsis; microglia; sepsis related encephalopathy; synapses; neuroinflammation
膿毒癥是由宿主對感染的反應失調所引起的危及生命的器官功能障礙[1]。膿毒癥相關性腦病(sepsis- associated encephalopathy,SAE)是由膿毒癥引起的急性腦功能障礙,與直接的腦部感染無關,是膿毒癥患者常見的并發癥,以注意力下降、認知功能受損等為發病特征,患者患病程度可從意識模糊到譫妄,甚至出現深度昏迷,相當比例的患者存在長期認知功能障礙。SAE一旦發生,不僅升高膿毒癥患者病死率、延長患者住院時間、增加醫療資源耗費,還極大增加幸存者未來發生癡呆等多種腦功能障礙的風險[2]。研究指出,SAE的發生涉及腦內神經炎癥、腦循環障礙、血腦屏障(blood-brain barrier,BBB)損傷、神經遞質異常及氧化應激等多種病理機制,而小膠質細胞幾乎參與了上述所有病理過程[3-4]。臨床和動物研究顯示,即便在BBB未受損的情況下,外周炎癥信號也可通過迷走神經和室周器官傳入大腦,從而激活小膠質細胞,活化的小膠質細胞可通過釋放多種炎性介質幫助大腦抵御入侵和損害,但同時也可加重神經元損傷,并通過增加基質金屬蛋白酶表達等途徑加重BBB損傷[5]。BBB損傷可引起大腦內環境穩態改變,從而進一步激活小膠質細胞[6-7],最終導致腦損傷與逐漸異常的免疫反應之間的惡性循環。因此,深入探討小膠質細胞在SAE發生和發展過程中的作用對了解SAE的發病機制以及探索其有效的治療方法具有重要意義。
1 小膠質細胞功能表型
小膠質細胞作為中樞神經系統(central nervous system,CNS)的常駐巨噬細胞,具有抗原提呈、清除細胞碎片、調節突觸可塑性等功能,通過對大腦進行持續性免疫監控,在維持CNS穩態方面起著關鍵作用[8-9]。正常腦組織中的小膠質細胞形態呈高度分枝狀,傳統上稱之為“靜息態”小膠質細胞。此狀態的小膠質細胞通過利用其分枝狀突起的快速伸縮以及吞噬分泌機制執行免疫監視、神經可塑性調節等功能,并可迅速響應周圍環境的多種刺激而進入激活狀態[4]。當大腦發生損傷或神經炎癥時,小膠質細胞發生逐步去分枝化,胞體增大,分泌及吞噬功能增強,由原來的靜息狀態轉化為激活狀態。活化的小膠質細胞依據其抗原標志物和功能分為M1型和M2型兩種極化表型[10]。M1型為促炎型,以分化簇(cluster of differentiation,CD)86為其標志物,可釋放高水平的炎性因子,如腫瘤壞死因子(TNF)-α、白細胞介素(IL)-1β、IL-6等,實現對病原體和異常細胞的殺傷、包圍和吞噬,從而限制病原體擴散并清除損傷細胞,但其同時也會誘導神經炎癥和神經元凋亡,形成一種不利于組織修復的微環境,甚至進一步加重組織損傷[11-12]。M2型為抑炎型,以CD206為其標志物,可釋放多種抑炎因子,如IL-10和轉化生長因子(TGF)-β等,抑制炎癥反應、限制損傷擴展并促進神經保護和組織修復[13]。可見,小膠質細胞在大腦中充當“免疫雙刃劍”,其免疫功能失衡在多種腦病進程中起關鍵作用。
2 小膠質細胞氧化損傷和異常激活
膿毒癥期間大腦微循環受損,導致腦血流量不足而引起大腦出現能量供應和氧利用障礙[4]。神經元和小膠質細胞具有高代謝率,并且以有氧代謝作為主要供能方式[14]。在低血氧條件下,腺苷三磷酸(ATP)形式的有氧能量生成效率下降[6],細胞出現能量利用障礙而誘發線粒體功能障礙[4]。線粒體作為活性氧(ROS)的起源地和作用靶標[15],在受損狀態下,ROS的生成速率和生成量遠遠超過線粒體對它的清除能力,從而使得線粒體發生氧化應激,加劇自身損傷[16-17]。此外,ROS可調節核轉錄因子(NF)-κB轉錄活性,激活核苷酸結合寡聚化結構域樣受體熱蛋白結構域相關蛋白(NLRP)3炎癥小體,促進活性IL-1β的產生[2]。作為多效性細胞因子,活性IL-1β可激活小膠質細胞,促進CNS內其他炎性因子的下游合成,加劇神經炎性反應[18]。綜上,因腦組織細胞線粒體損傷導致的細胞能量耗竭引起的小膠質細胞異常激活和神經炎癥與SAE的發生密切相關。
3 小膠質細胞活化對中樞神經系統的影響
3.1 加劇BBB損傷 BBB主要是由腦微血管內皮細胞通過基底膜與周細胞和星形膠質細胞相連構成的復雜網絡結構,可維持大腦內部環境穩定,保護大腦免受循環毒素和炎性細胞的侵害[19]。膿毒癥時,受到炎性因子刺激的BBB血管內皮細胞通過上調黏附分子表達而誘導免疫細胞遷移并聚集到感染部位[20],同時聯同其周圍間質細胞釋放ROS、基質金屬蛋白酶等破壞BBB。小膠質細胞可以響應炎性介質、神經遞質等周圍環境的多種刺激而進入激活狀態,在SAE病理過程中發揮重要作用[21]。在BBB通透性發生變化之前,小膠質細胞通過向腦血管部位遷移以響應周圍炎性因子的刺激,在早期對BBB的完整性起保護作用。然而,進一步的炎性刺激導致小膠質細胞異常激活,小膠質細胞功能表型發生改變,通過分泌高水平炎性因子誘導神經炎癥并加劇BBB損傷[4,6]。
3.2 加劇神經炎癥 膿毒癥期間,神經炎癥是導致膿毒癥患者腦功能障礙的重要因素,在SAE的發病機制中起著至關重要的作用。影響大腦的炎性因子包括TNF-α[22]、IL-1β和高遷移率族蛋白B1(HMGB1)等[4]。小膠質細胞的Toll樣受體(TLR)對損傷或感染做出反應時上調[23],其中TLR4可觸發NF-κB依賴性促炎基因的表達,促進小膠質細胞活化和炎性細胞因子,如TNF-α的產生[24]。TNF-α作為SAE中的關鍵炎癥介質,通過TNFR1與TNFR2兩種不同受體起作用,可上調細胞黏附分子的表達,引起炎癥刺激后中性粒細胞在CNS中募集[25]。作為晚期炎癥介質,HMGB1可在外源微生物產物,如內毒素或內源TNF-α等的作用下,由免疫細胞、上皮細胞等主動釋放進入胞外空間。HMGB1可誘導多種炎性因子(包括IL-1β、IL-6等)產生并激活小膠質細胞。活化的小膠質細胞通過進一步誘導TNF-α、IL-1β、ROS等炎癥介質的釋放,介導慢性進行性神經變性的惡性循環,加劇局部炎癥反應,導致神經元功能異常和細胞死亡,加劇SAE的病程進展[19]。
3.3 參與神經遞質失衡 神經遞質失衡與SAE發病密切相關[26]。膿毒癥期間,活化的小膠質細胞向胞外分泌過量的谷氨酸,且功能受損的星形膠質細胞對谷氨酸的攝取減少,這導致谷氨酸在CNS中的積累,并通過興奮性神經毒性在誘導神經元凋亡中發揮作用[4,27]。乙酰膽堿(ACh)是腦內廣泛分布的調節型神經遞質,除了控制認知、情緒、注意力等功能外,還可調控巨噬細胞中的炎性因子,如IL-1β、TNF-α和IL-18的產生,發揮膽堿能抗炎作用。Ach可與小膠質細胞表達的α7煙堿型乙酰膽堿受體(α7nAChR)結合,通過調節小膠質細胞NF-κB信號傳導來抑制炎性因子的產生,緩解神經炎癥[28-29]。脂多糖(LPS)外源給藥是一種常用的膿毒癥動物模型建立方法,被廣泛用于SAE的研究中[30]。乙酰膽堿酯酶(AChE)是催化ACh分解的主要膽堿酯酶,受LPS刺激的小膠質細胞內AChE表達上調,通過催化ACh分解,逆轉了小膠質細胞中ACh的抗炎效用,從而使小膠質細胞無法正常發揮膽堿能抗炎功能[29]。
3.4 影響突觸可塑性 活化的小膠質細胞可能以誘導突觸損傷的方式,在即使沒有明顯神經元死亡的情況下誘發認知障礙[31]。突觸后密度-95(PSD-95)蛋白是一種突觸后蛋白,參與突觸可塑性,其表達抑制與認知障礙密切相關[32]。但也有研究顯示其在海馬神經元中的過表達可以增強突觸后谷氨酸受體的活性,驅動谷氨酸能突觸的成熟,增加樹突棘的復雜度并協調突觸發育,在突觸穩定和可塑性中起重要作用[33]。蛋白質印跡實驗結果顯示,膿毒癥期間小鼠海馬PSD-95的表達降低,這可能與小膠質細胞活化介導的神經炎癥以及其對PSD-95的吞噬作用有關[31-32],提示小膠質細胞的異常激活與突觸可塑性降低誘發的認知障礙有關。
4 小膠質細胞在治療SAE中的應用前景
小膠質細胞的異常激活作為SAE發展的核心環節,有望成為膿毒癥有效的治療靶點。TLR4作為一種免疫識別受體,在LPS處理的小膠質細胞中高度表達。TLR4通過促進NF-κB復合物的活化參與NLRP3和IL-β基因轉錄等下游分子事件。下調TLR4的表達可抑制NF-κB的活化以改善神經炎癥[34]。小膠質細胞中的NLRP3炎癥小體作為應對組織損傷的先天免疫反應的關鍵組成部分,介導IL-1β、IL-18等炎性因子的產生。通過抑制NLRP3/IL-1β/IL-18軸減弱小膠質細胞激活,可緩解認知功能障礙[35]。MCC950是一種有效的選擇性小分子NLRP3抑制劑,可阻斷NLRP3活化,改善BBB損傷,減輕因小膠質細胞過度激活誘發的神經炎癥[36]。趨化因子受體5(CXCR5)是趨化因子CXCL13的唯一已知受體,可通過增強p38絲裂原活化蛋白激酶(p38MAPK)/NF-κB/信號轉導和轉錄激活因子3(STAT3)信號傳導來促進膿毒癥患者認知障礙,敲低小膠質細胞的CXCR5基因表達可以部分逆轉LPS誘導激活的p38MAPK/NF-κB/STAT3信號通路,緩解SAE[37]。在小膠質細胞上表達的2型髓系細胞觸發受體(TREM2)可介導小膠質細胞M1表型向M2表型轉化,是神經炎癥的新型潛在治療靶點[38]。在LPS誘導的膿毒癥模型中,TREM2的表達顯著降低,而IFN-β可通過上調TREM2的表達以改變小膠質細胞的極化狀態,從而改善LPS誘導的神經炎癥[11]。
5 小結與展望
SAE是一種主要由膿毒癥引起的彌散性腦功能障礙,BBB損傷、氧化應激、小膠質細胞異常激活、神經遞質異常、突觸可塑性被破壞等病理機制均參與SAE的發生,其中由小膠質細胞異常激活引起的自身功能表型的轉變介導的神經炎癥在SAE病理進程中發揮重要作用。研究表明,小膠質細胞異常激活與其代謝重編程有關,特別與其有氧糖酵解增加密切相關[39]。抑制糖酵解可以改善小膠質細胞活化引起的神經炎癥,這有望作為SAE的潛在治療策略[40]。深入探究小膠質細胞異常激活與SAE的關系,研發小膠質細胞活性的靶向調節藥物并應用于臨床,可能為SAE的治療提供新的方法和途徑。
參考文獻
[1] LIU D,HUANG S Y,SUN J H,et al. Sepsis-induced immunosuppression:mechanisms,diagnosis and current treatment options[J]. Mil Med Res,2022,9(1):56. doi:10.1186/s40779-022-00422-y.
[2] MORAES C A,ZAVERUCHA-DO-VALLE C,FLEURANCE R,et al. Neuroinflammation in sepsis:molecular pathways of microglia activation[J]. Pharmaceuticals(Basel),2021,14(5):416. doi:10.3390/ph14050416.
[3] YAN X,YANG K,XIAO Q,et al. Central role of microglia in sepsis-associated encephalopathy:from mechanism to therapy[J]. Front Immunol,2022,13:929316. doi:10.3389/fimmu.2022.929316.
[4] CATARINA A V,BRANCHINI G,BETTONI L,et al. Sepsis-associated encephalopathy:from pathophysiology to progress in experimental studies[J]. Mol Neurobiol,2021,58(6):2770-2779. doi:10.1007/s12035-021-02303-2.
[5] HEMING N,MAZERAUD A,VERDONK F,et al. Neuroanatomy of sepsis-associated encephalopathy[J]. Crit Care,2017,21(1):65. doi:10.1186/s13054-017-1643-z.
[6] BARICHELLO T,GIRIDHARAN V V,CATAL?O C,et al. Neurochemical effects of sepsis on the brain[J]. Clin Sci(Lond),2023,137(6):401-414. doi:10.1042/CS20220549.
[7] KANG R,GAMDZYK M,LENAHAN C,et al. The dual role of microglia in blood-brain barrier dysfunction after stroke[J]. Curr Neuropharmacol,2020,18(12):1237-1249. doi:10.2174/1570159X18666200529150907.
[8] BORST K,DUMAS A A,PRINZ M. Microglia:immune and non-immune functions[J]. Immunity,2021,54(10):2194-2208. doi:10.1016/j.immuni.2021.09.014.
[9] BENNETT M L,BENNETT F C. The influence of environment and origin on brain resident macrophages and implications for therapy[J]. Nat Neurosci,2020,23(2):157-166. doi:10.1038/s41593-019-0545-6.
[10] LI Y F,REN X,ZHANG L,et al. Microglial polarization in TBI:signaling pathways and influencing pharmaceuticals[J]. Front Aging Neurosci,2022,14:901117. doi:10.3389/fnagi.2022.901117.
[11] QIU Z,WANG H,QU M,et al. Consecutive injection of high-dose lipopolysaccharide modulates microglia polarization via TREM2 to alter status of septic mice[J]. Brain Sci,2023,13(1):126. doi:10.3390/brainsci13010126.
[12] FAIRLEY L H,LAI K O,WONG J H,et al. Mitochondrial control of microglial phagocytosis by the translocator protein and hexokinase 2 in Alzheimer's disease[J]. Proc Natl Acad Sci U S A,2023,120(8):e2209177120. doi:10.1073/pnas.2209177120.
[13] 莊欣琪,謝克亮,于泳浩,等. 小膠質細胞與膿毒癥腦病的研究進展 [J]. 天津醫藥,2020,48(4):338-342. ZHUANG X Q,XIE K L,YU Y H,et al. Advances in research on microglia and sepsis associated encephalopathy[J] Tianjin Med J,2020,48(4):338-342. doi:10.11958/20193358.
[14] PENG W,TAN C,MO L,et al. Glucose transporter 3 in neuronal glucose metabolism:health and diseases[J]. Metabolism,2021,123:154869. doi:10.1016/j.metabol.2021.154869.
[15] DE SOUZA STORK S,H?BNER M,BIEHL E,et al. Diabetes exacerbates sepsis-induced neuroinflammation and brain mitochondrial dysfunction[J]. Inflammation,2022,45(6):2352-2367. doi:10.1007/s10753-022-01697-y.
[16] GU M,MEI X L, ZHAO Y N. Sepsis and cerebral dysfunction:BBB damage,neuroinflammation,oxidative stress,apoptosis and autophagy as key mediators and the potential therapeutic approaches[J]. Neurotox Res,2021,39(2):489-503. doi:10.1007/s12640-020-00270-5.
[17] ZHANG B,PAN C,FENG C,et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep,2022,27(1):45-52. doi:10.1080/13510002.2022.2046423.
[18] RAUF A,BADONI H,ABU-IZNEID T,et al. Neuroinflammatory markers:key indicators in the pathology of neurodegenerative diseases[J]. Molecules,2022,27(10):3194. doi:10.3390/molecules27103194.
[19] GAO Q,HERNANDES M S. Sepsis-associated encephalopathy and blood-brain barrier dysfunction[J]. Inflammation,2021,44(6):2143-2150. doi:10.1007/s10753-021-01501-3.
[20] VAN DER POLL T,SHANKAR-HARI M,WIERSINGA W J. The immunology of sepsis[J]. Immunity,2021,54(11):2450-2464. doi:10.1016/j.immuni.2021.10.012.
[21] LI Y,YIN L,FAN Z,et al. Microglia:a potential therapeutic target for sepsis-associated encephalopathy and sepsis-associated chronic pain[J]. Front Pharmacol,2020,11:600421. doi:10.3389/fphar.2020.600421.
[22] TIEGS G,HORST A K. TNF in the liver:targeting a central player in inflammation[J]. Semin Immunopathol,2022,44(4):445-459. doi:10.1007/s00281-022-00910-2.
[23]CASTRO L V G,GON?ALVES-DE-ALBUQUERQUE C F,SILVA A R. Polarization of microglia and its therapeutic potential in sepsis[J]. Int J Mol Sci,2022,23(9):4925. doi:10.3390/ijms23094925.
[24] LI R,ZHOU Y,ZHANG S,et al. The natural(poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke[J]. Eur J Pharmacol,2022,914:174660. doi:10.1016/j.ejphar.2021.174660.
[25] MUNOZ PINTO M F,CAMPBELL S J,SIMOGLOU KARALI C,et al. Selective blood-brain barrier permeabilization of brain metastases by a type 1 receptor-selective tumor necrosis factor mutein[J]. Neuro Oncol,2022,24(1):52-63. doi:10.1093/neuonc/noab177.
[26] TANG C,JIN Y,WANG H. The biological alterations of synapse/synapse formation in sepsis-associated encephalopathy[J]. Front Synaptic Neurosci,2022,14:1054605. doi:10.3389/fnsyn.2022.1054605.
[27] IOVINO L,TREMBLAY M E,CIVIERO L. Glutamate-induced excitotoxicity in Parkinson's disease:the role of glial cells[J]. J Pharmacol Sci,2020,144(3):151-164. doi:10.1016/j.jphs.2020.07.011.
[28] PIOVESANA R,SALAZAR INTRIAGO M S,DINI L,et al. Cholinergic modulation of neuroinflammation:focus on α7 nicotinic receptor[J]. Int J Mol Sci,2021,22(9):4912. doi:10.3390/ijms22094912.
[29] XIA Y,WU Q,MAK S,et al. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells[J]. FASEB J,2022,36(3):e22189. doi:10.1096/fj.202101302RR.
[30] QIN M,GAO Y,GUO S,et al. Establishment and evaluation of animal models of sepsis-associated encephalopathy [J]World J Emerg Med,2023,14(5):349-353. doi:10.5847/wjem.j.1920-8642.2023.088.
[31] WANG C,LI H,CHEN C,et al. High-fat diet consumption induces neurobehavioral abnormalities and neuronal morphological alterations accompanied by excessive microglial activation in the medial prefrontal cortex in adolescent mice[J]. Int J Mol Sci,2023,24(11):9394. doi:10.3390/ijms24119394.
[32] ZONG M M,ZHOU Z Q,JI M H,et al. Activation of β2-adrenoceptor attenuates sepsis-induced hippocampus-dependent cognitive impairments by reversing neuroinflammation and synaptic abnormalities[J]. Front Cell Neurosci,2019,13:293. doi:10.3389/fncel.2019.00293.
[33] EL-HUSSEINI A E,SCHNELL E,CHETKOVICH D M,et al. PSD-95 involvement in maturation of excitatory synapses[J]. Science,2000,290(5495):1364-1368. doi:10.1126/science.290.5495.1364.
[34] WU H,WANG Y,FU H,et al. Maresin1 ameliorates sepsis-induced microglial neuritis induced through blocking TLR4-NF-κB-NLRP3 signaling pathway[J]. J Pers Med,2023,13(3):534. doi:10.3390/jpm13030534.
[35] LUO X Y,YING J H,WANG Q S. miR-25-3p ameliorates SAE by targeting the TLR4/NLRP3 axis[J]. Metab Brain Dis,2022,37(6):1803-1813. doi:10.1007/s11011-022-01017-1.
[36] BAKHSHI S,SHAMSI S. MCC950 in the treatment of NLRP3-mediated inflammatory diseases:latest evidence and therapeutic outcomes[J]. Int Immunopharmacol,2022,106:108595. doi:10.1016/j.intimp.2022.108595.
[37] SHEN Y,ZHANG Y,DU J,et al. CXCR5 down-regulation alleviates cognitive dysfunction in a mouse model of sepsis-associated encephalopathy: potential role of microglial autophagy and the p38MAPK/NF-κB/STAT3 signaling pathway[J]. J Neuroinflammation,2021,18(1):246. doi:10.1186/s12974-021-02300-1.
[38] LIU W,TASO O,WANG R,et al. Trem2 promotes anti-inflammatory responses in microglia and is suppressed under pro-inflammatory conditions[J]. Hum Mol Genet,2020,29(19):3224-3248. doi:10.1093/hmg/ddaa209.
[39] BERNIER L P,YORK E M,MACVICAR B A. Immunometabolism in the brain:how metabolism shapes microglial function[J]. Trends Neurosci,2020,43(11):854-869. doi:10.1016/j.tins.2020.08.008.
[40] CHENG J,ZHANG R,XU Z,et al. Early glycolytic reprogramming controls microglial inflammatory activation[J]. J Neuroinflammation,2021,18(1):129. doi:10.1186/s12974-021-02187-y.
(2023-11-10收稿 2023-11-24修回)
(本文編輯 李志蕓)