摘要:N-甲基-D-天冬氨酸(NMDA)受體是一種介導興奮性神經遞質傳遞的離子型谷氨酸受體。NMDA受體主要由7個亞基(NR1、NR2A、NR2B、NR2C、NR2D、NR3A、NR3B)組成。疼痛是一種由實際或潛在的組織損傷導致的不愉快的感覺和情緒體驗。NMDA受體NR2B亞基參與大腦皮質區的疼痛信號傳遞和表達,在中樞敏化、痛覺過敏和突觸的可塑性中有著重要的意義。NR2B亞基在中樞神經系統的過度表達與疼痛的形成密切相關,本文就NMDA受體NR2B亞基在疼痛形成中的作用機制作一綜述,以期為疼痛的藥物治療帶來新思路。
關鍵詞:NR2B亞基;NMDA受體;疼痛
中圖分類號:R441.1;R34" " " " " " " " " " " " " " " "文獻標識碼:A" " " " " " " " " " " " " " DOI:10.3969/j.issn.1006-1959.2023.07.038
文章編號:1006-1959(2023)07-0184-05
The Mechanism of NMDA Receptor NR2B Subunit in Pain Formation
ZHANG Ru-xin1,GAO Qiang2,ZHENG Xiang-de2
(1.Department of Clinical Medicine,North Sichuan Medical College,Nanchong 637000,Sichuan,China;
2.Department of Intensive Care Medicine,Dazhou Central Hospital,Dazhou 635000,Sichuan,China)
Abstract:The N-methyl-D-aspartate (NMDA) receptor is an ionotropic glutamate receptor that mediates excitatory neurotransmitter transmission. The NMDA receptor is composed of seven main subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A, NR3B). Pain is an unpleasant sensory and emotional experience caused by actual or potential tissue damage.T he NMDA receptor NR2B subunit is involved in pain signaling and expression in the cerebral cortex area, which has important significance in central sensitization, hyperalgesia and synaptic plasticity. The overexpression of NR2B subunits in the central nervous system is closely related to the formation of pain, and this article reviews the mechanism of NMDA receptor NR2B subunits in pain formation, in order to bring new ideas for the drug treatment of pain.
Key words:NR2B subunit;NMDA receptor;Pain
谷氨酸是中樞神經系統主要的興奮性氨基酸神經遞質,谷氨酸受體(glutamate receptors,GluRs)通過不同的膜受體、離子型受體和代謝型受體發揮其突觸后效應[1],其中離子型受體主要分為α-氨基-3羥基-5甲基-4異惡唑(α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid,AMPA)受體、N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)受體和海人藻酸(kainic acid,KA)受體。NMDA受體通過激活大腦前扣帶皮層和島狀皮層等一些皮質區的長時程增強效應(long-term potentiation,LTP)和長時程抑制效應來產生和維持疼痛[2]。NMDA受體NR2B亞基參與了中樞神經系統的痛覺傳遞和疼痛調節,NR2B亞基功能和表達在疼痛的形成中發揮了關鍵作用[3]。本文主要對NMDA受體NR2B亞基在疼痛形成中的作用機制進行綜述,以期為疼痛的藥物治療提供新思路。
1 NMDA受體概述
NMDA受體是一種傳遞興奮性遞質的配體門控離子型通道。目前已確定有3種不同的亞基參與NMDA受體的形成,包括:GluN1亞基、4個不同的GluN2亞基(NR2A、NR2B、NR2C、NR2D)以及2個GluN3亞基(NR3A、NR3B)。在大腦中,多數NMDA受體是由2個GluN1亞基和2個GluN2亞基和/或2個GluN3亞基組成的異源四聚體復合物。在神經發育的過程中,不同NMDA受體通道的生理特性,由不同亞基的組合決定[4]。NMDA受體具有與其他配體門控離子通道相區別的生理特性:①NMDA受體所含的陽離子通道,對單價離子和Ca2+具有高通透性;②通過谷氨酸和甘氨酸(激動劑)同時與GluN1和GluN2亞基結合而被激活;③在靜息電位下,NMDA受體通道被胞外的Mg2+阻斷[1]。NMDA受體一般在大腦皮層參與突觸間的傳遞。突觸前細胞釋放的興奮性遞質谷氨酸和甘氨酸等激動劑與突觸后NMDA受體結合的同時,突觸后膜以電壓依賴的方式發生去極化,細胞外阻斷受體通道的Mg2+被移除,Ca2+通過受體通道進入突觸后細胞,興奮突觸后神經元,傳導細胞信號,參與突觸可塑性調節和維持[5]。在人類感覺和認知的研究中[5,6],大腦前扣帶皮層、前額葉皮層等皮質區與慢性疼痛、疼痛的調節和疼痛相關的情緒密切相關,突觸后細胞Ca2+的內流是激活LTP和LTD的必要條件,而皮質區的LTP/LTD激活與突觸可塑性和疼痛相關,因此,NMDA受體在突觸的可塑性和疼痛的形成和調節中發揮著重要作用。除此之外,NMDA受體還參與學習、長期記憶等重要生理功能[7]。
2 NR2B亞基的結構與分布
NMDA受體亞基主要由4個半獨立的結構域組成,即細胞外N端結構域(N-terminal domain,NTD)、激動劑或配體結合結構域(agonist or ligand-binding domain,ABD)、跨膜結構域(transmembrane domain,TMD)和細胞內C端結構域(C-terminal domain,CTD)組成[8,9]。其中,ABD是由多肽鏈S1和S2組成的腎形雙葉結構,包含一個上葉(D1)和一個下葉(D2),激動劑和配體的結合位點位于上下葉之間的裂隙[10]。TMD由3個跨膜螺旋結構域(M1、3、4)和一個再入環的孔形結構域(M2)組成,M3結構域參與受體通道的胞外區域的形成,M2結構域則參與胞內區域。在M2結構域的尖端存在一個離子滲透的關鍵位點,即QRN位點,它對Ca2+通透性和Mg2+敏感性至關重要[8,11]。NR2B亞基結構較大,由1484個氨基酸組成,分子質量為170~180 KDa[12],在成人腦組織中主要在前腦區域表達,特別是在海馬體、大腦皮層和丘腦等區域。NR2B亞基的分布與表達于生長發育有關,在胚胎形成的第17天,NR2B亞基mRNA在大腦皮層、丘腦和脊髓都有高水平的表達,早期NR2B亞基mRNA表達處于較低水平,隨著胚胎的發育逐漸豐富。在出生時前腦的NMDA受體主要由NR1和NR2B亞基組成。胎兒出生后NR2A亞基的表達逐漸增加,同時NR2B亞基的表達一直維持在高水平,直到胎兒出生后的第7天在海馬體達到峰值,NR2B亞基的表達在新生兒皮層占主導地位,在海馬體和下丘腦表達水平較低[4,13]。
3 NR2B亞基在疼痛形成中的作用機制
國際疼痛協會(International Pain Association,IASP)將疼痛定義為一種由實際或潛在的組織損傷導致的不愉快的感覺和情緒體驗。脊髓和大腦中疼痛相關神經元的敏感化是形成疼痛的重要原因,中樞敏化常表現為痛覺過敏,即傳入低強度刺激時產生疼痛,且疼痛幅度和持續時間增加,是一種脊髓背角興奮性增加的狀態。中樞敏化主要發生在三叉神經尾狀核的次級神經元,NMDA受體及其NR2B亞基在中樞敏化中起到關鍵作用[1,14-16]。中樞敏化與突觸傳遞效率的增加有關,興奮性突觸傳遞的增強,受體通道大量開放,興奮性突觸后電位增加,即為突觸的可塑性增強。NR2B亞基在疼痛的形成的機制是多種因素相互作用的結果,以下就NR2B亞基參與中樞敏化、突觸的可塑性的形式具體進行綜述。
3.1 NR2B/PSD-95" 突觸后密度蛋白-95(postsynaptic density protein-95,PSD-95)是一種支架蛋白,在神經元突觸的形成、分化、重塑和成熟中發揮著重要作用,它包含3個PSD-95/Dlg/ZO1(PDZ)結構域。NR2B亞基的C端與PSD-95第2個PDZ結構域的N端結合,形成了能介導興奮性信號傳導的信號蛋白復合物PSD-95/NR2B并固定在突觸后膜[17]。PSD-95/NR2B參與和調節NMDA受體下游興奮性信號的傳遞,在中樞敏化與痛覺信號的傳導過程中起到重要作用。Xu F等[18]采用背根神經節壓迫模型來模擬大鼠的坐骨神經痛,使用特異性拮抗劑Myr-NR2B9c阻斷NR2B亞基與PSD-95結合,使鈣/鈣蛋白依賴性蛋白激酶Ⅱ(CaMKⅡ)和cAMP反映元件結合蛋白(CREB)信號通路失活,脊髓中的疼痛相關蛋白下調來緩解疼痛。Zhu YB等[19]在Ⅱ型糖尿病神經病理性疼痛的大鼠模型中,鞘內注射Ro25-6981(NR2B亞基的特異性拮抗劑)或Tat-NR2B9c(一種破壞PSD-95與NR2B亞基相互作用的肽類)可抑制NR2B亞基和蛋白激酶的磷酸化,產生鎮痛作用。
傷害性刺激通過痛覺感受器轉化為信號,刺激無髓神經纖維(C纖維)傳入中樞神經系統,位于脊髓背角的突觸釋放神經遞質谷氨酸與NMDA受體結合,導致Ca2+內流[20],Ca2+的流入和細胞內Ca2+的過載導致觸發離子通道附近的神經遞質一氧化氮合酶(neurotransmitter nitric oxide synthase,nNOS)磷酸化[18]。NR2B亞基可以通過PSD-95與nNOS連接,形成NR2B/PSD-95/nNOS復合物,該復合物的主要生物學作用是催化合成一氧化氮(NO)、活性氧和高活性的硝基化合物等有害物質,累積的NO促進ATP敏感性(KATP)通道介導的電流上調,加速痛覺神經元的超級化[21]。NO是LTP的逆行信使,它可以穿過突觸間隙,與突觸前神經元的鳥氨酸環化酶(cGMPase)耦聯受體結合,從而促使環磷酸鳥苷(cyslicguanosine monophosphate,cGMP)釋放,cGMP可通過蛋白激酶促進蛋白質磷酸化,導致突觸前囊泡外分泌和遞質釋放,在LTP的誘導和維持下發揮關鍵作用。
NR2B亞基對于受體在突觸內和突觸外部位的定位非常重要,它將受體固定在膜上,并將受體與調節受體功能的特定細胞內信號機制聯系起來,NR2B亞基C端結構域的最后5個殘基被認為對與PSD-95的PDZ結構域結合很重要,因此,對多蛋白信號復合物的形成至關重要。NR2B亞基是PSD部分中最突出的酪氨酸磷酸化蛋白。此外,有研究表明PSD-95與NR2B亞基的耦聯還可以誘導NR2B亞基的磷酸化,導致突觸可塑性增加和疼痛超敏性增強[22]。
3.2 NR2B與LTP" 突觸的可塑性可以在疼痛、學習、記憶和藥物成癮等方面起到關鍵作用[23]。LTP作為突觸可塑性的一種重要表現形式,即相同的神經元同時激活并相互作用時,突觸傳遞的效率持續增加[20]。通過通道動力學的電生理測量發現,含有NR2B亞基的受體比含有NR2A亞基的受體脫敏更慢,恢復時間更長,從而增加了通道開放的時間,增加NMDA受體的激活。NR2B亞基激活海馬體LTP形成長期記憶,在前扣帶皮層則參與疼痛觸發的皮層興奮性和突觸可塑性的變化。當脊髓背角及皮質區(如前扣帶皮層、島狀皮層、前額葉皮層等)的NMDA受體在被激活后,通過突觸前谷氨酸釋放增加和突觸后AMPA受體介導的反應增效來誘導LTP[2]。
脊髓背角C纖維突觸的LTP被認為是病理性疼痛的突觸模型,可以由周圍神經的傷害性刺激或脊髓背角分子通路的操縱引起,而不激活突觸前成分,導致人類和動物持久的病理性疼痛[24]。突觸后Ca2+的上升,NMDA受體通道的通過Ca2+量除了與脊髓背角的中樞敏化相關外,還對神經元突觸的可塑性至關重要[25],谷氨酸與突觸后NMDA受體結合的同時,突觸后膜發生去極化,細胞外阻斷受體通道的Mg2+被移除,Ca2+從胞內轉移到胞外并通過受體通道進入突觸后細胞,激活胞內的信號分子,如:鈣調蛋白(CaM)、蛋白激酶A(PKA)、腺苷酸環化酶1(AC1)、環磷酰胺(cAMP)等,這些信號蛋白是絲氨酸/蘇氨酸以及酪氨酸磷酸化的位點的底物,它們之間的相互作用增強了突觸可塑性[26]。LTP的維持分為2個階段:早期階段(lt;3 h)和晚期階段(gt;3 h)。早期LTP是依賴對現有蛋白質的共價修飾來維持的,包括激活PKA、蛋白激酶C(PKC)、CaMKII、磷脂酶C(PLC)和釋放NO;而晚期LTP需要從頭合成蛋白質,如:激活的多巴胺D1受體、PKA、腦源性神經營養因子(brainderived neurotrophic factor,BDNF)或ATP直接誘導晚期LTP[24]。
3.3 NR2B亞基磷酸化" NR2B亞基是大腦最重要的酪氨酸磷酸化蛋白之一,酪氨酸激酶Fyn是src家族酪氨酸激酶(src-family tyrosine kinases,SFKs)的重要成員。NR2B的酪氨酸磷酸化(tyrosine phosphorylation of NR2B,NR2B-ptry)是指酪氨酸激酶Fyn對NR2B亞基的酪氨酸進行磷酸化,NR2B亞基含有3個磷酸化位點:Y1252、Y1336和Y1472,其中Y1472是主要的磷酸化位點[27,28]。Chen Y等[29]在腸易激綜合征大鼠模型中發現NR2B亞基的活性主要由酪氨酸激酶調節,選擇性拮抗NR2B亞基,大鼠內臟疼痛的敏感性和高頻刺激誘導的LTP顯著下降。NR2B-ptry還可以參與大鼠BDNF誘導的脊髓LTP和疼痛超敏反應[30]。此外,NR2B-ptry還可歸因于LTP的誘導和突觸可塑性的維持,它有助于中樞敏化和脊髓持續性疼痛的發展,Y1472位點的磷酸化在突觸的可塑性中起關鍵作用[31]。
NR2B-ptry導致通過NMDA受體的Ca2+增加,傳遞興奮性信號,使突觸相關蛋白,如PSD-95、突觸素(synaptophysin,Syp)、突觸結合蛋白-1(synaptotagmin-1,Syt-1)的表達上調,PSD-95可以介導Fyn和NR2B亞基間的相互作用,甚至改變突觸超微結構和樹突棘數量,增加突觸的可塑性。Xu Y等[32]發現在膠原誘導的類風濕性關節炎的小鼠模型中,小鼠出現明顯機械性超敏反應時,NR2B亞基的表達水平和NR2B在Y1472的磷酸化水平都增加。細胞外信號調節蛋白激酶2(extracellular signal-regulated protein kinases 2,ERK2)在NR2B亞基表達時同步激活,它的活性受到NR2B亞基的調控。Guo W等[33]在測量了炎癥大鼠模型的NR2B-ptry水平,相較于對照組,足底注射弗氏佐劑誘導產生炎癥和痛覺過敏的大鼠,其NR2B-ptry水平迅速增高。有研究發現[34],在慢性偏頭痛大鼠模型中,NR2B-ptry參與大鼠的偏頭痛的形成,表現為疼痛的放大效應和疼痛閾值的降低,而阻斷NR2B-ptry可下調PSD-95、P物質等的表達,抑制NR2B-ptry調節突觸可塑性參與中樞敏化,對偏頭痛發作有保護作用。
4總結
NMDA受體NR2B亞基從多方面參與了疼痛的形成,對疼痛及其在突觸間的傳遞起重要作用。NMDA受體不僅參與疼痛形成的生理過程,還與中樞神經系統其他重要的生理過程(學習、記憶)相關。因此,現有的NMDA受體拮抗劑如氯胺酮、美沙酮等,雖鎮痛效果良好,但會產生噩夢、幻覺、譫妄等精神神經系統副作用。而針對NMDA受體NR2B亞基進行選擇性拮抗,則可以在有效鎮痛的同時,減少副作用。關于NR2B亞基在疼痛形成中的更多機制還有待研究,但選擇性拮抗NR2B亞基很可能成為藥物治療疼痛的一個可行性策略。
參考文獻:
[1]Petrenko AB,Yamakura T,Baba H,et al.The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review[J].Anesth Analg,2003,97(4):1108-1116.
[2]Bliss TV,Collingridge GL,Kaang BK,et al.Synaptic plasticity in the anterior cingulate cortex in acute and chronic pain[J].Nat Rev Neurosci,2016,17(8):485-496.
[3]Yang JX,Hua L,Li YQ,et al.Caveolin-1 in the anterior cingulate cortex modulates chronic neuropathic pain via regulation of NMDA receptor 2B subunit[J].J Neurosci,2015,35(1):36-52.
[4]Chou TH,Tajima N,Romero-Hernandez A,et al.Structural Basis of Functional Transitions in Mammalian NMDA Receptors[J].Cell,2020,182(2):357-371.e13.
[5]Chen QY,Li XH,Zhuo M.NMDA receptors and synaptic plasticity in the anterior cingulate cortex[J].Neuropharmacology,2021,197:108749.
[6]Banks PJ,Bashir ZI.NMDARs in prefrontal cortex - Regulation of synaptic transmission and plasticity[J].Neuropharmacology,2021,192:108614.
[7]Wideman CE,Nguyen J,Jeffries SD,et al.Fluctuating NMDA Receptor Subunit Levels in Perirhinal Cortex Relate to Their Dynamic Roles in Object Memory Destabilization and Reconsolidation[J].Int J Mol Sci,2020,22(1):67.
[8]Hedegaard M,Hansen KB,Andersen KT,et al.Molecular pharmacology of human NMDA receptors[J].Neurochem Int,2012,61(4):601-609.
[9]Tian M,Stroebel D,Piot L,et al.GluN2A and GluN2B NMDA receptors use distinct allosteric routes[J].Nat Commun,2021,12(1):4709.
[10]Hansen KB,Yi F,Perszyk RE,et al.Structure, function, and allosteric modulation of NMDA receptors[J].J Gen Physiol,2018,150(8):1081-1105.
[11]Wollmuth LP.Ion permeation in ionotropic glutamate receptors:Still dynamic after all these years[J].Curr Opin Physiol,2018,2:36-41.
[12]Chaffey H,Chazot PL.NMDA receptor subtypes: Structure, function and therapeutics[J].Current Anaesthesia amp; Critical Care,2008,19(4):183-201.
[13]Peyvandi Karizbodagh M,Sadr-Nabavi A,Hami J,et al.Developmental regulation and lateralization of N-methyl-d-aspartate (NMDA) receptors in the rat hippocampus[J].Neuropeptides,2021,89:102183.
[14]Ji RR,Nackley A,Huh Y,et al.Neuroinflammation and Central Sensitization in Chronic and Widespread Pain[J].Anesthesiology,2018,129(2):343-366.
[15]Finnerup NB,Kuner R,Jensen TS.Neuropathic Pain: From Mechanisms to Treatment[J].Physiol Rev,2021,101(1):259-301.
[16]García-Magro N,Negredo P,Martin YB,et al.Modulation of mechanosensory vibrissal responses in the trigeminocervical complex by stimulation of the greater occipital nerve in a rat model of trigeminal neuropathic pain[J].J Headache Pain,2020,21(1):96.
[17]Wang Z,Chen Z,Yang J,et al.Treatment of secondary brain injury by perturbing postsynaptic density protein-95-NMDA receptor interaction after intracerebral hemorrhage in rats[J].J Cereb Blood Flow Metab,2019,39(8):1588-1601.
[18]Xu F,Zhao X,Liu L,et al.Perturbing NR2B-PSD-95 interaction relieves neuropathic pain by inactivating CaMKII-CREB signaling[J].Neuroreport,2017,28(13):856-863.
[19]Zhu YB,Jia GL,Wang JW,et al.Activation of CaMKII and GluR1 by the PSD-95-GluN2B Coupling-Dependent Phosphorylation of GluN2B in the Spinal Cord in a Rat Model of Type-2 Diabetic Neuropathic Pain[J].J Neuropathol Exp Neurol,2020,79(7):800-808.
[20]Bill M,John P.Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain[J].Pain Med,2019,20(12):2421-2437.
[21]Cunha TM,Roman-Campos D,Lotufo CM,et al.Morphine peripheral analgesia depends on activation of the PI3Kgamma/AKT/nNOS/NO/KATP signaling pathway[J].Proc Natl Acad Sci USA,2010,107(9):4442-4447.
[22]D'Mello R,Marchand F,Pezet S,et al.Perturbing PSD-95 interactions with NR2B-subtype receptors attenuates spinal nociceptive plasticity and neuropathic pain[J].Mol Ther,2011,19(10):1780-1792.
[23]Yu H,Ma L,Liu D,et al.Involvement of NMDAR/PSD-95/nNOS-NO-cGMP pathway in embryonic exposure to BPA induced learning and memory dysfunction of rats[J].Environ Pollut,2020,266(Pt 1):115055.
[24]Liu XG,Zhou LJ.Long-term potentiation at spinal C-fiber synapses: a target for pathological pain[J].Curr Pharm Des,2015,21(7):895-905.
[25]Latremoliere A,Woolf CJ.Central sensitization: a generator of pain hypersensitivity by central neural plasticity[J].J Pain,2009,10(9):895-926.
[26]Chen BS,Roche KW.Regulation of NMDA receptors by phosphorylation[J].Neuropharmacology,2007,53(3):362-368.
[27]Wang XY,Zhou HR,Wang S,et al.NR2B-Tyr phosphorylation regulates synaptic plasticity in central sensitization in a chronic migraine rat model[J].J Headache Pain,2018,19(1):102.
[28]Waters EM,Mazid S,Dodos M,et al.Effects of estrogen and aging on synaptic morphology and distribution of phosphorylated Tyr1472 NR2B in the female rat hippocampus[J].Neurobiol Aging,2019,73:200-210.
[29]Chen Y,Chen AQ,Luo XQ,et al.Hippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain[J].Brain Res,2014,1570:43-53.
[30]Li S,Cai J,Feng ZB,et al.BDNF Contributes to Spinal Long-Term Potentiation and Mechanical Hypersensitivity Via Fyn-Mediated Phosphorylation of NMDA Receptor GluN2B Subunit at Tyrosine 1472 in Rats Following Spinal Nerve Ligation[J].Neurochem Res,2017,42(10):2712-2729.
[31]Lu W,Fang W,Li J,et al.Phosphorylation of Tyrosine 1070 at the GluN2B Subunit Is Regulated by Synaptic Activity and Critical for Surface Expression of N-Methyl-D-aspartate (NMDA) Receptors[J].J Biol Chem,2015,290(38):22945-22954.
[32]Xu Y,Zhang K,Miao J,et al.The spinal NR2BR/ERK2 pathway as a target for the central sensitization of collagen-induced arthritis pain[J].PLoS One,2018,13(7):e0201021.
[33]Guo W,Zou S,Guan Y,et al.Tyrosine phosphorylation of the NR2B subunit of the NMDA receptor in the spinal cord during the development and maintenance of inflammatory hyperalgesia[J].J Neurosci,2002,22(14):6208-6217.
[34]Liang X,Wang S,Qin G,et al.Tyrosine Phosphorylation of NR2B Contributes to Chronic Migraines via Increased Expression of CGRP in Rats[J].Biomed Res Int,2017,2017:7203458.
收稿日期:2023-02-08;修回日期:2023-02-24
編輯/王萌
基金項目:臨床應用研究與醫學培訓基金項目(編號:S0.20220812DZ)
作者簡介:張茹馨(1997.8-),女,四川崇州人,碩士研究生,主要從事危重癥患者鎮痛鎮靜研究
通訊作者:鄭祥德(1965.10-),男,四川達州人,本科,主任醫師,主要從事危重癥患者的診療工作