費孝桐 徐欣維 陶紅艷 孫文芮 李尚霖 魏嘉
摘要:對膽固醇的生物合成、乳酸菌的體內和體外降膽固醇特性、作用機制以及乳酸菌的應用研究進展進行綜述,為乳酸菌降解膽固醇的進一步研究與相關產品的開發應用提供科學依據。
關鍵詞:乳酸菌;降膽固醇;作用機制;應用特性目前,關于高膽固醇引發的疾病治療主要有食療、藥物控制等,但患者通常難以長期堅持且可能會有副作用的發生[1-3],因此,研發新型降膽固醇產品已經成為當下的研究熱點。乳酸菌(LAB)是一類能夠直接利用可發酵碳水化合物產生大量乳酸的無芽孢、革蘭氏陽性細菌[4],在自然界的分布非常廣泛,通常存在于肉、蔬菜和乳制品中。膽固醇是不溶于水的生物分子,膽鹽在其消化過程中起主要作用,因為它們被合成并與肝臟中的牛磺酸或甘氨酸相結合[5]。自乳酸菌發酵乳降膽固醇的作用首次報道以來[6],其作為功能性制劑降低血清膽固醇引起了廣泛關注。本文對國內外關于乳酸菌降膽固醇的作用機制及其應用研究進展進行綜述,并對研究現狀進行分析與展望,為乳酸菌降解膽固醇的進一步研究與相關產品的開發應用提供科學依據。
1乳酸菌降膽固醇的特性
降膽固醇乳酸菌的篩選通常在含有CaCO3的MRS固體培養基上培養,通過挑選具有典型性狀的溶鈣圈,在MRS液體培養基中進行分離純化[7],再將菌種接種至含有膽固醇的MRS肉湯培養基中進行高效降膽固醇菌株的篩選以及降膽固醇能力的測定[8]。
1.1乳酸菌體外降膽固醇的特性
進行體外實驗是研究乳酸菌降膽固醇作用機制的基礎,篩選出具有高效降膽固醇功效的乳酸菌可為進一步開發綠色微生態制劑奠定基礎。C.Albano[9]等在含有膽固醇和膽汁酸的培養基中測試了58種益生性乳酸菌,其中7株菌株去除率大于42%,再將其中的副干酪乳桿菌(paracasei)VC213和乳酸腸球菌(Enterococcus lactis)BT161投入奶酪生產,可以有效降低奶酪中的膽固醇含量,降解率高達23%。Dandy[10]等對來源于印度尼西亞地區的乳酸菌進行了耐酸耐膽鹽特性試驗,測試出9個分離菌株的降膽固醇能力從22.08%到68.75%不等,其中開菲爾乳桿菌(Lactobacillus kefiri)JK17的去除率最高。Bhat[11]等從母乳中分離出功能性乳酸菌,并使用多種方法對選定的乳酸菌分離株進行降膽固醇潛力測試,結果表明,分離株中的副干酪乳桿菌M5能表現出最大的膽鹽水解酶活性和更高的細胞壁粘附作用,其降解膽固醇的能力高達84.75%。一定濃度數量的有活力的乳酸菌都能起到降低膽固醇的作用,但具體功效與菌株本身的生理特性有所關聯,這就導致了菌株不同其降解膽固醇效率也會有所不同[12]。
1.2乳酸菌體內降膽固醇的特性
在體外降膽固醇乳酸菌的研究基礎上,可以進一步探究乳酸菌在體內的降膽固醇效果。研究表明益生功能性菌劑想要在人體內發揮其特異性生理功能,就必須克服人體內多種生理屏障,比如胃酸、膽鹽耐受以及胃腸道內的各種酶的消化作用[13]。Lee[14]等利用體外實驗分離出的長雙歧桿菌(Bifidobacterium longum )SPM1207喂食大鼠,持續2周后發現大鼠血清中的總膽固醇含量和低密度脂蛋白水平顯著降低,并且能夠降低有害的腸道酶活性。LIU[15]等研究發現,植物乳桿菌(Lactobacillus plantarum)LP96能使高膽固醇飲食大鼠的血清甘油三酯、總膽固醇、低密度脂蛋白膽固醇等物質含量顯著降低,并能表現出較好的抗氧化活性和改善腸道微生物群落平衡,由此推斷LP96是一種具有潛在性高效降膽固醇能力的益生菌。HEO W[16]等研究發現,植物乳桿菌LP5273有利于膽汁酸在小鼠胃腸道內的代謝,并能顯著改善患高膽固醇疾病小鼠的癥狀,也進一步證明了植物乳桿菌可用于治療和預防心血管疾病。研究結果表明,對于大多數菌株的篩選都依附于體外和體內試驗,依據實驗理論可篩選出高效降膽固醇的菌株,可為日后開發微生態制劑奠定實踐基礎,也為進一步治療高血脂、高血壓等相關心血管疾病提供實驗性治療方案[17]。
2乳酸菌體內降膽固醇作用機制
2.1膽汁鹽水解酶介導的膽汁鹽解偶聯
在宿主腸道中,乳酸菌因其膽汁鹽水解酶(bile salt hydrolase,BSH)活性而具有對抗膽鹽的抗菌作用,此外,有研究表明BSH介導膽汁鹽解偶聯過程中產生的氨基酸能被乳酸菌作為氮源或碳源再利用[18]。據Kumar[19]等報道植物乳桿菌Lp91和Lp21具有顯著高的BSH活性,每分鐘分別產生99.29、88.63nmol/mL甘氨酸,乳酸菌相較于其他益生菌表現出較高的BSH活性。結合型膽汁鹽由初級膽汁酸與甘氨酸或牛磺酸通過N-酰基酰胺鍵(C-24)結合甘氨膽酸或牛磺膽酸最終形成,易被肝腸循環吸收利用,從而引起體內膽固醇的堆積,BSH活性能導致結合型膽汁鹽解偶聯,即BSH水解甘氨酸或牛磺酸結合膽汁鹽的N-酰基酰胺鍵(C-24),去結合型膽汁鹽溶解性差,產生的游離膽汁酸通過糞便排出體外[20]。為了彌補膽汁酸的損失,作為膽汁酸前體物質的膽固醇則部分轉化為膽汁酸,從而延緩膽固醇的上升。因此,應用具有高BSH活性的益生菌是控制血清膽固醇水平的重要策略之一[21]。
2.2腸膽固醇與解偶聯膽汁鹽的共沉淀
腸內膽固醇是一種疏水性物質,需要被膽汁鹽乳化后才能被吸收,因此,膽固醇的吸收依賴于膽鹽的作用[22]。腸道中的一些乳酸菌會水解膽鹽,然而,解偶聯膽汁鹽與未解偶聯形式下的膽汁鹽相比,對膽固醇的乳化能力較弱,不能形成穩定的膠束,在酸性條件下,解偶聯膽汁鹽會被質子化,與腸內膽固醇形成共沉淀,不被宿主吸收[23]。共沉淀現象發生必不可少的因素之一是解偶聯膽汁鹽的存在,其次就是環境酸堿度。在體外乳酸菌降解膽固醇實驗中發現,BSH酶通常需要在5~6之間的酸堿度下才能發揮最大作用[24],而解偶聯膽汁鹽在低于6的酸堿度下才能形成沉淀,當環境酸堿度大于7時,膽固醇能重新溶解[25],因為腸道內生理pH值在中性和堿性之間變化,所以膽固醇與解偶聯膽汁鹽的共沉淀不會顯著降低腸道對膽固醇的吸收。
2.3膽固醇同化能力
乳酸菌的膽固醇同化能力是降低和升高的膽固醇水平的另一個重要機制,有研究表明,乳酸菌在厭氧條件下對膽固醇具有同化吸收作用。在培養基中添加膽固醇并對乳酸菌進行厭氧培養,經過一段時間后發現培養基中的膽固醇含量有所下降,破碎細胞后檢測到細胞內膽固醇含量有所增加,說明乳酸菌可以吸收膽固醇[26]。Noh[27]等將接種嗜酸乳桿菌ATCC 43121的MRS肉湯培養基和未接種的MRS肉湯培養基培養一定時長后,利用鄰苯二甲醛法[28]測定細胞中、接種及未接種的培養基中膽固醇的含量,并對數據進行對比分析得知重懸細胞中的膽固醇含量加上接種嗜酸乳桿菌ATCC 43121的MRS肉湯中的膽固醇含量大約等于未接種對照肉湯中的膽固醇含量,因此,在生長過程中,幾乎沒有膽固醇被乳桿菌降解。
乳酸菌的細胞壁、細胞膜以及細胞質對膽固醇也均具有不同程度的同化能力,有人曾使用掃描電子顯微鏡觀察到乳酸桿菌菌體有吸附膽固醇的現象[29]。在不含膽固醇的MRS肉湯培養基中生長的乳酸菌表面光滑無痕跡,而在含膽固醇的培養基中生長的乳酸菌表面粗糙有痕跡。乳酸菌菌株生長過程中胞外多糖的產生量與菌株吸收的膽固醇量之間也存在相關性,細菌細胞壁肽聚糖的組成與結構也會影響每個菌株吸收膽固醇的能力[30]。此外,由于菌株吸收膽固醇后,細胞膜仍須保持完整性和流動性,其會發生修飾化反應,導致細胞膜的拉伸強度和表面電荷發生變化,使菌株對腸腔中存在的不利條件更具抵抗力,從而防止細胞溶解的發生[31]。根據Miremadi[32]等的說法,非生長期(靜止期)或死亡的乳酸菌也具有吸收吸附膽固醇的能力,但與生長期的乳酸菌相比,其吸收量較少,因此,培養基中膽固醇濃度的降低是由于生長細胞的同化及膽固醇粘附到非生長或死亡細胞表面的結果。在乳酸菌同化膽固醇的過程中解偶聯形式的膽汁鹽起著重要作用,它能增加膜的滲透性、流動性和孔隙率,使膽固醇的摻入更加容易,從而增加了膽固醇在乳酸菌細胞膜中的吸收[33]。然而,與膽固醇共沉淀的機制不同,膽汁鹽以解偶聯的形式存在對膽固醇的同化不是必需的[34],乳酸菌能夠將培養基中的膽汁鹽結合到它們的細胞表面,與被同化的膽固醇類似,被吸附的膽汁鹽將以糞便形式被排出體外。
2.4膽固醇轉化為不溶性化合物糞甾烷醇
在腸腔中,膳食膽固醇和通過腸內膽固醇外流的內源性膽固醇都能被腸道微生物群代謝,膽固醇可被還原為不溶性化合物糞甾烷醇,少量被還原為糞甾烷酮,這些代謝物都難以被腸道吸收利用,通常隨糞便排出體外,從而降低膽固醇在腸道內的吸收率,膽固醇轉化為糞甾烷醇的效率主要是由腸道微生物群中降膽固醇細菌的活性和豐度決定的[35]。降膽固醇細菌必須含有膽固醇還原酶,才能實現膽固醇的轉化,Zanotti[36]等在乳酸菌PRL2010中鑒定出了膽固醇還原酶,與在不含膽固醇條件下培養的乳酸菌相比,含膽固醇培養基培養的乳酸菌PRL2010具有基因BBPR-0519的表達,BBPR-0519基因編碼膽固醇還原酶,該酶可將膽固醇轉化為糞甾烷醇,然而,胃腸道中的環境以及膽固醇和膽鹽存在與否,都會影響到此酶的表達和活性。
2.5抑制腸細胞中膽固醇轉運蛋白NPC1L1的表達
腸腔中的膽固醇通過多蛋白跨膜蛋白(Niemann-pick C1 like 1,NPC1L1)被吸收,Nashimoto[37]等利用非洲爪蟾卵母細胞對NPC1L1介導的膽固醇轉運特性進行了研究,與實驗細胞相比,高表達NPC1L1的Madin-Darby犬腎(MDCK)II細胞對膽固醇攝取轉運活性更強,另外,注射NPC1L1 cRNA的卵母細胞在培養5~6d后表達NPC1L1,該卵母細胞的膽固醇攝取轉運活性比注射水的卵母細胞高,此外,與注射NPC1L1 L216A cRNA的卵母細胞相比,注射NPC1L 1 L216A cRNA的卵母細胞對膽固醇的攝取顯著降低,表明NPC1L1 L216A位的亮氨酸對膽固醇轉運很重要。NPC1L1 蛋白在吸收性腸上皮細胞的頂端處可高度表達[38],而此處也正是膽固醇在小腸的吸收部位,NPC1L1轉運蛋白與膽固醇特異性結合,協助其穿過小腸,從而實現小腸對膽固醇的吸收。Yoon[39]等研究的鼠李糖乳桿菌BFE5264和植物乳桿菌NR74可以通過下調膽固醇轉運蛋白NPC1L1的表達來調控小腸對膽固醇的吸收。除此以外,ABCG5蛋白和ABCG8蛋白共同作用時也能有效達到降膽固醇的作用[40],研究發現,LXR/RXR 雜合二聚體不僅能夠下調NPC1L1 蛋白的表達[41],還能上調ABCG5/G8 蛋白的表達[42],從而促進膽固醇的排出。
3乳酸菌的應用現狀
3.1乳酸菌在食品領域的應用
在食品領域抗生素泛濫的現狀下,被認為安全、有效、環保的乳酸菌逐漸成為研究者們的探究熱點。劉雨萱[43]等研究發現,添加乳酸菌的發酵肉制品風味獨特,貯藏時間長,還可有效的降低致癌物質N-亞硝胺的積累,進而減少對人體的傷害。奶制品方面常用的發酵菌屬有雙歧桿菌屬、鏈球菌屬,其發酵產品主要有酸奶、奶酪、曲拉、酥油等。Natalya[44]等研究發現,將乳酸菌制成可食用性涂膜,用于小麥面包的表面,可有效的防治小麥面包發霉,延長其保存時間。現在微生物制劑尚未普及,乳酸菌制劑具有巨大潛力,乳酸菌可以較好的抑制腐敗菌的滋生繁殖,從而有效地延長食品的保鮮程度和貯藏時間,是一種天然、無害、有效的抑菌劑,提高農戶的經濟效益。
3.2乳酸菌在畜牧業的應用
在畜牧業生產應用中,乳酸菌可被用作飼料添加劑,能夠提高動物飼料吸收率,可有效的預防疫病的發生、促進畜禽類動物的消化吸收、維持和改善胃腸道的微生態平衡、增強動物自身免疫力等作用。在青貯飼料中,添加乳酸菌能夠明顯降低青貯飼料的pH值,改善青貯飼料的品質,提高其營養價值和動物對青貯飼料的消化率,減少動物體內腸道疾病發生的幾率[45]。張炎達[46]等發現,飼料中添加乳酸菌制劑能明顯的增加肉雞生產性能,提高肉雞體重,改善雞蛋的品質,增強機體免疫抵抗力。乳酸菌對家禽的生長性能、胴體性狀、腸道微生物群、血清生化成分、免疫參數和盲腸微生物群有極大的積極調節作用[47]。因此被廣泛應用于青貯飼料、家禽、反芻動物等實際生產。
3.3乳酸菌在醫藥領域的應用
乳酸菌分泌的細菌素具有明顯的抵抗細菌、抗腫瘤、抗癌癥等益生作用。在醫藥領域,一般是將乳酸菌制成菌劑或添加劑使用。王林康[48]等研究發現,中草藥經乳酸菌發酵并投入母豬飼養后能夠明顯縮短其排惡露,減少母豬炎癥發生幾率,這一研究成果為追求綠色、環保、無毒的養殖業提供了理論基礎和實踐價值,極大地促進了養殖戶經濟收益。趙鑫[49]等研究發現,乳酸菌聯合中藥治療腹瀉能夠靶向抵抗腸道內的病原菌,穩固腸道菌群平衡。Wegh[50]等研究發現,乳酸菌制劑有直接的免疫調節作用,能夠有效的改善機體健康和緩解一系列疾病的癥狀,例如嬰兒腸絞痛、成人特異性皮炎和不同原因的腹瀉。Yap[51]等研究發現,乳酸菌產生的抗菌肽是治療李斯特菌病的關鍵性物質,在治療人畜共患性疾病中具有巨大的應用前景。由此可見,乳酸菌分泌的抑菌物質可為臨床靶向治療提供科學依據。
4結論與展望
乳酸菌具有多種保健功能,其功效包括降低血清膽固醇水平、改善乳糖不耐受、改善消化不良、對胃腸道感染和腫瘤抑制表現出較強的抵抗能力等。許多研究已經對不同乳酸菌株潛在的降膽固醇特性進行了探究,包括在生長細胞內吸收膽固醇、將膽固醇附著在細胞表面、將膽固醇摻入細胞膜、利用膽鹽水解酶去結合膽汁,結合膽汁沉淀膽固醇。近期研究發現,許多乳酸菌株表現出較高的BSH活性,鑒定這些菌株并應用于治療將可能是一個很大的進步。
此外,乳酸菌已被證明在各種條件下都能促進宿主健康。雖然動物實驗在應用乳酸菌預防和治療疾病方面取得了可喜的成果,但還需要人體試驗和更明智的評估系統來積累支持的臨床數據。值得注意的是,益生菌已經進入醫療保健的主流,因為越來越多的證據支持使用乳酸菌治療胃腸道相關疾病和腸道外適應癥,即泌尿生殖系統疾病、細菌性陰道病、特應性疾病、食物過敏和齲齒[21]。而且益生乳酸菌在動物和人類中的安全性記錄由來已久[2],進一步的研究應該集中在長期的安全性評估上,以評估其潛在的不良健康影響。參考文獻
[1]Michael DR,Moss JWE,Calvente D Lama,et al.Lactobacillus plantarum CUL66 can impact cholesterol homeostasis in Caco-2 enterocytes[J].Benef Microbes,2016,7(3):443-451.
[2]Susan A Joyce,et al.Regulation of host weight gain and lipid metabolism by bacterial bile acid modifcation in the gut[J]. Proceedings of the National Academy of Sciences of the United States of America,2014,111(20):7421-7426.
[3]Brian V Jones,et al.Functional and Comparative Metagenomic Analysis of Bile Salt Hydrolase Activity in the Human Gut Microbiome[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(36):13580-13585.
[4]Reid G.The scientifc basis for probiotic strains of Lactobacillus[J].Appl Environ Microbiol,1999,65(9):3763-3766.
[5]M G Shehata,et al.Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity[J].Annals of Agricultural Sciences,2016,61(1):65-75.
[6]Lay-Gaik Ooi,Min-Tze Liong.Cholesterol-Lowering effects of probiotics and prebiotics:a review of in vivo and in vitro findings[J].IJMS,2010,11(6):2499-2522.
[7]孫悅,劉佳伊,陳璐,等.抗耐藥性大腸桿菌乳酸菌的篩選及抑菌機制[J].食品科學,2021,42(02):121-127.
[8]鄭志瑤,王偉軍,陳波,等.降膽固醇乳酸菌的篩選、鑒定與益生特性評價[J].中國食品學報,2020,20(12):239-247.
[9]C Albano,et al.Lactic acid bacteria with cholesterol-lowering properties for dairy applications:In vitro and in situ activity[J]. Journal of Dairy Science,2018,101(12):10807-10818.
[10]Yusuf Dandy,et al.In Vitro Characterization of Lactic Acid Bacteria from Indonesian Kefir Grains as Probiotics with Cholesterol-Lowering Effect[J].Journal of Microbiology and Biotechnology,2019,30(5):726-732.
[11] Bhat Bilqeesa,Bajaj Bijender Kumar.Multifarious cholesterol lowering potential of lactic acid bacteria equipped with desired probiotic functional attributes[J].3 Biotech,2020,10(5):200.
[12]李堯,張羽竹,張利,等.分離自傳統自然發酵食品中降膽固醇乳酸菌的篩選與評價[J].中國食品學報,2019,19(6):212-222.
[13]陳儀婷,張紅星,謝遠紅,等.降膽固醇乳酸菌的篩選鑒定及其耐酸耐膽鹽性能研究[J].食品與發酵工業,2018,44(5):29-33.
[14]Do Kyung Lee,et al.Lactic acid bacteria affect serum cholesterol levels,harmful fecal enzyme activity,and fecal water content[J].Lipids in Health and Disease,2009,8(1):21.
[15]LIU Yufang,et al.Selection of Cholesterol-Lowering Lactic Acid Bacteria and its Effects on Rats Fed with High-Cholesterol Diet[J].Current Microbiology,2017,74(5):623-631.
[16]Heo,et al.Lactobacillus plantarum LRCC 5273 isolated from Kimchi ameliorates diet-induced hypercholesterolemia in C57BL/6 mice[J]. Bioscience,Biotechnology and Biochemistry,2018,82(11):1964-1972.
[17]黃燕燕,郭均,黎恒希,等.降膽固醇乳酸菌的體外篩選及其降膽固醇機理探討[J].食品科學,2018,39(6):88-94.
[18]Choi Sy-Bing,et al.Probiotics and the BSH-related cholesterol lowering mechanism:a Jekyll and Hyde scenario[J].Critical Reviews in Biotechnology,2015,35(3):392-401.
[19]Kumar Rajesh,Grover Sunita,Batish Virender Kumar. Hypocholesterolaemic effect of dietary inclusion of two putative probiotic bile salt hydrolase-producing Lactobacillus plantarum strains in Sprague-Dawley rats[J].The British Journal of Nutrition,2011,105(4):561-573.
[20]Reis S A,et al.Mechanisms responsible for the hypocholesterolaemic effect of regular consumption of probiotics[J]. Nutrition Research Reviews,2017,30(1):36-49.
[21]Cheng-Chih Tsai,et al.Cholesterol-Lowering potentials of lactic acid bacteria based on bile-salt hydrolase activity and effect of potent strains on cholesterol metabolism In vitro and in vivo[J]. The Scientific World Journal,2014,1018(6):1-10.
[22]Philippe Gérard.Metabolism of Cholesterol and Bile Acids by the Gut Microbiota[J].Pathogens,2013,3(1):14-24.
[23]Z Guo,et al.Influence of consumption of probiotics on the plasma lipid profile:A meta-analysis of randomised controlled trials[J]. Nutrition,Metabolism and Cardiovascular Diseases,2011,21(11):844-850.
[24]Tahri K,Grill J P,Schneider F.Bifidobacteria strain behavior toward cholesterol:coprecipitation with bile salts and assimilation[J]. Current Microbiology,1996,33(3):187-193.
[25]Pigeon R M,Cuesta E P,Gililliand S E.Binding of free bile acids by cells of yogurt starter culture bacteria[J]. Journal of Dairy Science,2002,85(11):2705-2710.
[26]Rudel L L,Morris M D.Determination of cholesterol using o-phthalaldehyde[J]. Journal of Lipid Research,1973,14(3):364-366.
[27]D O Noh,S H Kim,S E Gilliland.Incorporation of Cholesterol into the Cellular Membrane of Lactobacillus acidophilus ATCC 431211[J].Journal of Dairy Science,1997,80(12):3107-3113.
[28]O Y Ramos,et al.Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies[J].Journal of Applied Microbiology,2020,128(5):1248-1260.
[29]Esra Tok,Belma Aslim.Cholesterol removal by some lactic acid bacteria that can be used as probiotic[J]. Microbiology and Immunology,2010,54(5):257-264.
[30]H-S Lye,G Rusul,M-T Liong.Removal of cholesterol by lactobacilli via incorporation and conversion to coprostanol[J]. Journal of Dairy Science,2010,93(4):1383-1392.
[31]Huey-Shi Lye,Gulam Rusul Rahmat-Ali,Min-Tze Liong.Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract[J].International Dairy Journal,2009,20(3):169-175.
[32]Fatemeh Miremadi,et al.Cholesterol reduction mechanisms and fatty acid composition of cellular membranes of probiotic Lactobacilli and Bifidobacteria[J]. Journal of Functional Foods,2014,9:295-305.
[33]F Fava,J A Lovegrove,R Gitau,et al.The Gut Microbiota and Lipid Metabolism:Implications for Human Health and Coronary Heart Disease[J]. Current Medicinal Chemistry,2006,13(25):3005-3021.
[34]O Y Ramos,et al.Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies[J].Journal of Applied Microbiology,2020,128(5):1248-1260.
[35]Jia Lin,Betters Jenna L,Yu Liqing.Niemann-Pick C1-Like 1 (NPC1L1)Protein in Intestinal and Hepatic Cholesterol Transport[J].Annual Review of Physiology,2011(73):239-259.
[36]Ilaria Zanotti,et al.Evidence for cholesterol-lowering activity by Bifidobacterium bifidum PRL2010 through gut microbiota modulation[J]. Applied Microbiology and Biotechnology,2015,99(16):6813-6829.
[37]Nashimoto Shunsuke,et al.A new system to evaluate characteristics of Niemann-Pick C1 Like 1-mediated cholesterol transport using Xenopus laevis oocytes[J].BBA - Biomembranes,2021,1863(2):183508-183508.
[38]HUANG Ying,et al.The hypocholesterolaemic effects of Lactobacillus acidophilus American type culture collection 4356 in rats are mediated by the down-regulation of Niemann-Pick C1-like 1[J]. The British Journal of Nutrition,2010,104(6):807-812.
[39]Hong-Sup Yoon,et al.Reduction in cholesterol absorption in Caco-2 cells through the down-regulation of Niemann-Pick C1-like 1 by the putative probiotic strains Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 from fermented foods[J].International Journal of Food Sciences and Nutrition,2013,64(1):44-52.
[40]WANG Jin,et al.Sterol transfer by ABCG5 and ABCG8:in vitro assay and reconstitution[J].The Journal of Biological Chemistry,2006,281(38):27894-27904.
[41]Hong-sup Yoon,et al.The probiotic Lactobacillus rhamnosus BFE5264 and Lactobacillus plantarum NR74 promote cholesterol efflux and suppress inflammation in THP-1 cells[J].Journal of the Science of Food and Agriculture,2013,93(4):781-787.
[42]Hong-sup Yoon,et al.Lactobacillus rhamnosus BFE 5264 and Lactobacillus plantarum NR74 Promote Cholesterol Excretion Through the Up-Regulation of ABCG5/8 in Caco-2 Cells[J].Probiotics and Antimicrobial Proteins,2011,3(3-4):194-203.
[43]劉雨萱,黃曉紅,徐曄,等.肉制品中N-亞硝胺的危害、形成機制及乳酸菌對其控制效果的研究進展[J].食品與發酵工業,2020,46(16):283-289.
[44]Gregirchak Natalya,Stabnikova Olena,Stabnikov Viktor.Application of Lactic Acid Bacteria for Coating of Wheat Bread to Protect it from Microbial Spoilage[J].Plant Foods for Human Nutrition (Dordrecht,Netherlands),2020,75(2):223-229.
[45]Anbarasu Sivaraj,et al.Potential applications of lactic acid bacteria and bacteriocins in anti-mycobacterial therapy[J].Asian Pacific Journal of Tropical Medicine,2018,11(8):453-459.
[46]張炎達,潘慧青,李珠金,等.家禽無抗養殖中飼用乳酸菌應用研究進展[J].中國家禽,2018,40(11):41-46.
[47]何江波,姚志芳,吳國芳,等.乳酸菌制劑益生特性及在畜牧業中的應用研究進展[J].家畜生態學報,2020,41(8):85-89.
[48]王林康,韓春生,沈俊宏,等.中草藥經乳酸菌發酵產物對母豬產后應用的臨床效果觀察[J].黑龍江畜牧獸醫,2019(18):131-134.
[49]趙鑫,付志飛,高秀梅,等.基于腸道益生菌的中藥防治疾病作用研究進展[J].世界科學技術-中醫藥現代化,2019,21(6):1097-1102.
[50]Carrie A M Wegh,et al.Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond[J].International Journal of Molecular Sciences,2019,20(19):4673-4696.
[51]Yap PhuiChyng,et al.Antilisterial Potential of Lactic Acid Bacteria in Eliminating Listeria monocytogenes in Host and Ready-to-Eat Food Application[J].Microbiology Research,2021,12(1):234-257.
Research Progress on Mechanism on Lowering Cholesterol
and Application of Lactic Acid BacteriaFEI Xiao-tong,XU Xin-wei,TAO Hong-yan,SUN Wen-rui,LI Shang-lin,WEI Jia
(Life Science and Engineering College,Northwest University for Nationalities,Lanzhou 730030,China)Abstract:The cholesterol biosynthesis,lactic acid bacteria in vivo and in vitro cholesterol characteristics,cholesterol-lowering action mechanism,and the application status of lactic acid bacteria was reviewed to provide scientific basis for the further research on the degradation of cholesterol by lactic acid bacteria and the development and application of related products.
Keywords:lactic acid bacteria;cholesterol-lowering;action mechanism;application feature