朱皖琳 耿顯亞



摘 ?要:假定[Gn]表示由隨機 n個十邊形構成的線性結構分子圖,借助圖的結構特點,計算[Gn]的 Gutman指數的數學期望,并獲得了隨機十邊形鏈Gutman指數的極值.
關鍵詞:Gutman指數;隨機十邊形鏈;數學期望;極值
[ ? 中圖分類號 ? ?]O157.6 [ ? ?文獻標志碼 ? ] ?A
Research on Gutman Index of Decagon Chemical Graphs
ZHU Wanlin,GENG Xianya
(School of Mathematics and Big Data,Anhui University of Science and Technology,Huainan
232001,China)
Abstract:It is assumed that Gn respresents a linear molecular graph of random decagons,and derived from the structural characteristics of the graph we calculate the expected value of Gutman index in a random decagon chain. And the Gutman index of random decagonal chains with extremal value are also obtained.
Key words:Gutman index; random decagon chain; expected value; extremal value
化學圖論中一個最重要的方法是拓撲指數,許多十邊形的化合物,其衍生物一直是有機化學領域的重要研究課題.正十邊形的結構十分特殊,它是唯一符合黃金分割比的正多邊形,因此,越來越多的人研究其結構和性質.本文只考慮有限的簡單連通圖,研究具有[n]個十邊形的化合物鏈的Gutman指數,符號與專業術語參考文獻[1-8].
1 隨機十邊形鏈的Gutman指數的數學期望
設[G=(VG,EG)]是頂點集為[VG]、邊集為[EG]的非平凡簡單連通圖.圖[G]中頂點[u]和[v]之間的最短距離[dG(u,v)](簡稱[d(u,v)])稱為最短路.維納指數[W(G)]就是基于距離的圖不變量,計算圖[G]中所有頂點對之間的距離和.[9]Gutman指數的提出擴展了與頂點距離和度相關圖參數的研究領域,是一個重要的圖參數,與很多分子的結構特征有著密切關系.[10]
具有[n]個十邊形的隨機化合物鏈[Gn]是由[n-1]個十邊形鏈[Gn-1]連接一個新的末端十邊形[Hn]得到的,見圖1.當[n≥3],末端十邊形[Hn]有5種連接方式,將其表示為[G1n,G2n,G3n,G4n,G5n],見圖2. 具有[n]個十邊形的隨機化合物鏈[Gn(p1,p2,p3,p4)]是通過逐步添加末端十邊形得到的.在每一步[k=(3,4,5,……,n)]添加中,可隨機選擇5種連接方式中的一種.[11-13][Gn→G1n+1]的概率為[p1],[Gn→G2n+1]的概率為[p2],[Gn→G3n+1]的概率為[p3], [Gn→G4n+1]的概率為[p4], [Gn→G5n+1]的概率為[1-p1-p2-p3-p4].
其中,[p1,p2,p3]和[p4]為常數,與參數[k]無關.
計算隨機十邊形鏈的Gutman指數的數學期望.隨機十邊形化合物鏈[Gn+1]是由[Gn]連接一個新的末端十邊形[Hn+1]得到的,其中,[Hn+1]是由頂點[x1,x2,x3,……,x10]構成,新的邊為[unx1],見圖1.一方面,對于所有的[v∈VGn],有
[d(x1)=d(un,v)+1, ? ?d(x2)=d(un,v)+2,…, ? ?d(x6)=d(un,v)+6,d(x7)=d(un,v)+5, ? ?d(x8)=d(un,v)+4, …, ? ?d(x10)=d(un,v)+2.]
[v∈VGndGn+1(v)=22n-1].
另一方面,
[i=12kd(xi)d(x1,xi)=50, ? ?i=12kd(xi)d(x2,xi)=51, ? …, ? ?i=12kd(xi)d(x6,xi)=55,]
[i=12kd(xi)d(x7,xi)=54, ? ?i=12kd(xi)d(x8,xi)=53, ? …, ? ?i=12kd(xi)d(x10,xi)=51].
定理1 當[n≥1],無規十邊形鏈[Gn]的Gutman指數的期望為
[E(Gut(Gn))=(1 ?452-968p1-726p2-484p3-242p4)n33+(968p1+726p2+484p3+242p4-132)n2 +(447-1 ?936p1-1 ?452p2-968p3-484p4)n3-1.]
證明 無規十邊形鏈[Gn+1]是通過將[Gn]連接一個新的末端十邊形[Hn+1]而獲得的,這里的[Hn+1]由頂點[x1,x2,x3…x10]構成,新邊為[unx1],如圖2,那么有
[Gut(Gn+1)={u,v}?VGnd(u)d(v)d(u,v)+v∈VGnxi∈VHn+1d(v)d(xi)d(v,xi)+{xi,xj}?VHn+1d(xi)d(xj)d(xi,xj)]
其中,
[{u,v}?VGnd(u)d(v)d(u,v)={u,v}?VGn\{un}d(u)d(v)d(u,v)+v∈VGn\{un}dGn+1(un)d(v)d(un,v)={u,v}?VGn\{un}d(u)d(v)d(u,v)+v∈VGn\{un}(dGn(un)+1)d(v)d(un,v)=Gut(Gn)+v∈VGnd(v)d(un,v).]
當[d(xi)=3],對于[i∈2,3,4…10],有
[v∈VGnxi∈VHn+1d(v)d(xi)d(v,xi)=v∈VGnd(v)[3(d(un,v)+1)+…+2(d(un,v)+5)+2(d(un,v)+ ? ?4)+…+2(d(un,v)+2)]][=v∈VGnd(v)(21d(un,v)+71)=21v∈VGnd(v)d(un,v)+71v∈VGnd(v) ]
[ ? ?=21v∈VGnd(v)d(un,v)+71(22n-1).]
[{xi,xj}?VHn+1d(xi)d(xj)d(xi,xj)=12i=110d(xi)(j=110d(xj)d(xi,xj)= 12[3×50+2×51+…+2×55+2×54+…+2×51]=550.]
綜上,得到
[Gut(Gn+1)=Gut(Gn)+22v∈VGnd(v)d(un,v)+1 ?562n+479].
對于無規十邊形鏈[Gn],[v∈VGnd(v)d(un,v)]的數值是一個隨機變量,可以把它的期望表示為
[An:=E(v∈VGnd(v)d(un,v))].通過直接計算,可以得到無規十邊形鏈[Gn]的Gutman指數期望值的遞推關系.
[E(Gut(Gn+1))=E(Gut(Gn))+22An+1 ?562n+479].
考慮以下5種可能的情況:
情況1:[Gn→G1n+1],在這種情況下,[un]考慮頂點[x2]或[x10],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u2,v)]或[v∈VGnd(v)d(u10,v)]兩種結果,概率為[p1].
情況2:[Gn→G2n+1],在這種情況下,[un]考慮頂點[x3]或[x9],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u3,v)]或[v∈VGnd(v)d(u9,v)]兩種結果,概率為[p2].
情況3:[Gn→G3n+1],在這種情況下,[un]考慮頂點[x4]或[x8],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u4,v)]或[v∈VGnd(v)d(u8,v)]兩種結果,概率為[p3].
情況4:[Gn→G4n+1],在這種情況下,[un]考慮頂點[x5]或[x7],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u5,v)]或[v∈VGnd(v)d(u7,v)]兩種結果,概率為[p4].
情況5:[Gn→G5n+1],在這種情況下,[un]考慮頂點[x6],那么,[v∈VGnd(v)d(un,v)]是有[v∈VGnd(v)d(u6,v)]這種結果,概率為[1-p1-p2-p3-p4].根據以上5種情況,可以得出期望值[An]為:
[An=p1v∈VGnd(v)d(x2,v)+…+p4v∈VGnd(v)d(x5,v)+(1-p1-p2-p3-p4)v∈VGnd(v)d(x6,v) ? ? ?=p1[v∈VGn-1d(v)d(un-1,v)+2v∈VGn-1d(v)+51]+…+p4[v∈VGn-1d(v)d(un-1,v)+ ? ? ? ? ? 5v∈VGn-1d(v)+54]+(1-p1-p2-p3-p4)[v∈VGn-1d(v)d(un-1,v)+6v∈VGn-1d(v)+55].]
通過將期望運算符應用于上述等式,可以獲得期望值:
[E(An)=An].
[An=p1(An-1+44n+5)+p2(An-1+66n-17)+p3(An-1+88n-39)+p4(An-1+110n-61) +(1-p1-p2-p3-p4)(An-1+132n-83) =An-1+(132-88p1-66p2-44p3-22p4)n+88p1+66p2+44p3+22p4-83.]
邊界條件為:[A1=E(v∈VG1d(v)d(u1,v)=50].
根據上述遞推關系和邊界條件,得到
[An=(66-44p1-33p2-22p3-11p4)n2+(44p1+33p2+22p3+11p4-17)n+1.]
[因此,E(Gut(Gn+1))=E(Gut(Gn))+22An+1 ?562n+479=E(Gut(Gn))+][22[(66-44p1-33p2-22p3-11p4)n2 +(44p1+33p2+22p3+11p4-17)n+1]+1 562n+479.]
邊界條件為:[E(Gut(G1))=500].
根據上述遞推關系和邊界條件,得到期望值[E(Gut(Gn))]為 :
[E(Gut(Gn))=(1 ?452-968p1-726p2-484p3-242p4)n33+(968p1+726p2+484p3+242p4-132)n2 +(447-1 ?936p1-1 ?452p2-968p3-484p4)n3-1.]
特別地,如果[p1=1],此時[p2=p3=p4=p5=0],則[Gn?Mn].如果[p2=1](相應的[p3=1],[p4=1]),此時[p1=p3=p4=p5=0](相應的[p1=p2=p4=p5=0],[p1=p2=p3=p5=0]),則[Gn?O1n](相應的[Gn?O2n],[Gn?O3n]).特別地,如果[p5=1],此時[p1=p2=p3=p4=0],則[Gn?Ln].
2 隨機十邊形鏈的Gtuman指數的極值
定理2 對于無規十邊形化合物鏈[Gn(n≥3)],對鏈[Ln]實現[E(Gut(Gn))]的最大值,間鏈[Mn]實現[E(Gut(Gn))]的最小值.
證明 根據定理1,有
[E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+ ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 484n2-968n3)p3+(-242n33+242n2-484n3)p4+1452n33-132n2+447n3-1.]
當[n≥1]時,通過求偏導數,有
[?E(Gut(Gn))?p1=-968n33+968n2-1 936n3<0, ? ??E(Gut(Gn))?p2=-726n33+726n2-1 452n3<0,?E(Gut(Gn))?p3=-484n33+484n2-968n3<0, ? ??E(Gut(Gn))?p4=-242n33+242n2-484n3<0.]
如果[p1=p2=p3=p4=0],([i.e.p5=1]),對鏈[Ln] 實現[E(Gut(Gn))]的最大值,[Gn?Ln] .如果
[p1+p2+p3+p4=1],令[p4=1-p1-p2-p3]([0≤p1≤1],[0≤p2≤1],[0≤p3≤1]),有
[E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+484n2]
[-968n3)p3+(-242n33+242n2-484n3)(1-p1-p2-p3)+1 ?452n33-132n2+447n3-1.]因此,
[?E(Gut(Gn))?p1=-726n33+726n2-1 ?452n3<0, ? ?E(Gut(Gn))?p2=-484n33+484n2-968n3<0,?E(Gut(Gn))?p3=-242n33+242n2-484n3<0. ]
如果[p1=p2=p3=0],([i.e.p4=1]),得不到最小值.如果[p1+p2+p3=1],此時令[p3=1-p1-p2]([0≤p1≤1],[0≤p2≤1]),有
[E(Gut(Gn)=(-968n33+968n2-1 ?936n3)p1+(-726n33+726n2-1 ?452n3)p2+(-484n3+484n2-968n3) (1-p1-p2)+1 ?452n33-132n2+447n3-1.]
因此,
[?E(Gut(Gn))?p1=-484n33+484n2-968n3<0, ? ??E(Gut(Gn))?p2=-242n33+242n2-484n3<0. ]
如果[p1=p2=0],([i.e.p3=1]),也得不到最小值.如果[p1+p2=1],令[p1=1-p2]([0≤p1≤1]),有
[E(Gut(Gn)=(-968n33+968n2-1 ?936n3)(1-p2)+(-726n33+726n2-1 ?452n3)p2+1 ?452n33-132n2+447n3-1]
此時,[?E(Gut(Gn))?p1=242n33+242n2-484n3>0. ]
當[p2=0],([i.e.p1=1]),[E(Gut(Gn))]取得最小值,此時[Gn?Mn].
參考文獻
[1]Estrada,Ernesto,Danail Bonchev. Chemical graph theory[M]. Handbook of graph ? theory,2013.1-24.
[2]Gutman,Ivan. Selected properties of the Schultz molecular topological index[J]. Journal of Chemical Information and Computer Sciences,1994,34:1087-1089.
[3]Bondy,J. A.,U. Murty . Graph theory [M].Graduate texts in mathematics,2008.
[4]Milas,Nicholas,John Nolan,Jr,Petrus HL Otto. Ozonization of Cyclooctatetraene[J]. The Journal of Organic Chemistry,1958,23(4):624-625.
[5]Entringer,Roger C.,Douglas E. Jackson,D. A. Snyder. Distance in graphs[J]. Czechoslovak Mathematical Journal,1976,26:283-296.
[6]Mukwembi,Simon,S. Munyira. Degree distance and minimum degree[J]. Bulletin of the Australian Mathematical Society,2013,87:255-271.
[7]Wei,Shouliu,Wai Chee Shiu. Enumeration of Wiener indices in random polygonal chains[J]. Journal of Mathematical Analysis and Applications,2019,469:537-548.
[8]Yang,Weiling,Fuji Zhang. Wiener index in random polyphenyl chains[J]. Match-Communications in Mathematical and Computer Chemistry,2012,68:371-376.
[9]Chen,Ailian,Fuji Zhang. Wiener index and perfect matchings in random phenylene chains[J]. Match,2009,61:623-630.
[10]Zhang,Leilei,et al. The expected values for the Schultz index,Gutman index,multiplicative degree-Kirchhoff index and additive degree-Kirchhoff index of a random polyphenylene chain[J]. Discrete Applied Mathematics,2020,282:243-256.
[11]吉亞迪,耿顯亞. 給定化學圖的兩類代數指標問題研究[J]. 牡丹江師范學院報:自然科學版,2021(2):1-5.
[12]Qi,Jinfeng,Minglei Fang,Xianya Geng. The Expected Value for the Wiener Index in the Random Spiro Chains[J]. Polycyclic Aromatic Compounds,2022(43):1788-1798.
[13]劉英偉,張洋,任意螺旋線拓撲數值解法[J].牡丹江師范學院學報:自然科學版,2019(3):13-17.
編輯:琳莉