999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

植物SWEET蛋白的結(jié)構(gòu)與分類及功能研究進(jìn)展

2023-05-30 10:48:04任凱麗孔維萍唐桃霞程鴻
甘肅農(nóng)業(yè)科技 2023年1期
關(guān)鍵詞:分類結(jié)構(gòu)功能

任凱麗 孔維萍 唐桃霞 程鴻

摘要:植物SWEET蛋白是一類重要的轉(zhuǎn)運蛋白,研究其生理生化功能,有助于分子輔助育種,縮短育種年限。本文基于文獻(xiàn)資料,梳理歸納了近年來國內(nèi)外的植物SWEET蛋白的結(jié)構(gòu)、分類、轉(zhuǎn)運底物和功能方面的相關(guān)研究進(jìn)展,闡述表明SWEET蛋白是植物中廣泛存在的一類糖轉(zhuǎn)運體,既能轉(zhuǎn)運單糖又能轉(zhuǎn)運蔗糖,屬于Mt N3家族。不同植物間的SWEET蛋白具有一定的保守性,根據(jù)親緣關(guān)系SWEET家族可以分為四類。植物SWEET蛋白是位于膜系統(tǒng)上,參與糖分的跨膜轉(zhuǎn)運,在植物生長發(fā)育及逆境脅迫中均有不同程度的調(diào)控作用,如調(diào)控花蜜的分泌、花粉的營養(yǎng)、灌漿期種子的發(fā)育、果實發(fā)育、植物抗逆性和抗病性等。然而不同植物的SWEET蛋白轉(zhuǎn)運底物和調(diào)控功能不同,目前僅在擬南芥等少數(shù)植物中研究較為深入。

關(guān)鍵詞:SWEET;糖轉(zhuǎn)運蛋白;糖;結(jié)構(gòu);分類;功能

中圖分類號:S184;Q51? ? ? ? ? ? 文獻(xiàn)標(biāo)志碼:A? ? ? ? ? ? 文章編號:2097-2172(2023)01-0005-08

doi:10.3969/j.issn.2097-2172.2023.01.002

Advances in Structure, Classification and Functions of

SWEET Protein in Plants

REN Kaili, KONG Weiping, TANG Taoxia, CHENG Hong

(Institute of Vegetables, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)

Abstract: The yield and quality of crops depend on sugar transport and regulation. In this paper, we reviewed the structure, classification, transport substrates and functions of SWEET protein, in order to lay a foundation for the study of SWEET protein in other plants. SWEET transporter is a newly discovered sugar transporter located in membrane system, which can transport both hexose and sucrose and belongs to Mt N3 family. SWEET proteins are conserved in different plants, and the SWEET family can be divided into four groups according to their relatives. plant SWEET protein plays an important role in plant growth and development, biological and abiotic stress response, such as regulating nectar secretion, pollen nutrition, seed development during grain filling, fruit development, plant stress resistance and disease resistance. However, the transport substrates and regulatory functions of SWEET proteins are different in different plants, and only in a few plants such as Arabidopsis thaliana had this protein been studied in depth.

Key words: SWEET; Sugar transporter; Sugar; Structure; Classification; Function

糖是植物的重要能源。植物葉片通過光合作用進(jìn)行碳固定,形成糖類物質(zhì),除自身消耗外,其余大部分運輸?shù)綆炱鞴伲炱鞴偕L發(fā)育,而糖類物質(zhì)從源到庫的運輸離不開糖轉(zhuǎn)運蛋白的參與。植物的糖轉(zhuǎn)運蛋白分為3類,即蔗糖轉(zhuǎn)運蛋白(Sucrose transporters,SUTs)、單糖轉(zhuǎn)運蛋白(Monosaccharide transporters,MSTs)和SWEET糖轉(zhuǎn)運蛋白(Sugars Will Eventually be Exported Transporters)[1 ]。單糖轉(zhuǎn)運蛋白和蔗糖轉(zhuǎn)運蛋白分別主要負(fù)責(zé)單糖和蔗糖的轉(zhuǎn)運,而SWEET蛋白既能轉(zhuǎn)運單糖又能轉(zhuǎn)運蔗糖[2 ],是植物中最新發(fā)現(xiàn)的一類轉(zhuǎn)運蛋白,除了糖轉(zhuǎn)運外SWEET蛋白在植物生長發(fā)育和抗逆性等方面均發(fā)揮著重要的作用[3 - 5? ]。

SWEET蛋白最先在擬南芥(Arabidopsis thaliana)中發(fā)現(xiàn)并鑒定[6 ],隨后逐漸在水稻(Oryza sativa)、葡萄(Vitis vinifera)、木薯(Manihot esculenta)、蘋果(Malus domestica)、甜橙(Citrus sinensis)等作物中陸續(xù)被鑒定[7 - 11 ]。目前,SWEET蛋白在模式植物擬南芥中的研究較為深入,很多其他植物的報道少且深度不夠。我們綜述了近年來已經(jīng)鑒定的SWEET蛋白相關(guān)研究,以期為其他植物的SWEET轉(zhuǎn)運蛋白研究提供參考。

1? ?植物SWEET蛋白結(jié)構(gòu)與分類

SWEET蛋白是植物、動物和微生物中廣泛存在的、定位于膜結(jié)構(gòu)的糖轉(zhuǎn)運蛋白[6, 12 - 14 ],屬于Mt N3家族。真核生物SWEET蛋白具有7個TM螺旋(transmembrane domains),N端THB由TMs 1-3組成,C端THB由TMs 5-7制成,且N端與C端THB結(jié)構(gòu)相似,均以平行方向排列,各自為1個單元(圖1)。TM4作為連接螺旋,連接N端和C端的THB,不同SWEET蛋白中連接螺旋的蛋白序列是不保守的(圖1)[14 - 16 ]。原核生物的semiSWEET蛋白僅含有單個THB結(jié)構(gòu),也具有糖轉(zhuǎn)運功能[13, 17 - 18 ]。Yuan等[7 ]認(rèn)為真核生物SWEET基因可能是原核生物semiSWEET基因復(fù)制的結(jié)果,TM4是轉(zhuǎn)運體的一部分;而Hu等[19 ]提出一個基因融合假設(shè)理論,認(rèn)為在進(jìn)化過程中當(dāng)產(chǎn)甲烷古菌吞噬細(xì)菌時,會導(dǎo)致semiSWEET基因轉(zhuǎn)移到宿主基因組中,因此細(xì)菌的semiSWEET和寄主基因結(jié)合形成了1個雙THB的SWEET,但保守的TM4是如何在2個THB之間插入或產(chǎn)生的仍不清楚。基因復(fù)制和基因融合是SWEET轉(zhuǎn)運體進(jìn)化的主流理論,然而不論哪種進(jìn)化理論,SWEET中涉及糖運輸?shù)年P(guān)鍵殘基在進(jìn)化過程中是保守的[20 ]。

隨著SWEET家族研究的深入,不少植物的SWEET蛋白被鑒定,表1為已經(jīng)發(fā)表的幾種植物SWEET蛋白家族成員數(shù)量。對擬南芥的17個、水稻的21個、黃瓜的17個SWEET家族蛋白成員利用MAGA11軟件采用鄰接發(fā)構(gòu)建系統(tǒng)進(jìn)化樹,結(jié)果見圖2。植物的SWEET家族蛋白分為4個分支。以擬南芥為例,分支Ⅰ有AtSWEET1-3,分支Ⅱ有AtSWEET4-8,分支Ⅲ有AtSWEET9-15,分支Ⅳ有AtSWEET16和AtSWEET17[2, 6, 21 ]。

2? ?植物SWEET蛋白轉(zhuǎn)運底物

植物SWEET蛋白大多位于質(zhì)膜,少數(shù)位于液泡膜,具有不依賴能量的跨膜轉(zhuǎn)運糖分的功能。擬南芥SWEET1蛋白具有跨膜轉(zhuǎn)模葡萄糖的功能[6 ],SWEET2蛋白跨膜轉(zhuǎn)運2-脫氫葡萄糖[55 ],SWEET4蛋白跨膜轉(zhuǎn)運葡萄糖和果糖[56 ],SWEET5蛋白跨膜轉(zhuǎn)運葡萄糖和半乳糖[57 ],SWEET8蛋白跨膜轉(zhuǎn)運葡萄糖[58 ],SWEET9、SWEET11、SWEET12、SWEET13、SWEET14和SWEET15蛋白跨膜轉(zhuǎn)運蔗糖[59 - 62 ],SWEET16蛋白跨膜轉(zhuǎn)運葡萄糖、果糖和蔗糖[2 ],SWEET17蛋白跨膜轉(zhuǎn)運果糖(表2)[21 ]。

此外,不同植物間SWEET蛋白的轉(zhuǎn)運底物也略有不同。茶樹的SWEET1a蛋白可跨膜轉(zhuǎn)運葡萄糖、半乳糖和蔗糖[43 ],SWEET16蛋白可跨膜轉(zhuǎn)運葡萄糖、果糖和蔗糖[43 ],SWEET17蛋白可跨膜轉(zhuǎn)運葡萄糖、果糖、半乳糖、甘露糖和蔗糖等多種糖分[43 ];葡萄SWEET4、SWEET10蛋白可跨膜轉(zhuǎn)運葡萄糖和果糖的功能[5, 63 ];百脈根SWEET3蛋白可跨膜轉(zhuǎn)運蔗糖的功能[35 ];番茄SWEET7a、SWEET14蛋白可跨膜轉(zhuǎn)運葡萄糖、果糖和蔗糖(表2)[3 ]。

3? ?植物SWEET蛋白功能

植物SWEET蛋白參與糖分的轉(zhuǎn)運,而糖不僅可以作為養(yǎng)分物質(zhì)供植株生長,也可作為信號因子,因此SWEET蛋白在植物生長發(fā)育、響應(yīng)生物與非生物逆境脅迫過程中均有不同程度的調(diào)控作用(表2)。

3.1? ?植物SWEET蛋白的生理功能

SWEET蛋白可以調(diào)控花蜜的分泌。擬南芥SWEET1蛋白具有給配子體或花蜜提供營養(yǎng)的作用[6 ],擬南芥和蕪菁的SWEET9蛋白也具有調(diào)控花蜜分泌的功能[59 ]。SWEET蛋白可以調(diào)控花粉的發(fā)育,擬南芥的SWEET5、SWEET8、SWEET13、SWEET14蛋白均具有調(diào)控花粉營養(yǎng)與萌發(fā)的功 能[57 - 58, 61 ]。SWEET蛋白可以調(diào)控灌漿期種子的發(fā)育,例如Chen等[62 ]的研究表明,擬南芥SWEET11、SWEET12和SWEET15蛋白可以調(diào)控種子發(fā)育。此外,SWEET蛋白可以調(diào)控果實發(fā)育,如葡萄SWEET10蛋白介導(dǎo)了果實中糖分的積累[63 ]。

3.2? ?植物SWEET蛋白對逆境脅迫的調(diào)控

SWEET蛋白可以調(diào)控植物對非生物脅迫的抗性。過表達(dá)茶樹SWEET1a、SWEET16與SWEET17基因和過表達(dá)擬南芥SWEET4與SWEET16基因,可以提高茶樹和擬南芥對冷脅迫的耐受性[2, 43, 56, 64 ];擬南芥水分脅迫下通過調(diào)控SWEET11和SWEET12基因的表達(dá)將更多的糖分從葉片運輸?shù)礁浚跃S持根的生長發(fā)育,從而增強(qiáng)對水分脅迫的適應(yīng)性[60 ];擬南芥SWEET11和SWEET12可協(xié)同作用調(diào)控植株抗凍性,冷脅迫處理下擬南芥SWEET11和SWEET12表達(dá)下調(diào),且sweet11和sweet12雙突變體表現(xiàn)出抗凍性[60 ];擬南芥sweet17敲除突變體表現(xiàn)出側(cè)根減少和側(cè)根發(fā)育相關(guān)轉(zhuǎn)錄因子表達(dá)減少,導(dǎo)致耐旱性降低[66 ]。

SWEET蛋白可以調(diào)控植物對生物脅迫的抗性。過表達(dá)SWEET2可以增強(qiáng)擬南芥對腐霉的抗性;過表達(dá)葡萄SWEET4可促進(jìn)具有真菌抗性的黃酮類化合物的生物合成,增強(qiáng)對真菌的抗性[5 ];過表達(dá)甘薯SWEET10可通過降低甘薯的糖含量來增強(qiáng)了對尖孢菌的抗性[4 ];擬南芥SWEET11和SWEET12蛋白參與病原體驅(qū)動下胚軸內(nèi)蔗糖分布的調(diào)控,進(jìn)而對甘藍(lán)根腫菌的侵染產(chǎn)生負(fù)面影響[65 ]。

4? ?小結(jié)與展望

SWEET蛋白是植物中廣泛存在的一類糖轉(zhuǎn)運體,其既能轉(zhuǎn)運單糖又能轉(zhuǎn)運蔗糖,屬于Mt N3家族。不同植物間的SWEET蛋白具有一定的保守性,根據(jù)親緣關(guān)系SWEET家族可以分為四類。植物SWEET蛋白是位于膜系統(tǒng)上,參與糖分的跨膜轉(zhuǎn)運,在植物生長發(fā)育及逆境脅迫中均有不同程度的調(diào)控作用,例如調(diào)控花蜜的分泌、花粉的營養(yǎng)、灌漿期種子的發(fā)育、果實發(fā)育、植物抗逆性和抗病性等。因此,植物SWEET蛋白是一類重要的轉(zhuǎn)運蛋白,研究其生理生化功能,有助于分子輔助育種,縮短育種年限。

目前,SWEET蛋白在模式植物擬南芥中的研究較為深入,在其他植物的研究還相對較少且深度不夠。今后的研究重點應(yīng)從以下幾點入手,一是作物生長調(diào)控,如水稻、玉米等作物,研究營養(yǎng)器官與生殖器官的關(guān)系,保證充足營養(yǎng)面積的基礎(chǔ)上更多的糖分轉(zhuǎn)運到種子/果實中,以提高產(chǎn)量和品質(zhì);二是園藝瓜果植物的高品質(zhì)育種,深入研究葡萄、蘋果、甜瓜、西瓜等園藝植物SWEET蛋白的功能,利用生物技術(shù)手段進(jìn)行高品質(zhì)育種;三是植物抗性育種,挖掘植物SWEET蛋白的功能,通過SWEET蛋白對糖的調(diào)控增強(qiáng)植物對生物與非生物脅迫的耐受性,結(jié)合分子生物學(xué)手段,達(dá)到抗性育種的目的。

參考文獻(xiàn):

[1] 耿艷秋,董肖昌,張春梅.? 園藝作物糖轉(zhuǎn)運蛋白研究進(jìn)展[J]. 園藝學(xué)報,2021,48(4):676-688.

[2] KLEMENS P A W, PATZKE K, DEITMER J, et al. Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis[J].? Plant Physiology, 2013, 163(3): 1338-1352.

[3] ZHANG X, FENG C, WANG M, et al.? Plasma membrane-localized SlSWEET7a and SlSWEET14 regulate sugar transport and storage in tomato fruits[J].? Horticulture Research, 2021, 8:186.

[4] LI Y, WANG Y N, ZHANG H, et al. The plasma membrane-localized sucrose transporter IbSWEET10 contributes to the resistance of sweet potato to Fusarium oxysporum[J]. Frontiers in Plant Science, 2017, 8(e44467): 197.

[5] METEIER E, LA CAMERA S, GODDARD ML, et al. Overexpression of the VvSWEET4 Transporter in Grapevine Hairy Roots Increases Sugar Transport and Contents and Enhances Resistance to Pythium irregulare, a SoilbornePathoge[J].? Frontiers in Plant Science, 2019, 10: 884

[6] CHEN L Q, HOU B H, LALONDE S, et al.? Sugar transporters for intercellular exchange and nutrition of pathogens[J].? Nature, 2010, 468(7323): 527-532.

[7] YUAN M, WANG S. Rice Mt N3/saliva/SWEET family genes and their homologs in cellular organisms[J].? Molecular Plant, 2013, 6: 665-674.

[8] CHONG J, PIRON MC, MEYER S, et al.? The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea[J]. Journal of Experimental Botany, 2014, 65(22): 6589-6601.

[9] COHN M, BART R S, SHYBUT M, et al. Xanthomonas axonopodis virulence is promoted by a transcription activator-like effector-mediated induction of a SWEET sugar transporter in cassava[J].? Molecular Plant-Microbe Interactions, 2014, 27(1): 1186-1198.

[10] WEI X, LIU F, CHEN C, et al. The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars[J].? Frontiers in Plant Science, 2014, 5: 569.

[11] ZHENG Q, TANG Z, XU Q, et al.? Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis)[J].? Plant Cell, Tissue and Organ Culture, 2014, 119(3): 609-624.

[12] CHEN LQ, CHEUNG L, FENG L, et al. Transport of sugars[J].? Annual Review of Biochemistry, 2015, 84: 865-894.

[13] XUAN YH, HU YB, CHEN LQ, et al. Functional role of oligomerization for bacterial and plant SWEET sugar transporter family[J].? Proceedings of the National Academy of Sciences, 2013, 110(39): e3685-3694.

[14] XU Y, TAO YY, CHEUNG LS, et al.? Structures of bacterial homologues of SWEET transporters in two distinct conformations[J].? Nature, 2014, 515(7527): 448-452.

[15] HAN L, ZHU Y, LIU M, et al. Molecular mechanism of substrate recognition and transport by the AtSWEET13 sugar transporter[J].? Proceedings of the National Academy of Sciences, 2017, 114(38): 10089-10094.

[16] JEENA GS, KUMAR S, SHUKLA RK.? Structure, evolution and diverse physiological roles of SWEET sugar transporters in plants[J].? Plant Molecular Biology, 2019, 100(4): 351-365.

[17] FENG L, FROMMER W B. Structure and function of SemiSWEET and SWEET sugar transporters[J].? Trends in Biochemical Sciences, 2015, 40(8): 480-486.

[18] LEE Y, NISHIZAWA T, YAMASHITA K, et al. Structural basis for thefacilitative diffusion mechanism by semiSWEET transporter[J]. Nature Communications, 2015, 6(1): 1-8.

[19] HU Y B, SOSSO D, QU X Q, et al. Phylogenetic evidence for a fusion of archaeal and bacterial SemiSWEETs to form eukaryotic SWEETs and identification of SWEET hexose transporters in the amphibian chytrid pathogen Batrachochytrium dendrobatidis[J].? The FASEB Journal, 2016, 30(10): 3644-3654.

[20] JIA B, ZHU X F, PU Z J, et al.? Integrative view of the diversity and evolution of SWEET and SemiSWEET sugar transporters[J].? Frontiers in Plant Science, 2017, 8: 2178.

[21] CHARDON F, BEDU M, CALENGE F, et al. Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis[J].? Current Biology, 2013, 23(8): 697-702.

[22] EOM J S, CHEN L Q, SOSSO D, et al.? SWEETs, transporters for intracellular and intercellular sugar translocation[J].? Current Opinion in Plant Biology, 2015, 25: 53-62.

[23] FENG C Y, HAN J X, HAN X X, JIANG J. Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato[J].? Gene, 2015, 573: 261-272.

[24] PATIL G, VALLIYODAN B, DESHMUKH R, et al. Soybean(Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis[J].? BMC Genomics, 2015, 16(1): 1-16.

[25] SOSSO D, LUO D, LI Q, et al. Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport[J].? Nature Genetics, 2015, 47(12): 1489-1493.

[26] HU B, WU H, HUANG W, et al.? SWEET Gene Family in Medicago truncatula: Genome-Wide Identification, Expression and Substrate Specificity Analysis[J].? Plants, 2019, 8(9): 338.

[27] KRYVORUCHKO I S, SINHAROY S, TORRES-JEREZ I, et al. MtSWEET11, a nodule-specific sucrose transporter of Medicago truncatula[J].? Plant Physiology, 2016, 171(1): 554-565.

[28] MANCK-G?魻TZENBERGER J, REQUENA N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato SWEET sugar transporter family[J].? Frontiers in Plant Science, 2016, 7: 487.

[29] MIZUNO H, KASUGA S, KAWAHIGASHI H. The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling[J]. Biotechnology for Biofuels, 2016, 9(1): 1-12.

[30] COX K L, MENG F, WILKINS K E, et al. TAL effector driven induction of a SWEET gene confers susceptibility to bacterial blight of cotton[J].? Nature Communications, 2017, 8(1): 1-14.

[31] HU L P, ZHANG F, SONG S H, et al. Genome-wide identification, characterization, and expression analysis of the SWEET gene family in cucumber[J].? Journal of Integrative Agriculture, 2017, 16(7): 1486-1501.

[32] LIY X, FENG S, MAS, et al. Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family[J].? Frontiers in Plant Science,2017, 8: 1855.

[33] LI J, QIN M, QIAO X, et al. A new insight into the evolution and functional divergence of SWEET transporters in Chinese white pear(Pyrus bretschneideri)[J].? Plant and Cell Physiology, 2017, 58(4): 839-850.

[34] MIAO H, SUN P, LIU Q, et al. Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana[J].? Scientific Reports, 2017, 7(1): 1-15.

[35] SUGIYAMA A, SAIDA Y, YOSHIMIZU M, et al. Molecular characterization of LjSWEET3, a sugar transporter in nodules of Lotus japonicus[J].? Plant and Cell Physiology, 2017, 58(2): 298-306.

[36] SUI J L, XIAO X H, QI J Y , et al.? The SWEET gene family in Hevea brasiliensis—its evolution and expression compared with four other plant species[J].? FEBS Open Bio, 2017, 7(12): 1943-1959.

[37] WU Y, WANG Y, SHAN Y, et al. Characterization of SWEET family members from loquat and their responses to exogenous induction[J].? Tree Genetics & Genomes, 2017, 13(6): 1-9.

[38] GAO Y, ZHANG C, HAN X, et al. Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease[J].? Molecular Plant Pathology, 2018, 19(9): 2149-2161.

[39] GAUTAM T, SARIPALLI G, GAHLAUT V, et al. Further studies on sugar transporter(SWEET) genes in wheat (Triticumaestivum L.)[J]. Molecular Biology Reports, 2019, 46(2): 2327-2353.

[40] GUO C, LI H, XIA X, et al. Functional and evolution characterization of SWEET sugar transporters in Ananascomosus[J].? Biochemical and Biophysical Research Communications, 2018, 496(2): 407-414.

[41] HU W, HUA X, ZHANG Q, et al.? New insights into the evolution and functional divergence of the SWEET family in Saccharum based on comparative genomics[J]. BMC Plant Biology, 2018, 18(1): 1-20.

[42] LI H, LI X, XUAN Y, et al.? Genome wide identification and expression profiling of SWEET genes family reveals its role during Plasmodiophorabrassicae-induced formation of clubroot in Brassica rapa[J].? Frontiers in Plant Science, 2018, 9: 207.

[43] WANG L, YAO L, HAO X, et al.? Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis[J].? Plant Molecular Biology, 2018, 96(6): 577-592.

[44] DOIDY J, VIDAL U, LEMOINE R. Sugar transporters in Fabaceae, featuring SUT MST and SWEET families of the model plant Medicago truncatula and the agricultural crop Pisumsativum[J].? PLoS ONE, 2019, 14(9): e0223173.

[45] LIU H T, LYU W Y, TIAN S H, et al. The SWEET family genes in strawberry: identification and expression profiling during fruit development[J].? South African Journal of Botany, 2019, 125: 176-187.

[46] XIE H, WANG D, QIN Y, et al. Genome-wide identification and expression analysis of SWEET gene family in Litchi chinensis reveal the involvement of LcSWEET2a/3b in early seed development[J].? BMC Plant Biology, 2019, 19(1): 1-13.

[47] ZHANG W, WANG S, YU F, et al. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses[J].? BMC Genomics, 2019, 20(1): 1-16.

[48] GENG Y, WU M, ZHANG C. Sugar transporter ZjSWEET2.2 mediates sugar loading in leaves of Ziziphusjujubamill[J]. Frontiers in Plant Science, 2020, 11: 1081.

[49] JIANG S, BALAN B, ASSIS R D A, et al. Genome-wide profiling and phylogenetic analysis of the SWEET sugar transporter gene family in walnut and their lack of responsiveness to Xanthomonas arboricolapv. juglandis infection[J].? International journal of molecular sciences, 2020, 21(4): 1251.

[50] ZHANG L, WANG L, ZHANG J, et al. Expression and localization of SWEETs in Populus and the effect of SWEET7 overexpression in secondary growth[J].? Tree Physiology, 2021, 41(5): 882-899.

[51] ZHANG R, NIU K, MA H. Identification and expression analysis of the SWEET gene family from Poapratensis under abiotic stresses[J].? DNA Cell Biology, 2020, 39(9): 1606-1620.

[52] LIN Q, ZHONG Q, ZHANG Z. Identification and functional analysis of SWEET gene family in Averrhoa carambola L. fruits during ripening[J].? PeerJ, 2021, 9:e11404.

[53] ZHANG X, WANG S, REN Y, et al. Identification, Analysis and Gene Cloning of the SWEET Gene Family Provide Insights into Sugar Transport in Pomegranate (Punicagranatum)[J].? International Journal of Molecular Sciences, 2022, 23(5): 2471.

[54] DU Y L, LI W J, GENG J, et al. Genome-wide identification of the SWEET gene family in Phaseolus vulgaris L. and their patterns of expression under abiotic stress[J].? Journal of Plant Interactions, 2022, 17(1): 390-403.

[55] CHEN HY, HUH JH, YU YC, et al. The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection[J].? The Plant Journal, 2015, 83(6): 1046-1058.

[56] LIU X, ZHANG Y, YANG C, et al. AtSWEET4, a hexose facilitator, mediates sugar transport to axial sinks and affects plant development[J].? Scientific Reports,? 2016, 6(1): 1-12.

[57] WANG J, YU Y C, LI Y, et al. Hexose transporter SWEET5 confers galactose sensitivity to Arabidopsis pollen germination via a galactokinase[J].? Plant Physiology, 2022, 189(1): 388-401.

[58] SUN MX, HUANG XY, YANG J, et al. Arabidopsis RPG1 is important for primexine deposition and functions redundantly with RPG2 for plant fertility at the late reproductive stage[J].? Plant Reproduction, 2013, 26(2): 83-91.

[59] LIN I W, SOSSO D, CHEN L Q, et al. Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9[J].? Nature, 2014, 508(7497): 546-549.

[60] FATIMA U, BALASUBRAMANIAM D, KHAN W A, et al. SWEET11 and SWEET12 transporters function in tandem to modulate sugar flux in Arabidopsis: An account of the underlying unique structure-function relationship[J].? BioRxiv, 2022.

[61] KANNO Y, OIKAWA T, CHIBA Y, et al.? AtSWEET13 and AtSWEET14 regulate gibberellin-mediated physiological processes[J].? Nature Communications, 2016, 7(1): 1-11.

[62] CHEN L Q, LIN I W, QU X Q, et al. A cascade of sequentially expressed sucrose transporters in the seed coat and endosperm provides nutrition for the Arabidopsis embryo[J].? The Plant Cell, 2015, 27(3): 607-619.

[63] ZHANG Z, ZOU L M, REN C, et al. VvSWEET10 Mediates Sugar Accumulation in Grapes[J].? Genes, 2019, 10(4): 255.

[64] YAOL N, DINGC Q, HAOX Y, et al. CsSWEET1a and CsSWEET17 Mediate Growth and Freezing Tolerance by Promoting Sugar Transport across the Plasma Membrane[J].? Plant and Cell Physiology, 2020, 61(9): 1669-1682.

[65] WALEROWSKI P, G?譈NDEL A, YAHAYA N, et al. Clubroot disease stimulates early steps of phloem differentiation and recruits SWEET sucrose transporters within developing galls[J].? Plant Cell, 2018, 30(12): 3058-3073.

[66] VALIFARD M, LE HIR R, M?譈LLER J, et al. Vacuolar fructose transporter SWEET17 is critical for root development and drought tolerance[J].? Plant Physiology, 2021, 187(4): 2716-2730.

收稿日期:2022 - 07 - 11;修訂日期:2022 - 12 - 09

基金項目:甘肅省農(nóng)業(yè)科學(xué)院生物育種專項(2022GAAS05);國家自然科學(xué)基金(31960523)。

作者簡介:任凱麗(1993 — ),女,河北邯鄲人,研究實習(xí)員,研究方向為西甜瓜新品種選育與栽培。Email: 2296802504@qq.com。

通信作者:程? ?鴻(1972 — ),男,甘肅會寧人,研究員,研究方向為分子育種。Email: chengjn@yeah.net。

猜你喜歡
分類結(jié)構(gòu)功能
也談詩的“功能”
中華詩詞(2022年6期)2022-12-31 06:41:24
《形而上學(xué)》△卷的結(jié)構(gòu)和位置
分類算一算
論結(jié)構(gòu)
中華詩詞(2019年7期)2019-11-25 01:43:04
分類討論求坐標(biāo)
數(shù)據(jù)分析中的分類討論
教你一招:數(shù)的分類
關(guān)于非首都功能疏解的幾點思考
論《日出》的結(jié)構(gòu)
創(chuàng)新治理結(jié)構(gòu)促進(jìn)中小企業(yè)持續(xù)成長
主站蜘蛛池模板: 91无码国产视频| 精品偷拍一区二区| 久久五月视频| 国产精品尤物铁牛tv | 女人毛片a级大学毛片免费 | 国产精品午夜电影| 搞黄网站免费观看| 国产男女免费视频| 在线国产毛片| 国产白浆一区二区三区视频在线| 四虎成人免费毛片| 全部毛片免费看| 98超碰在线观看| 久久一级电影| 亚洲成a人片7777| 国产呦精品一区二区三区下载| 国产手机在线小视频免费观看| 久久精品丝袜| 欧美亚洲另类在线观看| 成人伊人色一区二区三区| 亚洲第一视频网| 亚洲一级毛片免费观看| 国产天天射| 日韩a级毛片| 青草精品视频| 欧美在线视频a| 亚洲色图欧美激情| 国产激情国语对白普通话| 欧美国产日韩在线| 99福利视频导航| 2020亚洲精品无码| 日本久久久久久免费网络| 亚洲男人天堂网址| 青青草91视频| 一级黄色片网| 九色综合视频网| 亚洲黄色网站视频| 成人午夜亚洲影视在线观看| 日本精品影院| 婷婷色中文网| 精品自窥自偷在线看| 播五月综合| 天堂久久久久久中文字幕| 色综合久久无码网| 久久伊人久久亚洲综合| 国产精品手机在线观看你懂的| 国产高清无码麻豆精品| 91麻豆国产视频| 青青草原国产| 欧美翘臀一区二区三区| 亚洲AV电影不卡在线观看| 国产精品夜夜嗨视频免费视频| 免费一级无码在线网站| 国产一区二区三区夜色| 久久无码av三级| 免费久久一级欧美特大黄| 天天摸夜夜操| 丁香亚洲综合五月天婷婷| 日本一本在线视频| 九九热精品免费视频| 精品一區二區久久久久久久網站| 亚洲精品福利视频| 国产综合亚洲欧洲区精品无码| 欧美精品1区| 亚洲女同一区二区| 亚洲天堂2014| 亚洲男人天堂网址| 国产亚洲精品91| 麻豆精品在线播放| 国产成人91精品免费网址在线| 久青草免费视频| 日韩天堂在线观看| 992Tv视频国产精品| 亚洲天堂777| 欧美精品影院| 色香蕉网站| 精品国产aⅴ一区二区三区| av午夜福利一片免费看| 亚洲欧美日韩中文字幕在线| 91福利免费| 亚洲国产成人久久77| 亚洲精品在线观看91|