




摘 要:不動(dòng)點(diǎn)理論是非線(xiàn)性泛函分析的重要組成部分,在處理許多非線(xiàn)性問(wèn)題時(shí)起著十分關(guān)鍵的作用。Banach壓縮映像原理是不動(dòng)點(diǎn)理論研究中的熱點(diǎn)問(wèn)題之一,近年來(lái)經(jīng)過(guò)學(xué)者們的深入研究,該定理在許多方面得到了拓展,取得了大量?jī)?yōu)秀的成果。在b-度量空間的框架下,首次考慮了積分型壓縮映射的不動(dòng)點(diǎn)問(wèn)題。首先,在該類(lèi)空間中提出了一類(lèi)新的積分型壓縮的概念,并根據(jù)映射對(duì)的包含關(guān)系構(gòu)造出一個(gè)序列,再利用反證法和壓縮條件證明了此序列是該空間中的一個(gè)柯西列;其次,通過(guò)該空間的完備性和映射對(duì)的弱相容性,證明了該空間中積分型壓縮映射對(duì)的公共不動(dòng)點(diǎn)的存在性及唯一性;最后,給出一個(gè)具體例子說(shuō)明了該結(jié)果的有效性。
關(guān) 鍵 詞:不動(dòng)點(diǎn); b-度量空間; 壓縮映射; 積分型; 柯西列
中圖分類(lèi)號(hào):O177.91 文獻(xiàn)標(biāo)志碼:A
doi:10.3969/j.issn.1673-5862.2023.06.013
Common fixed point theorems for a class of contractive mappings of integral type in b-metric spaces
GUAN Hongyan, GOU Jinze
(College of Mathematics and Systems Science, Shenyang Normal University, Shenyang 110034, China)
Abstract:Fixed point theory is an important part of nonlinear functional analysis and plays a key role, while Banach contraction mapping principle is one of the hot issues in the research of fixed point theory. In recent years, through continuous in-depth research by scholars, this result has been expanded in different aspects and has achieved many excellent results. In the framework of b-metric spaces, a fixed point problem of contractive mapping of integral type is considered for the first time. First, we introduce a new class of contractive mapping of integral type. Second, we construct a sequence according to the inclusion relation of the mappings and prove that the sequence is Cauchy by the mathematical induction and the contraction conditions. The existence and uniqueness of the common fixed point of a pair of the contractive mappings of integral type are proved by the completeness of the space and the weak compatibility of the mappings in this space. Finally, a concrete example is given to prove the validity of the result.
Key words:fixed point; b-metric spaces; contractive mapping; integral type; Cauchy sequence
1922年,Banach[1]在度量空間上提出了著名的壓縮映像原理。隨后,該結(jié)果被廣泛地應(yīng)用在數(shù)學(xué)中的諸多領(lǐng)域,很多學(xué)者通過(guò)改變空間或壓縮條件得到更多的不動(dòng)點(diǎn)結(jié)論。1993年,Czerwik[2]首次改變了度量空間的第3個(gè)條件得到了b-度量空間的概念并給出與壓縮映像原理相對(duì)應(yīng)的結(jié)果。在度量空間中,通過(guò)改變壓縮條件,Branciari[3]在2002年首次提出了積分型壓縮的概念并證明了該類(lèi)型壓縮映射不動(dòng)點(diǎn)的存在性及唯一性。2003年,Rhoades[4]推廣了Branciari的定理。基于Rhoades的結(jié)論,2009年,Moradi和Omid[5]得到了一類(lèi)新的積分型映射具有不動(dòng)點(diǎn)的條件。
參考文獻(xiàn):
[1]BANACH S. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales[J]. Fund Math, 1922,3:51-57.
[2]CZERWIK S. Contraction mappings in b-metric spaces[J]. Acta Math Inform Univ Ostrav, 1993,1(1):5-11.
[3]BRANCIARI A. A fixed point theorem for mappings satisfying a general contractive condition of integral type[J]. IJMMS, 2002,29(9):531-536.
[4]RHOADES B E. Two fixed-point theorems for mappings satisfying a general contractive condition of integral type[J]. IJMMS, 2003,63:4007-4013.
[5]MORADI S,OMID M. A fixed-point theorem for integral type inequality depending on another function[J]. Int J Math Anal, 2010,4(30):1491-1499.
[6]LI J J,GUAN H Y. Common fixed point of generalized αs-ψ-Geraghty contractive b-mappings on metric spaces[J]. Amer J Appl Math Stat, 2021,9(2):66-74.
[7]LI J J,GUAN H Y. Common fixed point theorems of contraction mappings with application[J]. Int J Math And Appl, 2021,9(2):231-243
[8]JUNGCK G. Compatible mappings and common fixed points[J]. Internat J Math Math Sci, 1986,9(4):771-779.
[9]ROSHAN J R,SHOBKOLAEI N,SEDGHI S,et al. Common fixed point of four maps in b-metric spaces[J]. Hacet J Math Stat, 2014,43(4):613-624.
[10]AGHAJANI A,ABBAS M,ROSHAN J. Common fixed point of generalized weak contractive mappings in partially ordered b-metric spaces[J]. Math Slovaca, 2014,64(4):941-960.
[11]關(guān)洪巖,郝妍. 廣義度量空間上壓縮型映像的不動(dòng)點(diǎn)理論及應(yīng)用[M]. 重慶: 重慶大學(xué)出版社, 2023:47-48.