張燕 馮立新



摘要: 首先,利用變限積分法和四階Runge-Kutta法分別離散含五次項的非線性Schr?dinger方程的空間和時間變量,并構造初邊值問題的全離散格式; 其次,在理論上證明其數值解的有界性、 存在唯一性以及收斂階; 最后,用數值模擬驗證理論分析的有效性.
關鍵詞: Schr?dinger方程; 變限積分法; 四階Runge-Kutta法; 收斂性分析
中圖分類號: O241.82? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0303-07
Numerical Scheme of Nonlinear Schr?dinger Equation Based on Variable Limit Integral Method
ZHANG Yan,FENG Lixin
(School of Mathematical Sciences,Heilongjiang University,Harbin 150080,China)
Abstract: Firstly,the variable limit integral method and the fourth-order Runge-Kutta method were used to discretize the spatial and te
mporal variables of a nonlinear Schr?dinger equation with a fifth order term,respectively,and a fully-discrete scheme for the initial boundary value problem was constructed. Secondly,we theoretic
ally proved the boundedness,existence,uniqueness and the order of convergence of the numerical solution. Finally,the numerical simulations verified the validity of the theoretical analysis.
Keywords: Schr?dinger equation; variable integral method; fourth-order Runge-Kutta method; convergence analysis
收稿日期: 2022-07-04.
第一作者簡介: 張 燕(1997—),女,漢族,碩士研究生,從事數學物理反問題及其數值解法的研究,E-mail: w1941329266@163.com.
通信作者簡介: 馮立新(1975—),女,漢族,博士,教授,從事數學物理反問題及其數值解法的研究,E-mail: fenglixin@hlju.edu.cn.
基金項目: 國家自然科學基金面上項目(批準號: 11871198)和黑龍江省自然科學基金(批準號: LH2022A021).
0 引 言
非線性Schr?dinger方程在光纖通信、 非線性波動力學等領域應用廣泛[1-3]. Cloot等[4]首次用有限差分法數值求解了含五次項的非線性Schr?dinger方程的初值問題; 張法勇等[5]利用有限差分法對該方程進行了數值分析,并給出了一個全離散的守恒差分格式; 張魯明等[6]基于該方程提出了一類廣義的含五次項的非線性Schr?dinger方程的初邊值問題:
參考文獻
[1] YUSUF A,SULAIMAN T A,ALSHOMRANI A S,et al.
Optical Solitons with Nonlinear Dispersion in Parabolic Law Medium and Three-Component Coupled Nonlinear Schr?dinger Equation [J]. Optical and Quantum Electronics,2022,54: 390-1-390-13.
[2] TIAN B,SHAN W R,ZHANG C Y,et al. Transformations for a Generalized Variable-Coefficient Nonlinear Schr?dinger Model from P
lasma Physics,Arterial Mechanics and Optical Fibers with Symbolic Computation [J]. The European Physical Journal B: Condensed Matter and Complex Systems,2005,47(3): 329-332.
[3] LI P,WANG L,KONG L Q,et al. Nonlinear Waves in the Modulation Instability Regime for the Fifth-Order Nonlinear Schr?dinger
Equation [J]. Applied Mathematics Letters,2018,85: 110-117.
[4] CLOOT A,HERBST B M,WEIDEMAN J A C. A Numerical Stu
dy of the Nonlinear Schr?dinger Equation Involving Quintic Terms [J]. Journal of Computational Physics,1990,86(1): 127-146.
[5] 張法勇,姜雪. 帶五次項的一類非線性Schr?dinger方程的有限差分法 [J]. 高等學校計算數學學報,2019,41(2): 116-125. (ZHANG F Y,J
IANG X. A Finite Difference Method for a Class of Nonlinear Schr?dinger Equations Involving Quintic Terms [J]. Numerical Mathematics A Journal of Chinese Universities,2019,41(2): 116-125.)
[6] 張魯明,常謙順. 帶五次項的非線性Schr?dinger方程的守恒數值格式 [J]. 應用數學,1999,12(1): 65-71. (ZHANG L M,CHANG Q S. A Co
nservative Numerical Scheme for Nonlinear Schr?dinger Equation Involving Quintic Terms [J]. Mathematica Applicata,1999,12(1): 65-71.)
[7] 薛翔,王廷春. 五次非線性Schr?dinger方程的一個新型守恒緊致差分格式 [J]. 數學雜志,2019,39(4): 555-564. (XUE X,WANG T C. A N
ew Compact Finite Difference Scheme for the Quantic Nonlinear Schr?dinger Equation [J]. Journal of Mathematics,2019,39(4): 555-564.)
[8] 魏新新. 一類非線性Schr?dinger方程分裂步緊致差分算法的研究 [D]. 南京: 南京航空航天大學,2019. (WEI X X. Researches on Split-S
tep Compact Difference Methods for a Class of Nonlinear Schr?dinger Equations [D]. Nanjing: Nanjing University of Aeronautics and Astronautics,2019.)
[9] 張麗劍,羅躍生,張文平. 變限積分的有限體積法解決對流擴散方程 [J]. 哈爾濱工程大學學報,2015,36(3): 427-431. (ZHANG L J,LUO Y S,ZH
ANG W P. Solving Convection-Diffusion Equation by Using the Finite Volume Metho
d with Variable Limit Integral [J]. Journal of Harbin Engineering University,2015,36(3): 427-431.)
[10] LUO Y S,LI X L,GUO C. Fourth-Order Compact and E
nergy Conservative Scheme for Solving Nonlinear Klein-Gordon Equation [J]. Numerical Methods for Partial Differential Equations,2017,33(4): 1283-1304.
[11] GUO C,LI F,ZHANG W P,et al. A Conservative Numerical Scheme for Rosenau-RLW Equation Based on Multiple Integral Finite Volume Met
hod [J/OL]. Boundary Value Problems,(2019-10-24)[2022-02-25]. https://doi.org/10.1186/s13661-019-1273-2.
[12] GUO C,XUE W J,WANG Y L,et al. A New Implicit Nonlinear Discrete Scheme for Rosenau-Burgers Equation Based on Multiple Integral Fi
nite Volume Method [J]. AIP Advances,2020,10(4): 045125-1-045125-9.
[13] HALE J K. Ordinary Differential Equations [M]. Florida: Krieger Publishing Company,1980: 12-49.
[14] BUTCHER J C. Numerical Methods for Ordinary Differential Equations [M]. Chichester: John Wiley and Sons,Ltd,2003: 86-95.
(責任編輯: 李 琦)