豐月姣 劉寶亮 張秀珍



摘要: 考慮連續型向上敲出巴黎期權定價問題. 首先,針對該類型巴黎期權,給出一個時間1階、 空間2 階精度的隱式差分格式; 其次,采用不等式放大方法和Fourier展開方法分別討論差分格式的穩定性、 可解性和收斂性; 最后,利用差分格式分析連續型向上敲出巴黎期權的數值定價結果.
關鍵詞: 連續型向上敲出巴黎期權; 數值模擬; 穩定性; 收斂性; 可解性
中圖分類號: O211.64? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0265-10
Implicit Difference Scheme and Its Stability and ConvergenceAnalysis for Continuous Up-and-Out Paris Option Pricing
FENG Yuejiao1,LIU Baoliang1,ZHANG Xiuzhen1,2
(1. School of Mathematics and Statistics,Shanxi Datong University,Datong 037009,Shanxi Province,China;
2. School of Statistics,East China Normal University,Shanghai 200241,China)
Abstract: We considered the continuous up-and-out Paris option pricing problem. Firstly,an implicit difference schem
e with the first order in time and the second order in space was given for this type of Paris option. Secondly,the inequality
amplification method and Fourier expansion method were used to discuss the stability,solvability and convergence of the difference scheme,respectively.
Finally,the numerical pricing results of continuous up-and-out Paris options were analyzed by using the difference scheme.
Keywords: continuous up-and-out Paris option; numerical simulation; stability; convergence; solvability
收稿日期: 2022-06-27.
第一作者簡介: 豐月姣(1981—),女,漢族,碩士,講師,從事可靠性理論及其應用的研究,E-mail: fengsheng269@163.com. 通信作者簡介:
張秀珍(1984—),女,漢族,碩士,講師,從事非參數統計的研究,E-mail: zhangxiuzhen132@163.com.
基金項目: 山西省高等學校科技創新計劃項目(批準號: 2019L0738; 2020L0463).
傳統的敲出障礙期權設置了障礙值,一旦期權掛鉤的風險資產觸及障礙值,敲出障礙期權即刻作廢,期權投資人也會損失全部期權金[1]. 此外,當風險資產接近障礙值時,雖然期權沒有作廢,但會使投資人頻繁地對投資策略進行調整,導致大量的重復勞動,為解決該問題,證券投資機構衍生出了連續型巴黎期權[2-3].
連續型巴黎期權在設定了障礙值SB的同時,又設置了計時器τ,當風險資產價格在SB上方的累積時間τ超過D后期權作廢. 計時器τ的引入可降低期權作廢的風險[4].
目前,關于巴黎期權的研究已有很多結果[5-14]. 文獻[5]利用巴黎期權研究了植物品種權證券化定價問題,用具有巴黎期權性質的證券化產品定價模型刻畫植物品種權證券化的獨特性,并通過數值仿真和靈敏度分析驗證了定價模型的合理性和有效性; 在巴黎期權的概率模擬方面,文獻[6]構造了一種多層Monte-Carlo方法,相比于傳統的Monte-Carlo方法,模擬結果表明,多層Monte-Carlo方法提高了巴黎期權定價的概率精度,拓寬了巴黎期權數值算法的選擇范圍;文獻[7]用前向打靶網格方法和最小二乘Monte-Carlo兩種數值方法,研究了附帶提前實施條款的巴黎期權定價問題; 在巴黎期權的差分格式方面,文獻[8]針對巴黎期權適合的拋物方程,在進行Laplace變換后,采用顯式Euler格式研究了巴黎期權定價問題; 文獻[9]用二叉樹方法研究了文獻[8]的問題. 但由于巴黎期權結構復雜,因此文獻[8-9]并未進行相應的穩定性和收斂性分析.
基于此,本文考察連續型巴黎期權定價問題. 由于巴黎期權路徑復雜、 解析定價結果很難獲得,因此與上述文獻的巴黎期權模擬結果不同,本文采用數值差分方法給出連續型巴黎期權的隱式差分格式,并分析差分格式的穩定性和收斂性.
下面分析連續型巴黎期權的性質. 由圖3可見,在參數保持不變的條件下,巴黎期權的價值隨掛鉤風險資產價格的增大呈倒V型趨勢. 這是因為當風險資產價值低于障礙水平SB時,連續型巴黎期權沒有計時,期權不存在作廢的可能; 當風險資產價值高于障礙水平SB時,巴黎期權開始計時,計時時間越長期權作廢的可能性越大,其價值越低. 圖4模擬了ST=99.5時連續型巴黎期權隨時間的變動特征,由于ST非常接近障礙值SB,此時風險資產的隨機波動隨時可能觸發障礙產生計時,因此期權價格存在下降趨勢. 當時間t>1時,連續計時的時長不可能超過D,期權不再可能被作廢,于是期權開始呈上升趨勢.
參考文獻
[1] 韓笑,張敏行. 隨機利率下的期權定價 [J]. 吉林大學學報(理學版),2021,59
(6): 1405-1410. (HAN X,ZHANG M X. Option Pricing under Stochastic Interest Rate? [J]. Journal of Jilin University (Science Edition),2021,59(6): 1405-1410.)
[2] 姚宇航,鐘雨潔,辜浩誠,等. 基于障礙期權組合PPP項目第三方擔保的效用研究 [J]. 項目管理技術,2019,17(11): 31-35.
(YAO Y H,ZHONG Y J,GU H C,et al. Effectiveness? of Third Party Guarante
e in PPP Project Based on Barrier Option Portfolio [J]. Project Management Technology,2019,17(11): 31-35.)
[3] 薛廣明,林福寧. 帶跳隨機波動率模型的美式期權及美式障礙期權定價 [J]. 吉林大學學報(理學版),2020,58(5): 1119-1129.
(XUE G M,LIN F N. Pricing of American Options and American Barrier Options wit
h Jump Stochastic Volatility Model [J]. Journal of Jilin University (Science Edition),2020,58(5): 1119-1129.)
[4] 宋海明,侯頔. Black-Scholes模型下美式期權定價的神經網絡算法 [J]. 吉林大學學報(理學版),2021,59(5): 1089-1092.
(SONG H M,HOU D. Neural Network Algorithm for American Option Pricing under Bla
ck-Scholes Model [J]. Journal of Jilin University (Science Edition),2021,59(5): 1089-1092.)
[5] 張璐,陳會英. 基于巴黎期權的植物品種權證券化定價研究 [J]. 統計與信息論壇,2018,33(5): 73-79. (ZHANG L,CHEN H Y. Research on the
Pricing of Plant Species Right Securitization Based on Paris Option [J]. Journal of Statistics and Information,2018,33(5): 73-79.)
[6] 宋斌,林則夫,張冰潔. 基于多層次蒙特卡羅方法的巴黎期權定價 [J]. 中國管理科學,2016,24(2): 11-18.
(SONG B,LIN Z F,ZHANG B J. Pricing Parisian Option by Multi-level Monte Carlo Method [J]. Chinese Journal of Management Science,2016,24(2): 11-18.)
[7] 宋斌,井帥. 美式巴黎期權的定價模型與數值方法 [J]. 系統工程,2015,33(2): 1-8. (SONG B,JING S. The Pricing Model
of American Parisian Option and Numerical Methods [J]. Systems Engineering,2015,33(2): 1-8.)
[8] 宋斌,梁恩奇,唐逞. 基于拉普拉斯變換的巴黎期權的定價 [J]. 系統工程,2017,35(1): 1-4. (SONG B,LIANG E Q,TANG C. The Parisian Op
tions Pricing Theory Based on Laplace Transform Methods [J]. Systems Engineering,2017,35(1): 1-4.)
[9] GAUDENZI M,ZANETTE A. Fast Binomial Procedures for
Pricing Parisian/ParAsian Options [J]. Computational Management Science,2017,14(3): 313-331.
[10] 張璐,陳會英. 基于巴黎期權的植物品種權證券化定價研究 [J]. 統計與信息論壇,2018,33(5): 73-79.
(ZHANG L,CHEN H Y. Research on the Pricing of Plant Species Right Securitization Based on the Paris Options [J]. Journal of Statistics and Information,2018,33(5): 73-79.)
[11] 宋斌,梁恩奇,唐逞. 基于拉普拉斯變換的巴黎期權的定價 [J]. 系統工程,2017,35(1): 1-4. (SONG B,LIANG E Q,TANG C.
The Parisian Options Pricing Theory Based on Laplace transform Methods [J]. Systems Engineering,2017,35(1): 1-4.)
[12] 宋斌,林則夫,張冰潔. 基于多層次蒙特卡羅方法的巴黎期權定價 [J]. 中國管理科學,2016,24(2): 11-18. (SONG B,LIN Z F,ZHANG B J.
Pricing Parisian Option by Multi-level Monte Carlo Method [J]. Chinese Journal of Management Science,2016,24(2): 11-18.)
[13] 宋斌,井帥. 美式巴黎期權的定價模型與數值方法 [J]. 系統工程,2015,33(2): 1-8. (SONG B,JING S. The Pricing
Model of American Parisian Option and Numerical Methods [J]. Systems Engineering,2015,33(2): 1-8.)
[14] 袁國軍,肖慶憲. 跳-擴散結構下內含巴黎期權特征的可轉債定價研究 [J]. 數學的實踐與認識,2014,44(16): 13-21. (YUAN G J,XIAO Q X.
Study on the Pricing Convertible Bond with Paris Option Feature under Jump-Diffusion Structure [J]. Mathematics in Practice and Theory,2014,44(16): 13-21.)
[15] 宋斌,周湛滿,魏琳,等. 巴黎期權的PDE定價及隱性差分方法研究 [J]. 系統工程學報,2013,28(6): 764-774. (SONG B,ZHOU Z M,WEI L,et al.
Parisian Options PDE Pricing and Its Implicit Difference Method [J]. Journal of Systems Engineering,2013,28(6): 764-774.)
[16] 董艷. 非線性Black-Scholes模型下Bala期權定價 [J].
高校應用數學學報A輯,2016,31(1): 9-20. (DONG Y. The Pricing of Bala Options under the Nonlinear
Black-Scholes Model [J]. Applied Mathematics A Journal of Chinese (Ser A),2016,31(1): 9-20.)
[17] 朱順泉. 基于R語言的金融工程計算 [M]. 北京: 清華大學出版社,2016: 109-110. (ZHU S Q.
Financial Engineering Calculation Based on R Language [M]. Beijing: Tsinghua University Press,2016: 109-110.)
[18] CEN Z D,HUANG J,XU A M,et al. Numerical Approximation of
a Time-Fractional Black-Scholes Equation [J]. Computers and Mathematics with Applications,2018,75(8): 2874-2887.
[19] DE STAELEN R H,HENDY A S. Numerically Pricing Double
Barrier Options in a Time-Fractional Black-Scholes Model [J]. Computers and Mathematics with Applications,2017,74(6): 1166-1175.
[20] ZHANG H,LIU F,CHEN S,et al. Fast Numerical Simulatio
n of a New Time-Space Fractional Option Pricing Model Governing European Call o
ption [J]. Applied Mathematics and Computation,2018,339: 186-198.
(責任編輯: 李 琦)