程鑫 張婉婧 張婧



摘要: 先利用單邊權的外推法建立奇異積分和分數次積分與BMO函數生成的多線性交換子在加權Lebesgue空間上的有界性,再在此基礎上,進一步研究單邊振蕩型積分這類交換子在單邊Morrey空間上的加權有界性.
關鍵詞: 單邊振蕩積分; 多線性交換子; 單邊Morrey空間; 單邊權
中圖分類號: O174.2? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0251-08
Boundedness of Multilinear Commutators for One-SidedOscillatory Integral on Weighted Morrey Space
CHENG Xin1,ZHANG Wanjing1,ZHANG Jing1,2
(1. College of Mathematics and Statistics,Yili Normal University,Yining 835000,Xinjiang Uygur Autonomous Region,China;
2. Institute of Applied Mathematics,Yili Normal University,Yining 835000,Xinjiang Uygur Autonomous Region,China)
Abstract: Firstly,using extrapolation method of one-sided weights,we established the boundedness of multilinear commutators generated by singular integral
and fractional integral? with function in BMO on weighted Lebesgue spaces. Secondly, on this basis,we further studied the weighted boundedness of this kind of
commutators of one-sided oscillatory integrals on one-sided? Morrey spaces.
Keywords: one-sided oscillatory integral; multilinear commutator; one-sided Morrey space; one-sided weight
收稿日期: 2022-05-05. 網絡首發(fā)日期: 2023-02-13.
第一作者簡介: 程 鑫(1996—),女,漢族,碩士研究生,從事調和分析與應用的研究,E-mail: cx2901257097@163.com.
通信作者簡介: 張 婧(1980—),女,漢族,博士,教授,從事調和分析與應用的研究,E-mail: zjmath66@126.com.
基金項目: 國家自然科學基金(批準號: 12261083)、 新疆維吾爾自治區(qū)自然科學基金(批準號: 2021D01C463)
和伊犁師范大學“學實高層次人才崗位”項目(批準號: YSXSJS22001).
網絡首發(fā)地址:? https://kns.cnki.net/kcms/detail/22.1340.O.20230210.1616.001.html.
1 引言與預備知識
自Sawyer[1]引入單邊權并討論了單邊Hardy-Littlewood極大算子的加權有界性以來,單邊理論不僅在遍歷理論中得到進一步應用,而且對調和分析中關于雙邊算子的研究也進行了一定推廣. 研究表明,對于像更小的算子(單邊算子)和更大的一類權(單邊權),調和分析中許多經典的結論仍然成立[1-6]. 本文主要討論單邊情形下振蕩積分多線性交換子的有界性質.
振蕩積分的有界性是調和分析研究的重要內容之一,它與很多重要的調和分析算子和偏微分方程都有緊密聯(lián)系. 如Fourier變換、 Bochner-Riesz平均、 應用于CT技術中的Radon變換等都是特殊的振蕩積分. Fu等[7]建立了單邊Ricci-Stein型振蕩積分在Lebesgue空間上的加權有界性; 鄭慶玉等[8]得到了該積分與BMO函數生成的一階交換子在加權Lebesgue空間上的有界性. 受文獻[7-8]研究結果的啟發(fā),本文進一步研究單邊振蕩奇異積分和分數次振蕩積分與 BMO函數生成的多線性交換子在單邊加權Morrey空間上的有界性質.
2.3 定理4的證明
定理4的證明方法與定理3類似. 可先用定理2和文獻[8]的證明方法建立S+,b的加權Lebesgue有界性,再用定理3的推導方法即可得到證明.
參考文獻
[1] SAWYER E. Weighted Inequalities for the One-Sided Hardy-Littlewood Maximal
Functions [J]. Trans Amer Math Soc,1986,297(1): 53-61.
[2] MARTN-REYES F J,DE LA TORRE A. Two Weight Norm Ine
qualities for Fractional One-Sided Maximal Operators [J]. Proc Amer Math Soc,1993,117(2): 483-489.
[3] LORENTE M,RIVEROS M S. Two Weight Norm Inequalities
for Communtators of One-Sided Singular Integrals and the One-Sided Discrete Square Function [J]. J Aust Math Soc,2005,79(1): 77-94.
[4] 傅尊偉,林燕. 單邊算子交換子的加權有界性 [J]. 數學學報(中文版),2011,54(5): 705-714. (FU Z W,LIN Y. Weighted Boundedness for Comm
utators of One-Sided Operators [J]. Acta Mathematica Sinica (Chinese Series),2011,54(5): 705-714.)
[5] LORENTE M,RIVEROS M S. Weighted Inequalities for Commut
ators of One-Sided Singular Integrals [J]. Comment Math Univ Carolin,2002,43(1): 83-101.
[6] SHI S G,FU Z W. Estimates of Some Operators on One
-Sided Weighted Morrey Spaces [J/OL]. Abstr Appl Anal,(2013-11-24)[2022-02-28]. https://doi.org/10.1155/2013/829218.
[7] FU Z W,LU S Z,PAN Y B,et al. Boundedness of One-Sided Oscillatory Integral Op
erators on Weighted Lebesgue Spaces [J/OL]. Abstr Appl Anal,(2014-02-03)[2022-02-28]. https://doi.org/10.1155/2014/291397.
[8] 鄭慶玉,張蕾,石少廣. 單邊振蕩積分算子交換子的加權有界性質 [J]. 數學進展,2016,45(5): 738-746. (ZHENG Q Y,ZHANG L,SHI S G. Weigh
ted Boundedness for Commutators of One-Sided Oscillatory Integral Operators [J]. Advances in Mathematics (China),2016,45(5): 738-746.)
[9] AIMAR H,FORZANI L,MARTN-REYES F J. On Weighted Ine
qualities for Singular Integrals [J]. Proc Amer Math Soc,1997,125(7): 2057-2064.
[10] ANDERSEN K F,SAWYER E T. Weighted Norm Inequalities fo
r the Riemann-Liouville and Weyl Fractional Integral Operators [J]. Trans Amer Math Soc,1988,308(2): 547-558.
[11] MORREY C B. On the Solutions of Quasi-linear E
lliptic Partial Differential Equations [J]. Trans Amer Math Soc,1938,43(1): 126-166.
[12] 朱敏,陶雙平. 加權Morrey空間上多線性奇異積分的振蕩及變分算子的有界性 [J]. 吉林大學學報(理學版),2021,59(4): 719-724. (ZHU M,TA
O S P. Boundedness of Oscillation and Vartiation Operators for Multilinear Singular Integrals on Weighted Morrey Spaces
[J]. Journal of Jilin University (Science Edition),2021,59(4): 719-724.)
[13] 李瑞,陶雙平. 內蘊平方函數在分數次Morrey空間上的加權有界性? [J]. 吉林大學學報(理學版),2020,58(4): 782-790. (LI R,TAO S P. We
ighted Boundedness of Intrinsic Square Functions on Fractions Morrey Spaces [J]. Journal of Jilin University (Science Edition),2020,58(4): 782-790.)
[14] 徐博,陶雙平. 變指標Morrey空間上分數次極大算子及交換子的弱型估計 [J]. 東北師大學報(自然科學版),2022,54(3): 8-13.
(XU B,TAO S P. Weak Type Estimates of Fractional Maximal Operator and Commutator on Morrey Spaces with Variable Exponents [J].
Journal of Northeast Normal University (Natural Science Edition),2022,54(3): 8-13.)
[15] LORENTE M,RIVEROS M S. Weights for Commutators of
the One-Sided Discrete Square Function,the Weyl Fractional Integral and Other One-Sided Operators [J]. Proc Roy Soc Edinburgh Sect A,2005,135(4): 845-862.
[16] 傅尊偉,陸善鎮(zhèn). 單邊Triebel-Lizorkin空間及其應用 [J]. 中國科學: 數學,2011,41(1): 43-52. (FU Z W,LU S Z. One-Sided Triebel-
Lizorkin Space and Its Applications [J]. Scientia Sinica: Mathematica,2011,41(1): 43-52.)
(責任編輯: 趙立芹)