謝偉康 樊方成 周冉



摘要: 基于新的2×2離散矩陣譜問題,研究廣義Ablowitz-Ladik(AL)方程的守恒律和Darboux變換. 首先,利用Riccati方法給出廣義AL方程的無窮守恒律,并得到其顯式表示; 其次,借助Lax對和規范變換構造廣義AL方程的Darboux變換; 最后,選擇恰當的種子解,給出廣義AL方程的顯式精確解,得到2-扭結孤子解,并分析解的動力學性質.
關鍵詞: 廣義Ablowitz-Ladik方程; Lax對; 守恒律; Darboux變換; 精確解
中圖分類號: O175.29? 文獻標志碼: A? 文章編號: 1671-5489(2023)02-0246-05
Conservation Law and Darboux Transformation of Generalized Ablowitz-Ladik? Equation
XIE Weikang1,FAN Fangcheng1,ZHOU Ran2
(1. School of Mathematics and Statistics,Minnan Normal University,Zhangzhou 363000,Fujian Province,China;
2. College of Mathematics,Jilin University,Changchun 130012,China)
Abstract: Based on? a new 2×2 discrete matrix spectral problem,we? studied conservation law and Darboux transformation of generalized Ablowitz-Ladik (AL)
equation. Firstly,we gave infinite? conservation law of the generalized AL equation and obtained its explicit representation by using Riccati ?method.
Secondly,Darboux transformation (DT) of the generalized AL equation was constructed by means of the Lax pair and gauge transformation. Finally, by choosing the appropriate
seed solution,we gave the explicit exact solutions of the generalized AL equation, obtained 2-kink soliton,and analyzed the dynamic properties of the solution.
Keywords: generalized Ablowitz-Ladik? equation; Lax pair; conservation law; Darboux transformation; exact solution
收稿日期: 2022-04-20.
第一作者簡介: 謝偉康(1998—),男,漢族,碩士,從事可積系統及其應用的研究,E-mail: xieweikang7@163.com.
通信作者簡介: 樊方成 (1989—),男,漢族,博士,副教授,從事可積系統及其應用的研究,E-mail: fanfc@mnnu.edu.cn.
基金項目: 福建省自然科學基金面上項目(批準號: 2022J01892).
0 引 言
非線性Schr?dinger(NLS)方程在非線性光學、 等離子體、 水波理論、 生物物理學、 Bose-Einstein凝聚態等物理學領域應用廣泛[1-2].? Ablowitz-Ladik(AL)方程是NLS方程的離散形式,可描述光學系統中的self-trapping機制、 化學性質和凝聚態等[3].這兩類方程都是完全可積的,能通過Hirota雙線性方法[4]、 Darboux變換[5]和Riemann-Hilbert方法[6]等得到其孤子解、 呼吸子解和怪波解等. 這些結果為解釋相關物理現象提供了理論依據.
綜上,本文從新的2×2離散矩陣譜問題(2)和(4)出發,研究了廣義AL方程(3)的無窮守恒律和Darboux變換. 一方面,借助Riccati方程組構造法得到了廣義AL方程的無窮守恒律,并給出了其顯式表示; 另一方面,通過Lax對和規范變換構造了廣義AL方程的Darboux變換,通過選擇種子解un=1,vn=1,給出了廣義AL方程的顯式精確解(9),又通過選擇適當的參數,得到了2-扭結孤子,并分析了其動力學行為.
參考文獻
[1] BAILUNG H,SHARMA S K,NAKAMURA Y. Observation of Peregrine Solitons in a Multicomponent Plasma with Negative Ions [J].
Phys Rev Lett,2011,107: 255005-1-255005-4.
[2] YAN Z Y. Vector Financial Rogue Waves [J]. Phys Lett A,2011,375(48): 4274-4279.
[3] HENNIG D,TSIRONIS G P. Wave Transmission in Nonlinear Lattices [J]. Phys Rep,1999,307(5/6): 333-432.
[4] OHTA Y,YANG J K. General Rogue Waves in the Focusing and Defocusing Ablowitz-Ladik Equations [J].J Phys A: Math Theor,2014,47(25): 255201-1-255201-23.
[5] WEN X Y,YAN Z Y. Modulational Instability and Dynamics of Multi-rogue Wave Solutions for the Discrete Ablowitz-Ladik Equation
[J]. J Math Phys,2018,59(7): 073511-1-073511-14.
[6] LENELLS J. Absence of Solitons for the Defocusing NLS Equation on the Half-Line [J]. Lett Math Phys,2016,106(9): 1235-1241.
[7] ABLOWITZ M J,LADIK J F. Nonlinear Differential-Difference Equations [J]. J Math Phys,1975,16: 598-603.
[8] ZHANG H W,TU G Z,OEVEL W,et al. Symmetries,Conserved Quantiti
es,and Hierarchies for Some Lattice Systems with Soliton Structure [J]. J Math Phys,1991,32(7): 1908-1918.
[9] GKTA?U,HEREMAN W. Symbolic Computation of Recursion Operators for Nonlinear Differential-Difference Equations [J]. Math Comput Appl,2011,16(1): 1-12.
[10] KHANIZADEH F,MIKHAILOV A V,WANG J P. Darboux Tr
ansformations and Recursion Operators for Differential-Difference Equations [J]. Theoret Math Phys,2013,177(3): 1606-1654.
[11] GENG X G,GONG D. Quasi-periodic Solutions of the Discrete MKdV Hierarchy [J]. Int J Geom Methods Mod Phys,2013,10(3): 1250094-1-1250094-37.
[12] WADATI M. Transformation Theories for Nonlinear Discrete Systems [J]. Prog Theor Phys Suppl,1976,59: 36-63.
[13] ZHU Z N,WU X N,XUE W M,et al. Infinitely Many Conservation Laws for
the Blaszak-Marciniak Four-Field Integrable Lattice Hierarchy [J]. Phys Lett A,2002,296(6): 280-288.
[14] FAN F C,SHI S Y,XU Z G. Positive and Negative Integrable Lattice Hierarchie: Conservation Laws
and N-Fold Darboux Transformations [J]. Commun Nonlinear Sci Numer Simul,2020,91: 105453-1-105453-18.
[15] 谷超豪,胡和生,周子翔. 孤立子理論中的Darboux變換及其幾何應用 [M]. 上海: 上海科學技術出版社,1991: 1-271.
(GU C H,HU H S,ZHOU Z X. Darboux Transformation in Soliton Theory and Its Geometric Applications [M]. Shanghai: Shanghai Scientific & Technical Publishers,1991: 1-271.)
[16] 李翊神. 孤子與可積系統 [M]. 上海: 上海科技教育出版社,1999: 1-189.
(LI Y S. Soliton and Integrable System [M]. Shanghai: Shanghai Scientific and Technological Education Publishing House,1999: 1-189.)
[17] 樊方成,周冉. 一類微分-差分方程的孤子解 [J]. 吉林大學學報(理學版),2019,57(4): 762-766.
(FAN F C,ZHOU R. Soliton Solutions of a Class of Differential-Difference Equations [J]. Journal of Jilin University (Science Edition),2019,57(4): 762-766.)
[18] FAN F C,SHI S Y,XU Z G. Infinite Number of Conservation Laws and Darboux Transformations for a 6-Field Integrable Lattic
e System [J]. Internat J Modern Phys B,2019,33(14): 1950147-1-1950147-16.
[19] 樊方成,周冉. 一類離散可積系統的孤子解 [J]. 吉林大學學報(理學版),2020,58(6): 1303-1308.
(FAN F C,ZHOU R. Soliton Solutions of a Class of Discrete Integrable Systems [J]. Journal of Jilin University (Science Edition),2020,58(6): 1303-1308.)
[20] FAN F C,XU Z G,SHI S Y. N-Fold Darboux Transformation and Soliton Solutions for the Relativistic Toda Lattice Equation [J]. Rep Math Phys,2022,89(1): 9-26.
(責任編輯: 趙立芹)