劉玉峰,張國慶,劉娜,李周
TiAl合金氣霧化制粉及熱等靜壓成形研究進展
劉玉峰,張國慶,劉娜,李周
(中國航發北京航空材料研究院 先進高溫結構材料重點實驗室,北京 100095)
概述了TiAl合金氣霧化制粉及熱等靜壓成形的主要研究成果。在TiAl合金粉末制備方面,重點介紹了氣霧化制粉工藝、粉末粒度控制、粉末氧含量控制和粉末組織特征。針對熱等靜壓技術,介紹了TiAl合金粉末熱等靜壓致密化過程及機理,總結了采用熱等靜壓近凈成形工藝制備TiAl合金轉捩片的研究成果。結合粉末冶金TiAl合金研究進展,提出了未來TiAl合金粉末制備及成形技術的發展方向。
粉末冶金;TiAl合金;氣霧化;熱等靜壓;近凈成形
TiAl合金作為一種輕質耐熱結構材料,密度僅為3.9~4.2 g/cm3,具有良好的高溫強度、蠕變抗力和抗氧化性能,在航空航天、武器裝備和汽車工程等領域極具應用潛力[1-5]。采用TiAl合金代替鎳基高溫合金制備低壓渦輪葉片,可以實現航空發動機的大幅減重,使渦輪盤、軸等的承力要求降低一半以上,在提高發動機推重比、燃油效率,減少有害氣體排放,降低噪音污染等方面具有顯著成效[6-10]。2006年,美國通用電氣公司公司宣布采用Ti–48Al–2Nb–2Cr合金代替鎳基高溫合金應用于GEnxTM-1B發動機第6級和第7級低壓渦輪葉片,成為TiAl合金發展史上的重要里程碑[11-12]。2014年,PW1100G發動機最后一級低壓渦輪采用等溫鍛造TiAl合金(Ti–43Al–4Nb–1Mo– 0.1B)葉片并成功首飛。這進一步推動了TiAl合金商業化應用進程[13-14]。與傳統鈦合金相比,TiAl合金具有更高的承溫能力、抗蠕變性能、抗氧化性能和阻燃能力,用于制備火箭、武器裝備零部件,以及超高音速飛行器的翼、殼體等,可大幅提升裝備性能[12-14]。
然而,TiAl合金的本征脆性極大地限制了其工程化應用。國內外學者在TiAl合金成分設計方面開展了大量研究,通過降低Al含量或添加Cr、Mn、V、B等合金元素改善其變形能力,開發了TNM、Ti–Al–Mn、Ti–Al–V等TiAl合金體系[15-23]。隨著合金元素不斷增加,給鑄造工藝帶來了巨大挑戰,采用鑄錠冶金工藝可在一定程度上提高TiAl合金塑性,但顯微偏析問題仍有待解決[[24]。以液態金屬霧化和成形技術為基礎的粉末冶金工藝,可避免鑄造和鑄錠冶金工藝帶來的成分偏析、組織粗大和縮松縮孔等缺陷,在提升TiAl合金性能的同時還可實現復雜制件的近凈成形,成為制備TiAl合金的重要研究方向之一[25-27]。粉末制備是粉末冶金工藝的前提,目前高品質TiAl合金粉末制備技術主要有等離子旋轉電極法和氣霧化法。等離子旋轉電極法制備的粉末球形度好、粒度分布較窄,更適用于增材制造TiAl合金構件的制備;氣霧化法生產效率高,細粉末收得率較高,更適用于傳統粉末冶金工藝。針對氣霧化TiAl合金粉末制備,概述了在霧化工藝、粉末粒度控制、粉末氧含量控制和粉末組織特征方面的研究進展;針對TiAl合金粉末成形技術,重點介紹了熱等靜壓致密化機理、工藝參數影響及轉捩片熱等靜壓近凈成形技術的應用成果。
合金粉末是制備粉末冶金TiAl合金構件的基礎,粉末品質直接決定粉末冶金TiAl合金構件的性能[28]。采用氣霧化法制備TiAl合金粉末的首要條件是將預合金錠熔化。由于TiAl合金化學反應活性較大,若采用常規的陶瓷坩堝進行熔煉,金屬液將與坩堝材料反應造成嚴重污染,采用冷坩堝熔煉可解決這一難題[29]。冷坩堝真空感應熔煉裝置示意圖見圖1,TiAl預合金錠的熔煉在水冷銅坩堝中進行,銅線圈產生電磁場加熱預合金錠使錠坯從頂部開始熔化,當熔液與坩堝壁接觸時形成金屬凝殼,從而保證后續TiAl預合金錠的熔煉始終在同成分的殼體中進行,避免了原材料的污染。另一解決思路是取消熔煉坩堝,直接將TiAl預合金棒料作為熔煉電極,在感應線圈加熱下逐漸熔化,形成的熔滴落入噴嘴并在高壓氬氣作用下霧化成粉末,即電極感應熔煉氣霧化制粉,裝置示意見圖2。

圖1 冷壁坩堝真空感應熔煉示意圖

圖2 電極感應熔煉氣霧化示意圖
氣霧化工藝制備的粉末粒度在幾微米至幾百微米之間變化。對傳統粉末冶金工藝路線而言,粉末燒結通常是在合金熔點以下進行的固相燒結,如熱等靜壓和放電等離子燒結等,因此,需要粉末粒度分布范圍較寬,以充分填充粉末之間的空隙,實現燒結錠坯的高致密化[30]。另外,粉末冶金TiAl合金的高強度要求細小的晶粒組織,因而細粉末收得率成為評價TiAl合金粉末制備的重要指標。
對冷坩堝感應熔煉氣霧化制粉技術而言,TiAl合金粉末的粒度受噴嘴結構、導流結構、熔體溫度和霧化壓力等多個因素的影響。適當增大噴嘴霧化角度有利于氣體接觸并擊碎TiAl合金熔融液流,使細粉末收得率提高。導流管內徑直接決定合金熔液流量,較小的流量可使單位體積合金熔液與霧化氣體作用更為充分,內徑為5、4 mm的導流管制備的150 μm以下TiAl合金粉末收得率分別為37%和45%,但導流管內徑過小易使合金熔液熱量快速散失而發生堵塞現象。TiAl合金熔體溫度升高,黏度和表面張力變小,破碎合金熔體所需的能量越少,有利于破碎過程,從而提高細粉末收得率。調整霧化壓力是控制粉末粒度的有效手段,當霧化壓力增大時氣體能量增加,對金屬液流破碎作用更為充分,使細粉末收得率提高。
TiAl合金的組織和性能對氧含量十分敏感,因氧元素為α2相穩定元素,該相為密排六方結構,滑移系較少,在粉末熱等靜壓過程中容易形成由α2/γ片層組織構成的原始顆粒邊界,對合金力學性能造成不利影響[31]。各粒度段TiAl合金粉末氧含量見表1,由于Ti、Al元素均易與氧反應形成氧化物,而細小的粉末比表面積更大,反應和吸附的位置更多,氧化深度也越大(見圖3),因而粉末越細小,氧含量越高。由此,在提高細粉末收得率的同時必須兼顧粉末氧含量。
影響TiAl合金粉末氧含量的主要因素有母合金的氧含量、霧化氣體的氧含量、霧化設備的真空度和粉末與大氣的接觸增氧。采用高純度的母合金和霧化氣體并保持設備良好的真空度十分重要,在后續TiAl合金粉末處理過程中也應盡量減少與大氣接觸。在高真空環境進行階段加熱保溫處理,可將粉末表面吸附的氧和水去除,降低粉末氧含量。另外,添加Y等稀土元素可形成彌散的納米級氧化物顆粒(見圖4),從而起到凈化TiAl合金基體的作用[32-33]。
表1 各粒度段TiAl合金粉末氧含量

Tab.1 Oxygen content of TiAl alloy powders with varied particle size range

圖3 TiAl合金粉末元素隨表面深度變化曲線

圖4 TiAl合金中納米級Y2O3顆粒形貌
氣霧化TiAl合金粉末以球形為主,伴有少量衛星顆粒、異形顆粒(見圖5a)。氣霧化是一個快速凝固過程,冷速高達104~105℃/s,且尺寸越小的熔滴比表面積越大,與霧化氣體作用越充分,可獲得更好的散熱條件和更深的過冷度[34]。因此,隨著粉末粒度減小,呈現出胞狀樹枝晶→胞狀晶→平面凝固特征的變化規律(見圖5b—d)。
根據凝固方式的不同,TiAl合金主要分為γ–TiAl和β–γTiAl等2種類型。γ–TiAl合金的Al含量較高,通常原子數分數為47%~48%,添加的合金元素較少,在700 ℃以下具有良好的綜合力學性能[35-37]。γ–TiAl合金凝固路徑為L→α→α+γ→α2+γ,存在的胞晶反應易帶來成分偏析和鑄造織構,熱加工性能較差[38]。將Al含量控制在原子數分數45%以下,并添加較多的Nb、Cr、V、Mn等β穩定元素,可使凝固路徑轉變為L→β→β+α→α→α+γ→α2+γ,由此開發出了諸如TNM、高Nb–TiAl等β–γTiAl合金。β–γTiAl合金在消除胞晶凝固的同時引入滑移系更多的β相,改善了熱加工性能,同時,Nb、Cr等元素的加入可進一步提高TiAl合金的高溫性能[39-40]。
無論γ–TiAl合金還是β–γTiAl合金,常規鑄鍛工藝制備的合金均為由γ、α2或γ、α2、β/B2相組成的片層組織、雙態組織或等軸組織[41-43]。然而,在氣霧化過程的高冷速狀態下,TiAl合金熔滴以非平衡凝固方式進行,形成的粉末保留了大量初生相,尤其是細小粉末。如圖6所示,小于38 μm粒度段的γ–TiAl合金主要由先凝固相α和有序化轉變形成的α2相組成,而小于38 μm的β–γTiAl合金粉末主要由先凝固相β和有序化轉變形成的B2相組成[44-45]。由于氣霧化過程相轉變受到抑制,TiAl合金粉末內部以初生相等軸晶粒為主,局部存在γ相(γ–TiAl合金粉末)或α2、γ相(β–γTiAl合金粉末)彌散析出特征,粗大粉末顆粒內存在較大尺寸的析出相。
TiAl合金粉末成形工藝包括熱等靜壓、放電等離子燒結、熱壓、包套軋制和增材制造等。熱等靜壓采用金屬包套將TiAl合金粉末進行封裝,隨后在高溫下通過等向高壓氣體實現合金的固相燒結。該工藝制備的TiAl合金致密度高,組織均勻細小,可避免其他工藝帶來的構件開裂和組織均勻性較差等問題,通過包套和型芯結構設計還可實現復雜零部件的近凈成形。

圖5 TiAl合金粉末形貌

圖6 不同粒度段粉末相分析
熱等靜壓致密化過程是溫度、時間和壓力的函數。1985年,張善勇等[46]建立了熱等靜壓致密化模型,將熱等靜壓致密化機制歸納為塑性流動、擴散蠕變和位錯蠕變等3種方式。以1 260 ℃、150 MPa、3 h熱等靜壓工藝曲線為基礎設計中斷試驗,研究了TiAl合金粉末致密化的過程和機理。隨著溫度和壓力的逐漸上升,TiAl合金粉末經歷了粉末粘結和燒結頸形成、燒結頸長大、閉孔球化和縮小等3個主要階段,制備的錠坯致密度達99.99%。塑形流動是氣霧化TiAl合金粉末熱等靜壓過程的主導致密化機理。隨著溫度升高,在擴散機制作用下,粉末快速凝固形成的亞穩相逐漸向穩態轉變,形成密堆積相γ(見圖7),對TiAl合金致密度提升發揮了積極作用[47]。在保溫保壓階段,前期大變形產生的位錯逐漸湮滅(見圖8),降低了TiAl合金晶格畸變程度,進一步提高了合金的致密化程度[47]。

圖7 TiAl合金粉末和熱等靜壓錠坯XRD圖譜

圖8 熱等靜壓態TiAl合金位錯形貌
在氣霧化TiAl合金粉末制備過程中,熔滴與霧化氣體作用形成空心粉,研究表明粉末粒度越粗,空心粉含量越高。空心粉內部存在不溶于合金的霧化氣體氬氣,在熱加工過程中易形成熱誘導孔隙,對合金致密度造成不利影響。相同熱等靜壓工藝下,TiAl合金粉末粒度對熱等靜壓錠坯組織無明顯影響,但細小的粉末可使錠坯獲得更好的高溫伸長率[48]。溫度是TiAl合金粉末熱等靜壓致密化的重要參數,對晶粒度、析出相尺寸影響較大,在1 000~1 260 ℃范圍內,較高的熱等靜壓溫度有利于提高TiAl合金錠坯的塑性[48-49]。
近凈成形作為粉末冶金工藝相比于鑄鍛工藝是一大技術優勢,近年來國內外學者在TiAl合金構件粉末冶金近凈成形方面開展了大量研究[50-52],通過包套結構設計和熱等靜壓工藝研究可實現TiAl合金粉末的直接成形。采用Msc.Marc建立熱等靜壓過程熱力耦合有限元模型,采用庫倫摩擦模型描述粉末和包套之間、粉末和粉末之間的接觸關系,可計算出包套各部位的變形情況及內部TiAl合金的致密度分布。通過熱等靜壓溫度、壓力和時間的模擬優化,可以確定TiAl合金粉末近凈成形的熱等靜壓工藝參數為1 200 ℃、140 MPa條件下保溫保壓5 h。
中國航發北京航空材料研究院針對TiAl合金轉唳片開展了熱等靜壓模擬仿真和樣件制備,設計了長方體包套,采用粒徑為105 μm以下粉末開展了研究。由于包套結構的對稱性,選取1/8形狀進行模擬,熱等靜壓過程的致密度云圖和溫度云圖見圖9。由圖9可見,雖然存在包套夾角的“邊緣效應”及芯部的“溫度滯后”現象,但TiAl合金坯料整體致密度分布較均勻。

圖9 熱等靜壓過程模擬
在模擬研究基礎上,采用1 200 ℃、140 MPa、5h熱等靜壓近凈成形工藝制備TiAl合金轉唳片樣件(見圖10)。采用阿基米德排水法測試不同位置密度,致密度達99.85%以上。圖11為TiAl合金熱等靜壓態組織,由γ相、β/B2相組成,其間彌散分布著細小的亮白色YAl2和Y2O3顆粒。TiAl合金轉唳片樣件在室溫下伸長率為2.2%,抗拉強度為902 MPa;在800 ℃時伸長率為52%,抗拉強度為470 MPa,均高于同成分鑄態合金性能[54]。同時,該樣件通過了10 t靜力試驗考核,考核后的樣件未發生變形和開裂。

圖10 熱等靜壓近凈成形TiAl合金轉捩片樣件

圖11 熱等靜壓近凈成形TiAl合金轉捩片組織
粉末冶金作為TiAl合金成形的重要研究方向,在細化晶粒,消除成分偏析、縮松縮孔,以及近凈成形等方面具有顯著優勢。通過開展氣霧化TiAl合金粉末制備及成形技術研究,突破了TiAl合金粉末粒度控制、氧含量控制、熱等靜壓近凈成形等關鍵技術,制備出了低氧球形TiAl合金粉末、高性能粉末冶金TiAl合金轉捩片樣件,為輕質高溫結構材料的研發和應用提供了理論和技術支撐。
氣霧化TiAl合金粉末制備涉及電磁場、溫度場和速度場等多物理場的耦合作用,以及氣液固三相的復雜交互作用,目前機理尚不明晰,需持續深化研究。同時,需細化氣霧化TiAl合金粉末制備工藝研究,以滿足特定成形工藝對粉末粒度、氧含量和球形度等的性能要求。在氣霧化TiAl合金粉末成形工藝上,需針對特定零部件使用要求開展技術攻關,特別是粉末近凈成形、增材制造等工藝的應用,從而加速TiAl合金從實驗室研究走向工業化應用進程。
[1] LAPIN J, KAMYSHNYKOVA K, PELACHOVA T, et al. Effect of Carbon Addition and Cooling Rate on Lamellar Structure of Peritectic TiAl-based Alloy[J]. Intermetallics, 2021, 128: 107007.
[2] CHEN Guang, PENG Ying-bo, ZHENG Gong, et al. Polysynthetic Twinned TiAl Single Crystals for High-temperature Applications[J]. Nature Materials, 2016, 15(8): 876-881.
[3] 張國慶, 劉娜, 李周. 高性能金屬材料霧化與成形技術研究進展[J]. 航空材料學報, 2020, 40(3): 95-109.
ZHANG Guo-qing, LIU Na, LI Zhou. Research Progress of Atomisation and Forming Technology of High Performance Metallic Materials[J]. Journal of Aeronautical Materials, 2020, 40(3): 95-109.
[4] SEMIATIN S L, SEETHARAMAN V, JAIN V K. Microstructure Development during Conventional and Isothermal Hot-forging of a Near-gamma Titanium Aluminide[J]. Metallurgical and Materials Transactions A, 1994, 25: 2753-2768.
[5] LI Hui-zhong, LONG Yu, LIANG Xiao-peng, et al. Effects of Multiaxial Forging on Microstructure and High Temperature Mechanical Properties of Powder Metallurgy Ti-45Al-7Nb-0.3W alloy[J]. Intermetallics, 2020, 116: 106647.
[6] BURTSCHER M, KLEIN T, MAYER S, et al. The Creep Behavior of a Fully Lamellar Gamma-TiAl Based Alloy[J]. Intermetallics, 2019, 114: 106611.
[7] RAJI S A , POPOOLA A P I, PITYANA S L, et al. Characteristic Effects of Alloying Elements on β Solidifying Ttanium Aluminides: A Review[J]. Heliyon, 2020, 6(7): e04463.
[8] GAO Zi-tong, HU Rui, HUANG Zi-jing, et al. Metastable Transformation Behavior in a Ta-containing TiAl-Nb Alloy during Continuous Cooling[J]. Journal of Alloys and Compounds, 2022, 904: 164088.
[9] CAO Hui, RUI Zhi-yuan, FENG Rui-cheng, et al. Effects of Al Content on the Mechanical Properties of Single Crystal TiAl Alloy[J]. Rare Metal Materials and Engineering, 2019, 48(4): 1102-1108.
[10] SEETHARAMAN V, SEMIATIN S L. Plastic-flow and Microstructure Evolution during Hot Deformation of a γ Titanium Aluminide Alloy[J]. Metallurgical and Materials Transactions A, 1997, 28(2): 2309-2321.
[11] MENGIS L, GRIMME C, GALETZ M C. Tribological Properties of the Uncoated and Aluminized Ti-48Al-2Cr-2Nb TiAl Alloy at High Temperatures[J]. Wear, 2021, 477: 203818.
[12] XU Mang, LIU Guo-huai, LI Tian-rui, et al. Rolling Parameters, Microstructure Control, and Mechanical Properties of Powder Metallurgy Ti-44Al-3Nb-(Mo, V, Y) Alloy: The Impact of Rolling Temperatures[J]. Intermetallics, 2020, 123: 106817.
[13] EDWARDS T E J, GIOACCHINO F D , MOHANTY G, et al. Longitudinal Twinning in a TiAl Alloy at High Temperature by in Situ Microcompression[J]. Acta Materialia, 2018, 148: 202-215.
[14] SEMIATIN S L, SEETHARAMAN V. Deformation and Microstructure Development during Hot-pack Rolling of a Near-γ Titanium Aluminide Alloy[J]. Metallurgical and Materials Transactions A, 1995, 26(2): 371-381.
[15] BURTSCHER M, KLEIN T, LINDEMANN J, et al. An Advanced TiAl Alloy for High-Performance Racing Applications[J]. Materials, 2020, 13(21): 47-54.
[16] HOOD R, ASPINWALL D K , SAGE C, et al. High Speed Ball Nose End Milling of Gamma-TiAl Alloys[J]. Intermetallics, 2013, 32: 284-291.
[17] JAIN V K, GOETZ R L, SEMIATIN S L. Can Design for Nonisothermal Pancake Forging of Titanium Aluminide Alloys[J]. Journal of Engineering for Industry, 1996, 118(1): 155-160.
[18] 劉娜, 李周, 袁華, 等. 粉末冶金TiAl合金的熱變形行為研究[J]. 航空材料學報, 2013, 33(5): 1-5.
LIU Na, LI Zhou, YUAN Hua, et al. Hot Deformation Behavior of Powder Metallurgy TiAl Alloy[J]. Journal of Aeronautical Materials, 2013, 33(5): 1-5.
[19] WIMLER D, LINDEMANN J, KREMMER T, et al. Microstructure and Mechanical Properties of Novel TiAl Alloys Tailored via Phase and Precipitate Morphology[J]. Intermetallics, 2021, 138: 107316.
[20] BHATTACHARYYA A, DHANASEKARAN M. Experimental Study on the Morphology and Hardness Variation of TiAl Alloy at Different Heat Treatment Cycles[J]. Materials Today: Proceedings, 2021, 47(2): 1436-1440.
[21] HASEGAWA M , SAKURAI K , STRATIL L , et al. Fracture Toughness of a Lamellar Orientation-Con-trolled TiAl-Based Alloy Processed by either One-Step or Two-Step Compression at High Temperature[J]. Materials Science and Engineering: A, 2018, 721: 303-310.
[22] DING Jie, ZHANG Ming-he, YE Teng, et al. Microstructure Stability and Micro-mechanical Behavior of As-cast Gamma-TiAl Alloy during High-temperature Low Cycle Fatigue[J]. Acta Materialia, 2018, 145: 504-515.
[23] ZHENG Guo-ming, TANG Bin, ZHAO Song-kuan, et al. Evading the Strength-ductility Trade-off at Room Temperature and Achieving Ultrahigh Plasticity at 800℃ in a TiAl Alloy. 2022, 225: 117585.
[24] COURET A, ALLEN M, RACKEL M W, et al. Chemical Heterogeneities in Tungsten Containing TiAl Alloys Processed by Powder Metallurgy[J]. Materialia, 2021, 18: 101147.
[25] YUE Hang-yu, PENG Hui, SU Yong-jun, et al. Microstructure and High-temperature Tensile Property of TiAl Alloy Produced by Selective Electron Beam Melting[J]. Rare Metals, 2021, 40: 3635-3644.
[26] MAO Wang, LI Xuan, HAN Feng, et al. Research Progress of Powder Metallurgy Technology of High Quality TiAl-Nb Based Alloys[J]. Hot Working Technology, 2019, 23(2): 12-25.
[27] WANG Hu, ZHAO Lin, PENG Yun, et al. Research Progress of TiAl-based Alloys Fabricated by Additive Manufacturing[J]. Powder Metallurgy Technogy, 2022, 40(2): 110-117.
[28] 張國慶, 劉玉峰, 劉娜,等. TiAl金屬間化合物粉末冶金工藝研究進展[J]. 航空制造技術, 2019, 62(22): 38-42.
ZHANG Guoqing, LIU Yu-feng, LIU Na, et al. Progress in Powder Metallurgy TiAl-Based Intermetallics[J]. Aeronautical Manufacturing Technology, 2019, 62(22): 38-42.
[29] 劉娜, 李周, 袁華,等. 氬氣霧化Ti6Al4V預合金粉末的制備及特性研究[J]. 材料工程, 2010(s1): 307-311.
LIU Na, LI Zhou, YUAN Hua, et al. Process and Properties of Argon Gas Atomized Ti6A14V Pre-alloyed Powders[J]. Journal of Materials Engineering, 2010(s1): 307-311.
[30] 劉娜, 李周, 袁華,等. 氣霧化TiAl合金粉末的制備及表征[J]. 鋼鐵研究學報, 2011, 23(S2):537-540.
LIU Na, LI Zhou, YUAN Hua, et al. Fabrication and Characterization of Gas Atomized TiAl Alloy Powders[J]. Journal of Iron and Steel Research, 2011, 23(S2): 537-540.
[31] LIU Yu-feng, LI Zhou, LIU Na, et al. Effect of Oxygen Content of Powders on Previous Particle Boundaries in Hot Isostatic Pressed TiAl Alloy[J]. Springer, 2018: 779-787.
[32] GUO Ying-fei, XIAO Shu-ling, TIAN Jing, et al. Creep Deformation and Rupture Behavior of a High Nb Containing TiAl Alloy Reinforced with Y2O3Particles[J]. Materials Characterization, 2021, 179: 111355.
[33] GU Xu, JIANG Si-da, CAO Fu-yang, et al. A β-solidifying TiAl Alloy Reinforced with Ultra-fine Y-rich Precipitates [J]. Scripta Materialia, 2021, 192: 55-60.
[34] KANG Zhong-tao , LI Qing-lian, ZHANG Jia-qi, et al. Effects of Gas Liquid Ratio on the Atomization Characteristics of Gas-liquid Swirl Coaxial Injectors[J]. Acta Astronautica, 2018, 146: 24-32.
[35] QIANG Feng-ming, KOU Hong-chao, JIA Meng-yu, et al. Microstructure Evolution and Dynamic Recrystallization Behavior in β-Solidifying γ-TiAl during Thermomechanical Processing[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 11-18.
[36] 陳玉勇, 吳敬璽. β相凝固TiAl合金的制備、加工、組織、性能及工業應用研究進展[J]. 鋼鐵釩鈦, 2021, 42(6): 1-16.
CHEN Yu-yong, WU Jing-xi. Research and Advances in Processing, Working, Microstructure, Properties and Industrial Application of β-solidifying TiAl Alloy[J]. Iron Steel Vanadium Titanium, 2021, 42(6): 1-16.
[37] XU Run-run , LI Miao-qua. Quantitative characterization of β-solidifying γ-TiAl alloy with duplex structure[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(7): 1993-2004.
[38] 強鳳鳴, 寇宏超, 賈夢宇,等. β型γ-TiAl合金熱變形過程中組織演化及動態再結晶行為研究現狀[J]. 精密成形工程, 2022, 14(1):11-18.
QIANG Feng-ming, KOU Hong-chao, JIA Meng-yu, et al. Microstructure Evolution and Dynamic Recrystallization Behavior in β-Solidifying γ-TiAl during Thermomechanical Processing[J]. Journal of Netshape Forming Engineering, 2022, 14(1):11-18.
[39] KNAISLOVA A, IMNKOVA V, NOVAK P, et al. Effect of Alloying Elements on the Properties of Ti-Al-Si Alloys Prepared by Powder Metallurgy[J]. Journal of Alloys and Compounds, 2021, 868: 159251.
[40] 李巖, 王天浩, 張黎偉,等. 凝固模式對定向凝固TiAl-Nb合金組織和力學性能影響[J]. 精密成形工程, 2018, 10(3): 6-11.
LI Yan, WANG Tian-hao, ZHANG Li-wei, et al. Effects of Solidification Modes On Microstructure and Mechanical Properties of Directionally Solidified TiAl-Nb Alloys[J]. Journal of Netshape Forming Engineering, 2018, 10(3): 6-11.
[41] HUANG Hai-tao, DING Hong-sheng, XU Xue-song, et al. Phase Transformation and Microstructure Evolution of a Beta-solidified Gamma-TiAl Alloy[J]. Journal of Alloys and Compounds, 2020, 860: 158082.
[42] 劉興華, 芮執元, 付蓉,等. 片層厚度對雙相TiAl合金力學性能影響的納米壓痕研究[J]. 稀有金屬材料與工程, 2022, 51(2): 629-636.
LIU Xing-hua, RUI Zhi-yuan, FU Rong, et al. Effect of Lamellar Thickness on Mechanical Properties of Dual-phase TiAl Alloy by Nanoindentation[J]. Rare Metal Materials and Engineering, 2022, 51(2): 629-636.
[43] WANG Qi, CHEN Rui-run, YANG Yao-hua, et al. Effects of V and B, Y Additions on the Microstructure and Creep Behaviour of High-Nb TiAl Alloys[J]. Journal of Alloys and Compounds, 2018, 747: 640-647.
[44] LIU Na, LI Zhou, ZHANG Guo-qing. The Characteristics of TiAl Alloy Powders Fabricated by Cold Crucible Inductuin Melting and Argon Gas Atomization[C]. Proceedings of the Liquid Metal Processing & Casting Conference 2017, 2017: 421-425.
[45] LIU Yu-feng, LI Zhou, LIU Na, et al. Properties of Argon Gas Atomized Ti-43Al-9V-Y Alloy Powders[J]. Materials Science Forum, 2017, 898: 323-327.
[46] 張善勇, 隋玉儉. 鑄造高溫合金的熱等靜壓致密化機理[J]. 鋼鐵研究學報, 1985(s1): 81-87.
ZHANG Shan-yong, SUI Yu-jian. Densification Mechanism of Cast Superalloy in Hot Isostatic Pressing. Journal of Iron and Steel Research, 1985(s1): 81-87.
[47] 劉玉峰. 氣霧化 TiAl 合金粉末特性及熱等靜壓致密化研究[D]. 北京:北京航空材料研究院,2018: 41-42.
LIU Yu-feng. Study on the Characteristics and Hot Isostatic Pressing Densification of Gas Atomized TiAl Alloy Powder [D]. Beijing:Beijing Institute of Aeronautical Materials,2018: 41-42.
[48] 劉玉峰,劉娜,鄭亮,等. 熱等靜壓溫度和粒度對粉末冶金 TiAl 合金組織和性能的影響[J]. 稀有金屬材料與工程,2019,48(10): 3227-3233.
LIU Yu-feng,LIU Na,ZHENG Liang,et al. Effect of HIP Temperatures and Powder Particle Size on Microstructure and Properties of PM TiAl Alloy[J]. Rare Metal Materials and Engineering,2019,48(10): 3227-3233.
[49] 王湘寧, 朱郎平, 莫曉飛, 等. TiAl合金粉末熱等靜壓組織及其力學性能均勻性研究[J]. 精密成形工程, 2022, 14(1): 55-61.
WANG Xiang-ning, ZHU Lang-ping, MO Xiao-fei, et al. Microstructure and Mechanical Property Uniformity of TiAl Alloy Powders Consolidated by Hot Isostatic Pressing[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 55-61.
[50] LIU Na, LI Zhou, XU Wen-yong, et al. Hot Deformation Behavior and Microstructural Evolution of Powder Metallurgical TiAl Alloy[J]. Rare Metals,2017, 36(4): 236-241.
[51] JIN Lei, ZHU Qiang, ZHAO Jun, et al. Development and Application of Hot Isostatic Pressing Technology in Titanium Alloy Near Net Shape Forming Field[J]. Foundry, 2019, 32(2): 54-63.
[52] BIESKE J, FRANKE M, SCHLOFFER M, et al. Microstructure and Properties of TiAl Processed via an Electron Beam Powder Bed Fusion Capsule Technology[J]. Intermetallics, 2020, 126: 106929.
[53] WANG Ji-wei, LIN Guang-ke, XUE Peng-jv, et al. Study of Near-net-shape Forming Technology by Hot Isostatic Pressing for Hard-cutting Materials[J]. Machine Building & Automation, 2018, 8(1): 23-35.
[54] CHEN Yu-yong, LI Bao-hui, KONG Fan-tao. Microstructural refinement and mechanical properties of Y-bearing TiAl alloys[J]. Journal of Alloys and Compound, 2008, 457: 265-269.
Research Progress in Gas Atomization and Hot Isostatic Pressing of TiAl Alloy
LIU Yu-feng, ZHANG Guo-qing, LIU Na, LI Zhou
(Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials,AECC, Beijing 100095)
The research progress of gas atomization and hot isostatic pressing (HIPing) of TiAl alloy was reviewed. The gas atomization technologies, particle size and oxygen content control factors, microstructure of TiAl alloy powders were introduced. Densification process and mechanism of TiAl alloy powders via hot isostalic pressing was also established. TiAl alloy transition part formed by HIPing near net shaping were summarized. Further research direction of PM TiAl alloy was addressed.
powder metallurgy; TiAl alloy; gas atomization; hot isostatic pressing; near net shaping
10.3969/j.issn.1674-6457.2022.11.005
TG146.2+3
A
1674-6457(2022)11-0047-08
2022–08–01
國家重點研發計劃(2021YFB3700502)
劉玉峰(1993—),女,博士生,工程師,主要研究方向為粉末冶金高溫合金和粉末冶金鈦鋁合金。
張國慶(1962—),男,博士,研究員,主要研究方向為高溫合金、金屬間化合物等高溫結構材料的研制及應用。