肖瑩瑩 叢小涵 楊子涵 葉晴瑩
(福建師范大學(xué)物理與能源學(xué)院,福建福州 350117)
龍洗是古代的一種薄壁盥洗用具,一般為青銅材質(zhì),形似現(xiàn)在的臉盆.盆底裝飾有魚紋的,稱“魚洗”;盆底裝飾有龍紋的,稱“龍洗”(如圖1).龍洗出現(xiàn)的時(shí)間,最早可追溯至公元前五世紀(jì),后在唐宋時(shí)期逐漸發(fā)展成熟.[1,2]該器物最初是工匠為皇宮設(shè)計(jì)的,后逐漸流傳至為民間.圖1、圖2所示龍洗底部扁平,盆底刻有4條龍,龍口位置位于圖2中a、b、c、d4處,盆沿左右兩邊各有一個(gè)把柄,稱為雙耳(如圖1).龍洗的外觀并不復(fù)雜,但奇妙之處在于:用手緩慢有節(jié)奏地摩擦盆邊兩耳,盆會(huì)像受擊撞一樣振動(dòng)起來,盆內(nèi)水波蕩漾;倘若手法得當(dāng),4個(gè)龍口均可以噴出水花.[3]雖然龍洗的噴水原理已被廣泛認(rèn)可,[4]但對(duì)其振動(dòng)模型的研究卻多為定性研究.為了研究龍洗振動(dòng)的細(xì)節(jié),本文結(jié)合駐波方程,并利用Matlab建模,[5-8]模擬出龍洗振動(dòng)幅度的空間分布圖像.

圖1 龍洗構(gòu)造圖

圖2 龍洗的龍口和十字線標(biāo)注圖
當(dāng)雙手以一定頻率摩擦龍洗雙耳時(shí),在雙耳產(chǎn)生兩個(gè)方向相反、頻率相同的相干波源,兩列波相干疊加,呈現(xiàn)出穩(wěn)定的駐波狀態(tài).[9]摩擦?xí)r,雙手緊挨雙耳,雙耳可視為固定端,處于波節(jié)位置.[9]則根據(jù)波的疊加原理,駐波方程為[10]

其中,L表示圖3中以右耳A點(diǎn)為起點(diǎn),沿逆時(shí)針方向的盆沿長(zhǎng)度,λ為波長(zhǎng),f為頻率,u為L(zhǎng)處的振點(diǎn)偏離平衡位置的位移,φ表示以右耳A點(diǎn)處為起點(diǎn),沿逆時(shí)針方向旋轉(zhuǎn)的角度.

圖3 駐波方程參數(shù)示意圖
由(1)式可知,龍洗模型側(cè)壁振動(dòng)時(shí)的波節(jié)和波腹各有4個(gè).[11]實(shí)驗(yàn)現(xiàn)象(圖4)表明,龍洗噴水范圍對(duì)稱分布在的a、b、c、d4處,此4處即為(1)式中的4個(gè)波腹位置,亦即圖2中的a、b、c、d4個(gè)位置.從圖4中可見a、b、c、d之間有4個(gè)波節(jié)(位于圖4中4個(gè)白點(diǎn)位置),這一結(jié)果與(1)式的結(jié)果相符.

圖4 龍洗噴水實(shí)驗(yàn)
根據(jù)駐波形成條件,可知相鄰兩波節(jié)或波腹間的距離為半個(gè)波長(zhǎng),可得

其中R為水面半徑.

將(2)(3)式代入(1)式可得

由(4)式可得龍洗各質(zhì)元隨位置變化的振幅函數(shù)(其中質(zhì)元是龍洗洗壁上產(chǎn)生振動(dòng)的每一個(gè)微元)

為了進(jìn)一步得到不同高度洗壁振幅的關(guān)系,利用柱面坐標(biāo)的波動(dòng)方程和簡(jiǎn)化邊界條件[12]可解出龍洗噴水時(shí)洗壁各質(zhì)元偏離平衡位置的位移如(6)式所示.這一過程中,為了簡(jiǎn)化模型,我們將龍洗視為柱形容器.[13-15]

(6)式中b為盆內(nèi)水體總高度,z為任意水高位置.Am為與角度φ相關(guān)的常數(shù)項(xiàng),An為與任意水高位置z相關(guān)的常數(shù)項(xiàng).am為φ函數(shù)的初相位,與(3)式的φ一致,則

聯(lián)立(6)~(8)式獲得的振幅函數(shù)表達(dá)式為

與(5)式對(duì)比,可發(fā)現(xiàn):當(dāng)z=b,k=0時(shí),(9)式與(5)式一致,說明(5)式是(9)式的特例,而(9)式是(5)式在空間上的延伸和拓展.
采用Matlab 對(duì)函數(shù)進(jìn)行模擬.為了方便模擬,計(jì)算中取A′=A1/A1max.圖5模擬了不同半徑(R)的龍洗,側(cè)壁(也稱“洗壁”)振幅的空間分布圖像,圖色的深淺程度與洗壁輪廓上振幅的大小成反比.為方便觀察,圖5中采用直角坐標(biāo)系,任意位置到(0,0,0)的水平距離為R.

圖5 不同半徑R 的洗壁波節(jié)和波腹的位置示意圖

圖6展示的是R=19cm 時(shí)龍洗洗壁振幅空間分布的散點(diǎn)圖,更方便讀者定位龍洗壁沿的波節(jié)及波腹位置.

圖6 洗壁波節(jié)和波腹的位置示意圖
取b=4.5cm,模擬(9)式可得圖7.為了方便模擬,計(jì)算中取A″=A2/A2max.從圖7 中可以看到,該圖完美呈現(xiàn)了4峰振型的現(xiàn)象,且4個(gè)波腹處的振幅隨著z值的增大明顯增大,而波節(jié)位置位于圖2中十字線位置.
比較圖5和圖7:圖5分析了同一高度、不同半徑R的洗壁質(zhì)元的振動(dòng)隨位置變化的空間分布,得到同一高度的洗壁振幅隨半徑R的變化圖像,進(jìn)而確定了洗壁振動(dòng)引起噴水過程的波節(jié)和波腹;圖7則定量分析了整個(gè)系統(tǒng)中洗壁質(zhì)元隨位置變化的三維空間分布圖像,不僅明確了龍洗噴水過程中的波節(jié)和波腹,并且獲得了洗壁振幅隨水深的變化情況.由圖7 可以發(fā)現(xiàn),不同半徑(R)的龍洗,洗壁振幅都具有4峰振型的特征,即波腹波節(jié)均有4個(gè),依次交替出現(xiàn).

圖7 龍洗半徑R 不同時(shí),洗壁振幅空間分布圖像(b=4.5cm)
模擬結(jié)果與實(shí)驗(yàn)現(xiàn)象(圖4)吻合.
為更好地展示龍洗洗壁各質(zhì)元振幅,我們作了不同z值的振幅分布橫向剖面圖,圖8 為z=1.5cm、z=3.0cm 和z=4.5cm 的振幅分布橫向剖面圖.對(duì)比圖8(a)、(b)、(c)發(fā)現(xiàn),振幅的空間分布與圖5吻合,且當(dāng)z=b時(shí)[如圖8(c)],模擬結(jié)果和實(shí)驗(yàn)現(xiàn)象(圖4)高度一致.圖8中,隨著z值增加,各波腹位置的振幅明顯增大.且圖8各分圖中顏色最深位置呈“十”字交叉,此即對(duì)應(yīng)圖2 中“十”字交叉位置.

圖8 b=4.5cm 時(shí),不同z值的振幅空間分布橫向剖面圖
從龍洗設(shè)計(jì)來看,龍洗中“龍吐水”的雕刻位置(圖2中a、b、c、d4處)需設(shè)計(jì)在圖8(c)中z=b時(shí)對(duì)應(yīng)振幅最大的位置(即波腹位置,亦即圖8(c)中a、b、c、d4處).在沒有定量公式和數(shù)值模擬的古代,我們的祖先卻可以在青銅龍洗制作過程中準(zhǔn)確定位“龍吐水”的位置,實(shí)在令人嘆為觀止.
圖9是圖7中經(jīng)過(0,0,0)點(diǎn)平行于z軸的縱剖面圖.從圖9(b)中可以看出,z取不同值時(shí),φ=90°的振幅都為0,此處即為波節(jié)位置.而從圖9(a)(c)中可以看出,隨著z值的增加,波腹各質(zhì)元振幅逐漸增大,在z=b時(shí),龍洗洗壁的振幅達(dá)到最大值,實(shí)驗(yàn)現(xiàn)象(圖4)呈現(xiàn)為龍洗的噴水現(xiàn)象.

圖9 不同φ 值的振幅空間分布縱向剖面圖
為了研究水體高度b不同時(shí)的龍洗振動(dòng)圖像,我們模擬了b分別為1.5cm、3.0cm、4.5cm和6.0cm 的龍洗洗壁振幅空間分布圖像,如圖10.

圖10 水體高度b不同時(shí),洗壁振幅空間分布圖像
比較圖10 與圖2,可以發(fā)現(xiàn):對(duì)于4 節(jié)線(4峰)振動(dòng)的振型,圖2中a、b、c、d4點(diǎn)對(duì)應(yīng)圖10中不同b值的波腹位置,該處的振幅大于同一水平面的其他位置;4個(gè)波節(jié)位于圖2中十字線位置;對(duì)于任意b值,當(dāng)z=b時(shí)龍洗洗壁振幅最大;沿著洗壁,壁沿的振幅呈現(xiàn)出周期性變化,相對(duì)振幅如圖10所示.
通過Matlab模擬,我們可以清晰地看到龍洗洗壁上振幅隨空間分布圖像,研究發(fā)現(xiàn),洗壁振幅與角度φ和水高z密切相關(guān),其振動(dòng)為典型的4峰振動(dòng),當(dāng)z=b時(shí)洗壁振幅最大.該研究將抽象的龍洗噴水原理轉(zhuǎn)化為形象直觀的仿真圖,更好地解釋實(shí)驗(yàn)現(xiàn)象,為龍洗噴水理論和實(shí)踐研究提供了有效的數(shù)據(jù)基礎(chǔ).