999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

淺談向量外積在中學數學中的幾個應用

2022-10-23 07:18:18李志軍
高中數理化 2022年17期
關鍵詞:中學數學定義

李志軍

(湖南省長沙市中雅培粹學校)

向量理論具有深刻的數學內涵、豐富的物理背景.向量既是代數研究對象,也是幾何研究對象,是溝通幾何、代數和三角的橋梁.高中階段主要學習向量的內積(數量積),其運算結果是數,即a·b=|a||b|·cosθ,其中θ為向量a,b的夾角,0≤θ≤π,其值為a的長度|a|與b在a方向上的投影長|b|cosθ的乘積,或b的長度|b|與a在b方向上的投影長|a|cosθ的乘積.向量還有另一種形式的乘法,即外積(叉積),其運算結果是一個向量.本文對向量的外積進行簡單介紹,并介紹向量的外積在中學數學中的幾個重要應用,旨在拓寬學生數學視野,更好地了解和運用向量的外積,并運用它解決實際問題,體會運用不同的方法帶來的相同效果,感受數學的美和真.

1 向量外積的定義

在三維空間中,兩個向量的外積既可以自然地描述,也可以用坐標來定義.向量外積(也稱為叉積),其運算結果還是一個向量,即若c=a×b,則c的方向與兩向量a,b都垂直,大小為以|a|,|b|為鄰邊的平行四邊形面積,即|a||b|sinθ(θ為向量a,b的夾角).向量的外積在解決幾何問題時,同樣發揮著非常重要的作用.通常采用“右手法則”判斷a×b的方向,即右手四指由a的方向轉向b的方向時,大拇指所指的方向即為a×b的方向,如圖1所示.

圖1

2 如何求兩向量的外積

如圖1所示,若i,j,k分別為x軸,y軸和z軸的正向單位向量,根據向量的外積定義有

選定空間中一組直角坐標系,i,j,k為對應的三個正交單位向量.若a=a1i+a2j+a3k,b=b1i+b2j+b3k,a×b可以將a,b看作兩個多項式,像多項式乘以多項式一樣,其中

上述結果記憶起來太費勁,也太復雜,根據行列式的基本運算法則,a×b還可以表示為

利用行列式符號來表示向量的外積不僅方便記憶和運算,還可以利用行列式的性質來驗證一些向量外積的性質.

上面計算向量外積的方法各有千秋,前者易懂,后者好算,可以通過機械運算來驗證一些復雜的式子,比如驗證Jacobi恒等式:(a×b)×c+(b×c)×a+(c×a)×b=0,若用前者方法運算,過程煩瑣且容易出錯,但用行列式來表示向量的外積,利用行列式的有關性質計算,就容易很多,有興趣的讀者不妨試一試.

3 外積的幾個性質

3.1 (a×b)·a=(a×b)·b=0

由行列式的性質可知,將i,j,k分別用a1,a2,a3或b1,b2,b3代替,此時行列式①的值等于0,也就是說,a×b與a,b都垂直.也可以根據向量外積的定義進行證明,由向量外積的定義可知a×b與a,b都垂直,又因為兩垂直向量的內積為零,所以(a×b)·a=(a×b)·b=0,顯然結論成立.

3.2 |a×b|=|a||b|sinθ

θ為a,b兩個向量所夾的小于或等于180°的非負角,與坐標系的選取無關,a×b是模長為|a||b|·sinθ,且與a,b都垂直(正交)的向量,|a||b|sinθ是以|a|,|b|為鄰邊的平行四邊形的面積.因為

又因為a·b=|a||b|cosθ,代入后兩邊開方得|a×b|=|a||b|sinθ,所以|a×b|=|a||b|sinθ,所以當a,b中有一個為零,或者兩向量平行時,有a×b=0.

3.3 外積的運算

外積的運算與一般的乘積運算有相同之處,也有不同之處.相同的是分配律成立,如a×(b+c)=a×b+a×c,(b+c)×a=b×a+c×a.不同的是交換律與結合律并不成立,如a×b≠b×a,(a×b)×c≠a×(b×c)等.顯而易見,向量的外積運算不滿足交換律,即a,b的外積與次序有關,即a×b并不等于b×a,而是a×b=-b×a.如將a=i,b=j,c=k分別代入(a×b)×c和a×(b×c)中,發現其并不相等.

4 外積的幾個應用

外積在解題和證明有關問題時十分有效.比如,求給定坐標的多邊形面積、多面體的體積以及長度和夾角問題,再比如,證明幾何和三角恒等式中的有關命題和定理,直觀明了,如已知a+b+c=0,求證:a×b+b×c+c×a=0,利用外積的定義證明就一目了然.下文列舉幾個利用外積的方法解決中學數學問題的例子.

4.1 正弦定理

正弦定理的證明有多種方法,如面積法、坐標法、向量的數量積以及利用圓的有關性質等,但用向量的外積證明比較簡捷.

如圖2所示,c=b-a,兩邊同時叉乘c(注意c要放在等式兩邊的同一邊),所以c×c=c×(b-a),即0=c×b-c×a,因此有c×b=c×a,所以

圖2

4.2 平行六面體的體積

如圖3所示,b×c垂直于底面,即垂直于b與c所確定的平面,其長度為|b×c|=|b||c|sinθ,θ為b,c所夾的角,實際上就是底面平行四邊形ABCD的面積,因此a·(b×c)=|a||b×c|cosα,α為b×c與a的夾角,而|a|cosα為平行六面體ABCDA1B1C1D1底邊ABCD上的高h,故a·(b×c)表示以a,b,c三個向量為鄰邊所形成的平行六面體的體積,即空間中不共面的三個向量a,b,c為鄰邊所形成的平行六面體的體積為|a·(b×c)|(當向量a與向量b×c的夾角為鈍角時,其值為負,故要加上絕對值),與坐標系的選取無關.

圖3

若a=a1i+a2j+a3k,b=b1i+b2j+b3k,c=c1i+c2j+c3k,則有

由行列式的性質可推導出a·(b×c)=(a×b)·c=(c×a)·b,a×(b+c)=a×b+a×c等.

4.3 平面方程

在強基計劃招生考試或者數學競賽的有關考題中,經常會遇到求直線和平面的方程、面積、體積的問題,求平面的方程時經常使用公式③,求四面體或者平行六面體的體積時會用到公式②,學習完向量的外積后,可更加全面地了解和理解公式的本質意義.

5 小結

本文介紹了向量外積的定義及其幾個性質在中學數學中的應用.向量內積和外積是向量兩種不同形式的乘積,且結果不一樣,一個結果為數,一個結果為向量.向量的內積表示一個向量在另一個向量上的投影長和向量本身長度的乘積,是一個數.而兩個向量的外積則表示與這兩個向量垂直(右手法則)、長度為以兩個向量為鄰邊的平行四邊形的面積大小的一個向量,向量的兩種乘法有本質的區別.

中學數學教材一般都會介紹向量的內積及其應用,沒有介紹向量的外積,其實也有一些數學教材介紹了向量的外積及其應用,介紹了矩陣和行列式的知識.通過對向量外積的學習,學生可以更加清楚地理解向量的兩種乘法的區別和聯系,更加完全地理解向量的本質.特別是通過向量的外積證明有關公式、定理或解題時,程序化的操作帶來的方便讓學生感受數學的美.

猜你喜歡
中學數學定義
《上海中學數學》2022年征訂啟示
《上海中學數學》2022年征訂啟示
《上海中學數學》2022年征訂啟示
《上海中學數學》2022年征訂啟示
《上海中學數學》2022年征訂啟示
中學數學教學中的四個重要“轉變”
甘肅教育(2021年10期)2021-11-02 06:14:00
永遠不要用“起點”定義自己
海峽姐妹(2020年9期)2021-01-04 01:35:44
定義“風格”
成功的定義
山東青年(2016年1期)2016-02-28 14:25:25
修辭學的重大定義
當代修辭學(2014年3期)2014-01-21 02:30:44
主站蜘蛛池模板: 欧美中文字幕在线二区| 国产无码网站在线观看| 亚洲国产成人在线| 天堂成人av| 亚洲永久视频| 国产麻豆va精品视频| 国产精品香蕉在线| 国产精品蜜臀| 欧美一区中文字幕| 欧美午夜久久| 国产成人AV综合久久| 99国产精品免费观看视频| 国产微拍一区二区三区四区| 亚洲成aⅴ人在线观看| 久久夜夜视频| 在线观看视频一区二区| AV老司机AV天堂| 国产精品美女免费视频大全| 亚洲午夜福利精品无码不卡 | 国产精品无码一区二区桃花视频| 亚洲成人福利网站| 露脸真实国语乱在线观看| 黄色一级视频欧美| 久久精品嫩草研究院| 91精品啪在线观看国产| 亚洲成人播放| 久久免费视频播放| 免费国产高清精品一区在线| 国产一区二区精品福利 | 嫩草影院在线观看精品视频| 欧美精品另类| 毛片免费试看| 日本AⅤ精品一区二区三区日| 99视频精品在线观看| 亚洲最猛黑人xxxx黑人猛交| 亚洲成年人片| 美女被狂躁www在线观看| 精品一区国产精品| 国产亚洲精品97在线观看| 久久精品波多野结衣| 3p叠罗汉国产精品久久| 91青青视频| 国产裸舞福利在线视频合集| 国产精品女主播| 毛片在线看网站| 日韩免费毛片| 国产玖玖视频| 午夜久久影院| 超碰91免费人妻| 亚洲成人播放| 国产视频一区二区在线观看| 麻豆国产精品| 国产欧美精品专区一区二区| 国产精品一区二区久久精品无码| 欧美另类图片视频无弹跳第一页| 99久久精品视香蕉蕉| 黑色丝袜高跟国产在线91| 欧美日韩在线亚洲国产人| 亚洲国产日韩视频观看| 91福利片| 蝌蚪国产精品视频第一页| 久热中文字幕在线| 天天操天天噜| 欧美www在线观看| 扒开粉嫩的小缝隙喷白浆视频| 婷婷丁香在线观看| 久久6免费视频| 毛片一级在线| 91精品啪在线观看国产60岁 | 国产欧美日韩资源在线观看| 亚洲国产亚洲综合在线尤物| 丁香五月激情图片| 亚洲一区二区约美女探花| 精品91视频| 久久香蕉国产线看观| 国产精品 欧美激情 在线播放| 71pao成人国产永久免费视频 | 亚洲国产成人麻豆精品| 日韩小视频在线观看| 黄色网站不卡无码| 精品精品国产高清A毛片| 亚洲最新地址|