王靜文,錢雪嬌,章明放,唐建武
· 論著 ·
淋巴道轉(zhuǎn)移潛能及ANXA7對(duì)肝癌細(xì)胞共培養(yǎng)淋巴管內(nèi)皮細(xì)胞的調(diào)控作用
王靜文1,3,錢雪嬌2,3,章明放1,3,唐建武4
1 天津市第一中心醫(yī)院病理科,天津 300192;2 天津市第一中心醫(yī)院呼吸科;3 南開大學(xué)醫(yī)學(xué)院;4 大連醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理教研室
探討淋巴道轉(zhuǎn)移潛能及膜聯(lián)蛋白A7(ANXA7)對(duì)肝癌細(xì)胞共培養(yǎng)淋巴管內(nèi)皮細(xì)胞(LEC)的調(diào)控作用。將各肝癌細(xì)胞及LEC共培養(yǎng),收集與F細(xì)胞(高淋巴道轉(zhuǎn)移潛能)、P細(xì)胞(低淋巴道轉(zhuǎn)移潛能)、FA7下調(diào)細(xì)胞(ANXA7表達(dá)下調(diào))、F無關(guān)序列細(xì)胞、PA7上調(diào)細(xì)胞(ANXA7表達(dá)上調(diào))、P空載體細(xì)胞共培養(yǎng)的LEC(L-F共、L-P共、L-FA7下調(diào)共、L-F無關(guān)序列共、L-PA7上調(diào)共、L-P空載體共細(xì)胞)以及正常LEC用于實(shí)驗(yàn)。分別用實(shí)時(shí)定量PCR、Western blotting檢測(cè)共培養(yǎng)LEC內(nèi)淋巴管內(nèi)皮相關(guān)分子(VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18)mRNA與蛋白表達(dá)。用細(xì)胞免疫熒光法檢測(cè)共培養(yǎng)LEC內(nèi)淋巴管內(nèi)皮相關(guān)分子定位,用ELISA法檢測(cè)細(xì)胞上清液VEGF-C、VEGF-D水平,用淋巴管成管實(shí)驗(yàn)測(cè)算淋巴管成管節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度。VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18在mRNA和蛋白水平表達(dá)上,L-P共、L-F共細(xì)胞高于LEC(均<0.05),L-F共細(xì)胞高于L-P共細(xì)胞(均<0.05)。與L-F無關(guān)序列共、L-P空載體共細(xì)胞相比,L-FA7下調(diào)共細(xì)胞上述分子表達(dá)均低(均<0.05),L-PA7上調(diào)共細(xì)胞上述分子表達(dá)均高(均<0.05)。ANXA7調(diào)控前后,各細(xì)胞中VEGF-C、VEGFR-3、PDPN相對(duì)表達(dá)量與同類分子(VEGF-D、NRP-2及LYVE-1/SOX18)比較變化更顯著(均<0.05)。VEGF-C、VEGF-D主要在細(xì)胞質(zhì)內(nèi)表達(dá);VEGFR-3/NRP-2主要在細(xì)胞膜表達(dá),少量在細(xì)胞質(zhì)表達(dá);PDPN、LYVE-1主要在細(xì)胞質(zhì)表達(dá);SOX18主要在細(xì)胞核表達(dá),少量于細(xì)胞質(zhì)表達(dá)。ANXA7調(diào)控前,細(xì)胞上清液中VEGF-C、VEGF-D表達(dá)比較,L-F共、L-P共細(xì)胞高于LEC,L-F共細(xì)胞高于L-P共細(xì)胞(均<0.05),且VEGF-C表達(dá)均高于VEGF-D表達(dá)(均<0.05)。ANXA7調(diào)控前后,各細(xì)胞上清液中VEGF-C相對(duì)表達(dá)量與同類分子(VEGF-D)比較變化更顯著(均<0.05)。在節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度上,L-F共、L-P共細(xì)胞均多于LEC,L-F共細(xì)胞多于L-P共細(xì)胞(均<0.05);L-FA7下調(diào)共細(xì)胞少于L-F無關(guān)序列共細(xì)胞(均<0.05),L-PA7上調(diào)共細(xì)胞多于L-P空載體共細(xì)胞(均<0.05)。高淋巴道轉(zhuǎn)移潛能和ANXA7表達(dá)上調(diào),可促進(jìn)與肝癌細(xì)胞共培養(yǎng)的LEC淋巴管內(nèi)皮相關(guān)分子表達(dá),提高淋巴管成管能力。
肝癌細(xì)胞;淋巴管內(nèi)皮細(xì)胞;體外共培養(yǎng);淋巴道轉(zhuǎn)移潛能;膜聯(lián)蛋白A7;淋巴管內(nèi)皮相關(guān)分子;淋巴管成管
據(jù)統(tǒng)計(jì),肝癌淋巴道轉(zhuǎn)移者最高可達(dá)肝癌手術(shù)切除病例的30%甚或尸檢病例的60%[1-2]。F/P細(xì)胞是來源于小鼠腹水型肝癌細(xì)胞系的2個(gè)亞克隆,其中F細(xì)胞淋巴結(jié)轉(zhuǎn)移率約70%(高淋巴道轉(zhuǎn)移潛能),而P細(xì)胞淋巴結(jié)轉(zhuǎn)移率約30%(低淋巴道轉(zhuǎn)移潛能)[3-4]。以前認(rèn)為腫瘤淋巴道轉(zhuǎn)移是一個(gè)被動(dòng)過程,現(xiàn)已明確腫瘤細(xì)胞和淋巴管內(nèi)皮細(xì)胞(LEC)之間存在主動(dòng)聯(lián)系。在LEC相關(guān)分子中,血管內(nèi)皮生長(zhǎng)因子-C/D(VEGF-C/D)是生長(zhǎng)因子配體,血管內(nèi)皮生長(zhǎng)因子受體-3(VEGFR-3)/神經(jīng)纖維蛋白-2(NRP-2)是其結(jié)合受體,平足蛋白(PDPN)/淋巴管內(nèi)皮細(xì)胞表面透明質(zhì)酸受體-1(LYVE-1)和性別決定區(qū)Y框18(SOX18)則是LEC特異標(biāo)記物。本課題組前期研究發(fā)現(xiàn),膜聯(lián)蛋白A7(ANXA7)作用于肝癌的發(fā)生發(fā)展及其淋巴道轉(zhuǎn)移過程,是極具潛力的癌癥治療靶點(diǎn),但其確切的分子調(diào)控機(jī)制尚未明晰[5-6]。2018年1月—2021年5月,本研究在前期工作基礎(chǔ)上進(jìn)一步研究肝癌細(xì)胞高/低淋巴道轉(zhuǎn)移潛能(ANXA7調(diào)控前)和下調(diào)/上調(diào)ANXA7基因(ANXA7調(diào)控后)干預(yù),對(duì)體外共培養(yǎng)LEC的相關(guān)分子表達(dá)和淋巴管成管的影響。
1.1細(xì)胞、試劑及儀器F細(xì)胞(高淋巴道轉(zhuǎn)移潛能)、P細(xì)胞(低淋巴道轉(zhuǎn)移潛能),F(xiàn)A7下調(diào)細(xì)胞(ANXA7表達(dá)下調(diào))、F無關(guān)序列細(xì)胞(轉(zhuǎn)染無關(guān)序列),PA7上調(diào)細(xì)胞(ANXA7表達(dá)上調(diào))、P空載體細(xì)胞(轉(zhuǎn)染空載體),由大連醫(yī)科大學(xué)病理教研室構(gòu)建。小鼠正常LEC,購(gòu)自美國(guó)Cell Biologic公司。主要實(shí)驗(yàn)儀器、試劑及來源如下:CO2培養(yǎng)箱(美國(guó)Thermo公司);超凈工作臺(tái)(蘇州安泰空氣技術(shù)有限公司);凝膠成像系統(tǒng)Odyssey、電泳槽、電泳儀、轉(zhuǎn)膜槽、轉(zhuǎn)膜儀(上海伯樂生命醫(yī)學(xué)產(chǎn)品有限公司);高速冷凍離心機(jī)(日本Tomy Kogyo公司);超聲波破碎儀JY-Ⅱ(中國(guó)寧波新芝科技股份有限公司);FTC-2000A Real-time PCR 儀(上海楓嶺生物技術(shù)有限公司);熒光實(shí)時(shí)定量PCR儀MX3005P(美國(guó)Agilent Technologies公司);熒光倒置顯微鏡(上海虹漸光電科技有限公司);酶標(biāo)儀(上海閃譜生物科技有限公司);RPMI1640、DMEM(北京索萊寶科技有限公司);胎牛血清(法國(guó)Biowest公司);ECM培養(yǎng)基、FBS(美國(guó)Science Cell公司);Matrigel(美國(guó)Sigma公司);TRIzol試劑(美國(guó)Invitrogen公司);一抗VEGF-C、VEGF-D、VEGFR-3、PDPN、LYVE-1、SOX18(美國(guó)Santa Cruz公司)、NRP-2(美國(guó)Santa Cruz公司和英國(guó)Abcam公司)、GAPDH(北京中杉金橋生物技術(shù)有限公司),Western blotting二抗(美國(guó)LI-COR公司),細(xì)胞免疫熒光二抗(美國(guó)Abbkine公司)。
1.2肝癌細(xì)胞與LEC共培養(yǎng)將各肝癌細(xì)胞(懸浮細(xì)胞)及正常LEC(貼壁細(xì)胞)各1×106個(gè)分別接種于培養(yǎng)皿中共培養(yǎng),均加入等體積無血清RPIM1640培養(yǎng)基5 mL,37 ℃下5% CO2孵育24 h,收集與F細(xì)胞共培養(yǎng)LEC(L-F共)、與P細(xì)胞共培養(yǎng)LEC(L-P共),與FA7下調(diào)細(xì)胞共培養(yǎng)LEC(L-FA7下調(diào)共)、與F無關(guān)序列細(xì)胞共培養(yǎng)LEC(L-F無關(guān)序列共)、與PA7上調(diào)細(xì)胞共培養(yǎng)LEC(L-PA7上調(diào)共)、與P空載體共細(xì)胞共培養(yǎng)LEC(L-P空載體共)以及正常LEC用于實(shí)驗(yàn)。
1.3共培養(yǎng)LEC內(nèi)淋巴管內(nèi)皮相關(guān)分子mRNA表達(dá)檢測(cè)采用實(shí)時(shí)定量PCR。收集共培養(yǎng)的LEC轉(zhuǎn)移到EP管,冰上操作,先后加TRIzol、三氯甲烷、異丙醇、DEPC水稀釋的75%乙醇,4 ℃離心獲取上清液,DEPC水溶解。引物由TaKaRa公司設(shè)計(jì),各分子引物序列如下:VEGF-C上游引物序列5'-GTGAGGTGTGTATAGATGTGGGG-3',下游引物序列5'-ACGTCTTGCTGAGGTAACCTG-3';VEGF-D上游引物序列5'-CAGTGCCCGAGTTAGTGCC-3',下游引物序列5'-CCACAGCATGTCAATAGGACAGA-3';VEGFR-3上游引物序列5'-ACAGAAGCTAG-GCCCTACTG-3',下游引物序列5'-ACCCACATCGAGTCCTTCCT-3';NRP-2上游引物序列5'- GACTTCATTGAGATTCGGGATGG-3',下游引物序列5'-AACTTGATGTATAACACGGAGCC-3';PDPN上游引物序列5'-CACCTCAGCAACCTCAGAC-3',下游引物序列5'-ACAGGGCAAGTTGGAAGG-3';LYVE-1上游引物序列5'-TTTCACAGAAGCCAACGAGG-3',下游引物序列5'-AAAGAAGAGGAGAGCCAGCA-3';SOX18上游引物序列5'-CGCGTGTATGTTTGGTTC-3',下游引物序列5'-ATGTAACCCTGGCAACTC-3';GAPDH 上游引物序列5'-AAATGGTGAAGGTCGGTGTGAAC',下游引物序列5'-CAACAATCTCCACTTTGCCACTG-3'。42 ℃溫育45 min,85 ℃加熱10 min,終止反應(yīng),反應(yīng)液用作PCR模板。反應(yīng)條件:95 ℃變性3 min;95 ℃ 30 s,62 ℃ 40 s,共40個(gè)循環(huán)。用2-ΔΔCT計(jì)算目的基因相對(duì)表達(dá)量。
1.4共培養(yǎng)LEC內(nèi)淋巴管內(nèi)皮相關(guān)分子蛋白表達(dá)檢測(cè)采用Western blotting法。收集共培養(yǎng)24 h的LEC,分別加3倍體積細(xì)胞裂解液,冰上操作,超聲破碎后4 ℃離心15 min,取上清液,BCA蛋白試劑盒測(cè)定各組LEC總蛋白濃度??偟鞍祝?0 μg)加載于12% SDS-PAGE凝膠,分離轉(zhuǎn)移到PVDF膜,分別加一抗VEGF-C(1∶500)、VEGF-D(1∶500)、VEGFR-3(1∶400)、NRP-2(1∶800)、PDPN(1∶400)、LYVE-1(1∶400)、SOX18(1∶400)、GAPDH(1∶2 000)4 ℃過夜,熒光二抗(1∶15 000)室溫1 h。用凝膠分析系統(tǒng)掃描條帶,經(jīng)Image J和GraphPad Prism5軟件分析灰度,計(jì)算OD均值。
1.5共培養(yǎng)LEC內(nèi)淋巴管內(nèi)皮相關(guān)分子定位檢測(cè)采用細(xì)胞免疫熒光法。收集共培養(yǎng)24 h的LEC沉淀于EP管中,分別與VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18(均1∶75)一抗于4 ℃過夜,熒光二抗(1∶50)37 ℃ 90 min,DAPI染色細(xì)胞核,激光共聚焦顯微鏡(物鏡40×目鏡10),觀察載玻片上的單層細(xì)胞,觀測(cè)各組共培養(yǎng)LEC中VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18等表達(dá)的位置。
1.6細(xì)胞上清液VEGF-C、VEGF-D檢測(cè)采用ELISA法。取各LEC(1×106個(gè)/mL)培養(yǎng)24 h取培養(yǎng)的上清液,在micro-ELISA平板上與預(yù)包被VEGF-C或VEGF-D抗體(即用型)結(jié)合,取細(xì)胞上清液100 mL與100 μL生物素-辣根過氧化物酶標(biāo)記親和素工作液(即用型),37 ℃溫育1 h,每孔加底物溶液90 μL,37 ℃避光顯色30 min,加終止溶液50 μL。用酶標(biāo)儀檢測(cè)波長(zhǎng)452 nm處OD值,每孔設(shè)2個(gè)復(fù)孔取平均值。用GraphPad Prism5軟件計(jì)算OD均值。
1.7淋巴管成管節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度測(cè)算采用淋巴管成管實(shí)驗(yàn)。取各LEC(1×106個(gè)/mL)培養(yǎng)24 h,3 000 r/min離心20 min(半徑為160 mm),取上清液加入預(yù)冷Matrigel基質(zhì)膠,置于96孔板,每孔60 μL,培養(yǎng)環(huán)境5% CO2、37 ℃ 30 min。LEC經(jīng)胰酶消化、800 r/min離心5 min(半徑為100 mm)后,將各類LEC分別取4×104個(gè)細(xì)胞于200 μL上清液制成混合液,加至Matrigel基質(zhì)膠中,置于5% CO2、37 ℃ 培養(yǎng)箱培養(yǎng)4 h,倒置顯微鏡(物鏡20×目鏡10)下觀察細(xì)胞淋巴管成管節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度。結(jié)果用Image J和GraphPad Prism5軟件分析,計(jì)算淋巴管成管節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度。

2.1ANXA7調(diào)控前后共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子表達(dá)比較VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18表達(dá)mRNA和蛋白比較,L-P共、L-F共細(xì)胞高于LEC(均<0.05),L-F共細(xì)胞高于L-P共細(xì)胞(均<0.05)。與L-F無關(guān)序列共、L-P空載體共細(xì)胞相比,L-FA7下調(diào)共細(xì)胞上述分子表達(dá)均低(均<0.05),L-PA7上調(diào)共細(xì)胞上述分子表達(dá)均高(均<0.05)。ANXA7調(diào)控前后,各細(xì)胞中VEGF-C、VEGFR-3、PDPN相對(duì)表達(dá)量與同類分子(VEGF-D、NRP-2及LYVE-1/SOX18)比較變化更顯著(均<0.05)。見表1~4。

表1 ANXA7調(diào)控前共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子mRNA表達(dá)(± s)

表2 ANXA7調(diào)控前共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子蛋白表達(dá)(± s)

表3 ANXA7調(diào)控后共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子mRNA表達(dá)(± s)

表4 ANXA7調(diào)控后共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子蛋白表達(dá)(± s)
2.2ANXA7調(diào)控前后共培養(yǎng)LEC中淋巴管內(nèi)皮相關(guān)分子的定位VEGF-C、VEGF-D主要在細(xì)胞質(zhì)內(nèi)表達(dá);VEGFR-3/NRP-2主要在細(xì)胞膜表達(dá),少量在細(xì)胞質(zhì)表達(dá);PDPN、LYVE-1主要在細(xì)胞質(zhì)表達(dá);SOX18主要在細(xì)胞核表達(dá),少量于細(xì)胞質(zhì)表達(dá)。
2.3ANXA7調(diào)控前后共培養(yǎng)LEC細(xì)胞上清液中VEGF-C、VEGF-D表達(dá)比較ANXA7調(diào)控前,細(xì)胞上清液中VEGF-C、VEGF-D表達(dá)比較,L-F共、L-P共高于LEC,L-F共高于L-P共(均<0.05),且VEGF-C表達(dá)都高于VEGF-D(均<0.05)。ANXA7調(diào)控前后,各細(xì)胞VEGF-C相對(duì)表達(dá)量與同類分子(VEGF-D)比較變化更顯著(均<0.05)。見表5。

表5 ANXA7調(diào)控前后共培養(yǎng)LEC細(xì)胞上清液中VEGF-C、VEGF-D表達(dá)(± s)
2.4ANXA7調(diào)控前后共培養(yǎng)LEC淋巴管成管能力的變化倒置顯微鏡下見薄壁網(wǎng)狀分支形成多邊形空心管腔,腔壁由單層扁平LEC圍繞,細(xì)胞連接處見點(diǎn)狀結(jié)節(jié)。在節(jié)點(diǎn)數(shù)和分支總長(zhǎng)度上,L-F共、L-P共細(xì)胞均多于LEC,L-F共細(xì)胞多于L-P共細(xì)胞(均<0.05);L-FA7下調(diào)共細(xì)胞少于L-F無關(guān)序列共細(xì)胞(均<0.05),L-PA7上調(diào)共細(xì)胞多于L-P空載體共細(xì)胞(均<0.05)。見圖1、表6。

注:A為ANXA7調(diào)控前;B為ANXA7調(diào)控后。

表6 ANXA7調(diào)控前后共培養(yǎng)LEC的淋巴管節(jié)點(diǎn)數(shù)及分支總長(zhǎng)度(± s)
腫瘤細(xì)胞和LEC是與腫瘤生長(zhǎng)及淋巴道轉(zhuǎn)移密切相關(guān)的細(xì)胞群體,二者的功能和交互作用變化,在很大程度上決定了腫瘤的發(fā)生發(fā)展與預(yù)后轉(zhuǎn)歸。為進(jìn)一步了解細(xì)胞分泌因子、代謝物質(zhì)或直接接觸等因素對(duì)與肝癌細(xì)胞共培養(yǎng)的LEC的影響,全面解析二者之間復(fù)雜的相互作用,我們重點(diǎn)研究了肝癌細(xì)胞淋巴道轉(zhuǎn)移潛能及ANXA7基因調(diào)控對(duì)共培養(yǎng)LEC的VEGF-C、VEGF-D、VEGFR-3、NRP-2、PDPN、LYVE-1、SOX18分子表達(dá)和淋巴管成管的作用。本研究首次從分子生物學(xué)和細(xì)胞行為學(xué)兩個(gè)角度深入探討。
經(jīng)過體外細(xì)胞共培養(yǎng),觀察與不同淋巴道轉(zhuǎn)移潛能肝癌細(xì)胞共培養(yǎng)的LEC中特異相關(guān)分子表達(dá)、分泌和淋巴管成管變化的特點(diǎn)發(fā)現(xiàn),高淋巴道轉(zhuǎn)移潛能肝癌細(xì)胞有效促進(jìn)了共培養(yǎng)LEC的淋巴管內(nèi)皮相關(guān)分子表達(dá)、分泌和淋巴管成管。尤其是各組VEGF-C、VEGFR-3、PDPN、成管節(jié)點(diǎn)數(shù)等指標(biāo)的變化,提示VEGF-C、VEGFR-3、PDPN、成管節(jié)點(diǎn)對(duì)肝癌淋巴道轉(zhuǎn)移潛能和ANXA7的調(diào)控都更加敏感。研究表明,高淋巴道轉(zhuǎn)移潛能腫瘤細(xì)胞,除了自身表現(xiàn)出強(qiáng)大的遷徙、穿越、損傷淋巴管內(nèi)皮屏障能力外,還更容易激活LEC的相應(yīng)生長(zhǎng)信號(hào)通路分子表達(dá)分泌,誘導(dǎo)腫瘤新生LEC生成、分化和淋巴管重構(gòu)[7-10]。
研究表明,ANXA7參與細(xì)胞生長(zhǎng)、分化、增殖、運(yùn)動(dòng)、分泌和凋亡等生物學(xué)行為,是誘導(dǎo)肝癌、胃癌、結(jié)直腸癌、肺癌、鼻咽癌、甲狀腺癌等增殖侵襲轉(zhuǎn)移的重要基因蛋白[11-14]。其可能機(jī)制是通過調(diào)控強(qiáng)化肝癌細(xì)胞ANXA7的功能,提高細(xì)胞內(nèi)磷脂酰肌醇激酶(PI3K)、蛋白激酶B(AKT)和Ras相關(guān)的C3肉毒素底物1(RAC1)信號(hào)活性,分泌更多的VEGF-C、VEGF-D,從而進(jìn)一步誘導(dǎo)激活與之共培養(yǎng)LEC中的VEGF-C/D-VEGFR-3/NRP-2配體受體軸及其下游的核轉(zhuǎn)錄因子SOX18和跨膜蛋白PDPN/LYVE-1等,經(jīng)由絲裂原活化蛋白激酶(MAPK)、蛋白激酶B(PKB)、局部黏著斑激酶(FAK)、肉瘤逆轉(zhuǎn)錄病毒起源的蛋白酪氨酸激酶家族(Src)、細(xì)胞外調(diào)節(jié)蛋白激酶(Erk)等通路分子,最終導(dǎo)致LEC細(xì)胞增殖、遷徙,并模擬形成淋巴管腔樣結(jié)構(gòu)[13,15]。本研究觀察到ANXA7可使與肝癌細(xì)胞共培養(yǎng)LEC的分子生物學(xué)和細(xì)胞行為學(xué)發(fā)生一系列變化,充分體現(xiàn)了腫瘤實(shí)質(zhì)細(xì)胞基因調(diào)控對(duì)腫瘤間質(zhì)細(xì)胞的繼發(fā)影響。上調(diào)肝癌細(xì)胞ANXA7基因表達(dá),也能明顯促進(jìn)淋巴管內(nèi)皮相關(guān)分子表達(dá)和淋巴管成管能力。
本研究以淋巴管內(nèi)皮相關(guān)分子表達(dá)和淋巴管成管現(xiàn)象作為主要觀察指標(biāo),分別代表了LEC的分子生物學(xué)和細(xì)胞行為學(xué)特性。淋巴管內(nèi)皮相關(guān)分子主要在LEC的細(xì)胞膜、細(xì)胞質(zhì)和細(xì)胞核中表達(dá),參與LEC的生成、增殖、分化和功能執(zhí)行過程[16]。此外研究發(fā)現(xiàn),在各組LEC細(xì)胞上清液中以VEGF-C分泌為主。這說明VEGF-C、VEGF-D分泌存在差異,且提示VEGF-C可作為淋巴道內(nèi)皮相關(guān)分子的可溶性標(biāo)記,用于臨床外周血樣本檢測(cè)。淋巴管成管現(xiàn)象展示了LEC分裂、增殖、遷移、連接和圍管成形能力,模擬了體內(nèi)腫瘤淋巴管生成時(shí)淋巴管增殖、發(fā)芽和管腔增大的過程[17]。本研究發(fā)現(xiàn),上述淋巴管內(nèi)皮相關(guān)分子表達(dá)和成管現(xiàn)象增多,表明共培養(yǎng)LEC細(xì)胞內(nèi)外信號(hào)系統(tǒng)轉(zhuǎn)導(dǎo)、執(zhí)行、集成等的網(wǎng)絡(luò)調(diào)控發(fā)生了變化,最終都會(huì)對(duì)腫瘤淋巴管生成特別是淋巴道轉(zhuǎn)移產(chǎn)生重大影響。
以LEC為最基本細(xì)胞成分構(gòu)成的淋巴管系統(tǒng),是腫瘤細(xì)胞隨淋巴液遷徙運(yùn)行到達(dá)各級(jí)淋巴結(jié)的唯一通道。需要指出的是,我們所做體外實(shí)驗(yàn)的研究對(duì)象,是與肝癌細(xì)胞共培養(yǎng)的正常LEC細(xì)胞株。但實(shí)際在體內(nèi)腫瘤組織中,間質(zhì)新生LEC可以有三種來源:一是受腫瘤細(xì)胞激活而分裂增殖的原有間質(zhì)正常LEC(腫瘤關(guān)聯(lián)LEC);二是來自隨血液淋巴液循環(huán)至腫瘤局部的骨髓LEC祖細(xì)胞(骨髓源性LEC);三是由腫瘤細(xì)胞轉(zhuǎn)分化或基因融合而成的LEC(腫瘤源性LEC)[18-19]。這些腫瘤性LEC與正常LEC相比有不同之處。如生物學(xué)特征上體外細(xì)胞分離后壽命較短,很難大量培養(yǎng);細(xì)胞形態(tài)學(xué)上腫瘤性LEC細(xì)胞核更大、中心體異常;遺傳學(xué)上見腫瘤性LEC染色體畸變、缺失、非整倍體增加;標(biāo)記基因蛋白高表達(dá),如上池蛋白(Suprabasin)、雙糖鏈蛋白多糖(Biglycan)、轉(zhuǎn)膠蛋白2(TAGLN2)、鋅指蛋白轉(zhuǎn)錄因子5(KLF5)、信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子1(STAT1)和信號(hào)傳導(dǎo)轉(zhuǎn)錄激活因子2(STAT2)等[19-20]。此外有必要強(qiáng)調(diào),腫瘤細(xì)胞與LEC共培養(yǎng)時(shí),兩種細(xì)胞間的作用是雙向的,共培養(yǎng)LEC也會(huì)促進(jìn)黑色素瘤、髓母細(xì)胞瘤、結(jié)直腸癌、卵巢癌等腫瘤細(xì)胞的侵襲生長(zhǎng)和淋巴道轉(zhuǎn)移[21-22]。因此,腫瘤細(xì)胞與LEC之間的相互作用機(jī)制可能極為復(fù)雜,有必要進(jìn)一步研究。
本研究結(jié)果表明,高淋巴道轉(zhuǎn)移潛能和ANXA7表達(dá)上調(diào),可促進(jìn)與肝癌細(xì)胞共培養(yǎng)的LEC淋巴管內(nèi)皮相關(guān)分子表達(dá)及淋巴管成管。
[1] MA J, ZHANG L, BIAN H R, et al. A noninvasive prediction nomogram for lymph node metastasis of hepatocellular carcinoma based on serum long noncoding RNAs[J]. Biomed Res Int, 2019,2019:1710670.
[2] WATANABE J, NAKASHIMA O, KOJIRO M. Clinicopathologic study on lymph node metastasis of hepatocellular carcinoma: a retrospective study of 660 consecutive autopsy cases[J]. Jpn J Clin Oncol, 1994,24(1):37-41.
[3] LING M Y. Establishment and biological characteristics of mouse hepatoma cell line H22-F25/L[J]. Chin J Oncol, 1991,13:13-15.
[4] JIN Y L, WANG Z Q, QU H, et al. Annexin A7 gene is an important factor in the lymphatic metastasis of tumors[J]. Biomed Pharmacother, 2013,67(4):251-259.
[5] SONG L, MAO J, ZHANG J, et al. Annexin A7 and its binding protein galectin-3 influence mouse hepatocellular carcinoma cell line in vitro[J]. Biomed Pharmacother, 2014,68(3):377-384.
[6] GUO C, LIU S, GREENWAY F, et al. Potential role of annexin A7 in cancers[J]. Clin Chim Acta, 2013,423:83-89.
[7] MA Q, DIETERICH L C, DETMAR M. Multiple roles of lymphatic vessels in tumor progression[J]. Curr Opin Immunol, 2018,53:7-12.
[8] WANG J, HUANG Y, ZHANG J, et al. High co-expression of the SDF1/CXCR4 axis in hepatocarcinoma cells is regulated by AnnexinA7 in vitro and in vivo[J]. Cell Commun Signal, 2018,16(1):22.
[9] COMMERFORD C D, DIETERICH L C, HE Y, et al. Mechanisms of tumor-induced lymphovascular niche formation in draining lymph nodes[J]. Cell Rep, 2018,25(13):3554-3563,e4.
[10] ROY S, KUMARAVEL S, BANERJEE P, et al. Tumor lymphatic interactions induce CXCR2-CXCL5 axis and alter cellular metabolism and lymphangiogenic pathways to promote cholangiocarcinoma[J]. Cells, 2021,10(11):3093.
[11] YE W, LI Y, FAN L, et al. Effect of annexin A7 suppression on the apoptosis of gastric cancer cells[J]. Mol Cell Biochem, 2017,429(1-2):33-43.
[12] GUI S J, DING R L, WAN Y P, et al. Knockdown of annexin Ⅶ enhances nasopharyngeal carcinoma cell radiosensitivity in vivo and in vitro[J]. Cancer Biomark, 2020,28(2):129-139.
[13] LEIGHTON X, EIDELMAN O, JOZWIK C, et al. ANXA7-GTPase as tumor suppressor: mechanisms and therapeutic opportunities[J]. Methods Mol Biol, 2017,1513:23-35.
[14] WANG Y. Circ-ANXA7 facilitates lung adenocarcinoma progression via miR-331/LAD1 axis[J]. Cancer Cell Int, 2021,21(1):85.
[15] ZHAO Y, YANG Q, WANG X, et al. AnnexinA7 down-regulation might suppress the proliferation and metastasis of human hepatocellular carcinoma cells via MAPK/ERK pathway[J]. Cancer Biomark, 2018,23(4):527-537.
[16] CHEN J M, LUO B, MA R, et al. Lymphatic endothelial markers and tumor lymphangiogenesis assessment in human breast cancer[J]. Diagnostics (Basel), 2021,12(1):4.
[17] ZHOU H, LEI P J, PADERA T P. Progression of metastasis through lymphatic system[J]. Cells, 2021,10(3):627.
[18] HE M, HE Q, CAI X, et al. Role of lymphatic endothelial cells in the tumor microenvironment-a narrative review of recent advances[J]. Transl Lung Cancer Res, 2021,10(5):2252-2277.
[19] LIN P P. Aneuploid circulating tumor-derived endothelial cell (CTEC): a novel versatile player in tumor neovascularization and cancer metastasis[J]. Cells, 2020,9(6):1539.
[20] WEI J C, YANG J, LIN D, et al. Tumor-associated lymphatic endothelial cells promote lymphatic metastasis by highly expressing and secreting SEMA4C[J]. Clin Cancer Res, 2017,23(1):214-224.
[21] SILVESTRI V L, HENRIET E, LINVILLE R M, et al. A tissue-engineered 3D micro-vessel model reveals the dynamics of mosaic vessel formation in breast cancer[J]. Cancer Res, 2020,80(19): 4288-4301.
[22] FRENKEL N, POGHOSYAN S, ALARCóN C R, et al. Long-lived human lymphatic endothelial cells to study lymphatic biology and lymphatic vessel/tumor coculture in a 3D microfluidic model[J]. ACS Biomater Sci Eng, 2021,7(7):3030-3042.
·作者·編者·讀者·
《山東醫(yī)藥》雜志誠(chéng)邀審稿專家
《山東醫(yī)藥》是山東省衛(wèi)生健康委員會(huì)主管、山東省立醫(yī)院主辦的綜合性醫(yī)學(xué)學(xué)術(shù)期刊,1957年創(chuàng)刊,旬刊,ISSN 1002-266X,CN 37-1156/R,郵發(fā)代號(hào)24-8?,F(xiàn)為中國(guó)科技核心期刊、中國(guó)生物醫(yī)學(xué)核心期刊、RCCSE 中國(guó)核心學(xué)術(shù)期刊、《中國(guó)學(xué)術(shù)期刊影響因子年報(bào)》統(tǒng)計(jì)源期刊等,連續(xù)多次入選《中文核心期刊要目總覽》,2020 期刊影響力指數(shù)(CI)1014.395、排序4/212,位于Q1 區(qū),期刊即年影響因子1.136。
隨著我國(guó)醫(yī)學(xué)科研水平不斷提升,醫(yī)學(xué)論文的科研設(shè)計(jì)、統(tǒng)計(jì)分析愈加復(fù)雜,《山東醫(yī)藥》的自然投稿量持續(xù)增加,導(dǎo)致目前在庫審稿專家的審稿工作量越來越大。為了嚴(yán)格執(zhí)行同行評(píng)議制度,保證期刊學(xué)術(shù)質(zhì)量,規(guī)范學(xué)者學(xué)術(shù)行為,進(jìn)一步充實(shí)審稿專家隊(duì)伍,現(xiàn)面向全國(guó)公開招聘審稿專家,誠(chéng)邀您的加入。
Regulatory effects of lymphatic metastasis potential and ANXA7 on lymphatic endothelial cells co-cultured with hepatocarcinoma cells
1,,,
1,,300192,
To investigate the regulatory effects of lymphatic metastasis potential and Annexin A7 (ANXA7) on lymphatic endothelial cells (LECs) co-cultured with hepatocellular carcinoma cells.The liver cancer cells and LEC were co-cultured. The LECs (L-F, L-P, L-FA7DOWN, L-FSHUS, L-PA7UP, L-PNCEV) co-cultured with F cells (high lymphatic metastasis potential), P cells (low lymphatic metastasis potential), FA7DOWNcells (F ANXA7 down-regulated cells), FSHUScells (F-unrelated sequence cells), PA7UPcells (P ANXA7 up-regulated cells), and PNCEVcells (P empty vector cells), and normal LECs were collected and used in the experiment. Real-time quantitative PCR and Western blotting were used to detect the mRNA and protein expression levels of lymphatic endothelium-related molecules VEGF-C, VEGF-D, VEGFR-3, NRP-2, PDPN, LYVE-1 and SOX18 in co-cultured LECs. The lymphatic endothelium-related molecular localizations in co-cultured LECs were detected by cell immunofluorescence method, and the levels of VEGF-C and VEGF-D in cell supernatant were detected by ELISA. The lymphatic tube formation test was used to measure the number of lymphangiogenesis nodes and the total length of lymphangiogenesis branches.The expression levels of VEGF-C, VEGF-D, VEGFR-3, NRP-2, PDPN, LYVE-1, and SOX18 at mRNA and protein levels were higher in L-P and L-F than in LECs (all<0.05), and those were higher in L-F than in L-P (all<0.05). Compared with L-FSHUSand L-PNCEV, the expression of the above molecules was lower in L-FA7 DOWN(<0.05), and was higher in L-PA7UP(<0.05). After ANXA7 regulation, the relative expression levels of VEGF-C, VEGFR-3, and PDPN in each co-cultured LEC group were significantly higher than those of similar molecules (VEGF-D, NRP-2, and LYVE-1/SOX18)(all<0.05). VEGF-C and VEGF-D were mainly expressed in the cytoplasm. VEGFR-3/NRP-2 was mainly expressed in cell membrane and a little in cytoplasm. PDPN and LYVE-1 were mainly expressed in cytoplasm. SOX18 was mainly expressed in the nucleus and a little in the cytoplasm. Before ANXA7 regulation, in the secretion of VEGF-C and VEGF-D in cell supernatant, L-F and L-P was higher than LECs, L-F was higher than L-P (all<0.05), and meanwhile, the expression of VEGF-C was higher than the expression of VEGF-D (all<0.05). Before and after ANXA7 regulation, the relative expression change of VEGF-C in each cell supernatant was more significantly than that of the same molecule (VEGF-D)(<0.05). L-F and L-P had larger node number and longer total branch length than LEC, while L-F had larger node number and longer total branch length than L-P (all<0.05); L-FA7DOWNhad smaller node number and shorter total branch length than L-FSHUS(<0.05), and L-PA7UPhad larger node number and longer total branch length than L-PNCEV(all<0.05).High lymphatic metastasis potential and up-regulation of ANXA7 can promote the expression of lymphatic endothelial related molecules and increase lymphangiogenesis ability of LECs co-cultured with hepatocellular carcinoma cells.
hepatocarcinoma cells; lymphatic endothelial cells; co-culture in vitro; lymphatic metastasis potential; Annexin A7; lymphatic endothelium-related molecules; lymphatic tube formation
10.3969/j.issn.1002-266X.2022.28.001

R735.7
A
1002-266X(2022)28-0001-06
國(guó)家自然科學(xué)基金資助項(xiàng)目(81071725)。
王靜文(1983-),女,博士,主要研究方向?yàn)椴±韺W(xué)、肝癌淋巴道轉(zhuǎn)移。E-mail: 5020200866@nankai.edu.cn
唐建武(1953-),男,碩士,教授,主要研究方向?yàn)椴±韺W(xué)、肝癌淋巴道轉(zhuǎn)移。E-mail: jianwutang@163.com
(2022-04-20)