999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于TCGA數(shù)據(jù)庫口腔鱗狀細(xì)胞癌相關(guān)microRNA預(yù)后風(fēng)險模型的建立

2022-10-14 03:47:14李晶晶黃月嬌馮焯明余浩華李炳錕粟小平
大眾科技 2022年9期
關(guān)鍵詞:差異分析模型

李晶晶 黃月嬌 馮焯明 余浩華 李炳錕 羅 瑩 粟小平

基于TCGA數(shù)據(jù)庫口腔鱗狀細(xì)胞癌相關(guān)microRNA預(yù)后風(fēng)險模型的建立

李晶晶 黃月嬌 馮焯明 余浩華 李炳錕 羅 瑩 粟小平

(廣西醫(yī)科大學(xué)口腔醫(yī)學(xué)院,廣西 南寧 530021)

目的:研究旨在通過檢測microRNA(miRNA)的表達(dá)特征來預(yù)測口腔鱗狀細(xì)胞癌(OSCC)患者的存活率。方法:從TCGA數(shù)據(jù)庫下載397名OSCC患者的表達(dá)譜數(shù)據(jù)及相應(yīng)的臨床信息。通過生物信息學(xué)的方法分析OSCC與正常組織間的差異表達(dá)的miRNA,使用Cox回歸分析和其他生物信息學(xué)方法篩選預(yù)后相關(guān)的miRNA。并應(yīng)用采用Kaplan-Meier分析和、受試者工作特征(ROC)曲線分析評估所篩選的miRNA作為預(yù)后評估指標(biāo)的可信度。結(jié)果:通過生物信息學(xué)的方法分析獲得差異表達(dá)的miRNA363個,其中上調(diào)的miRNA197個,下調(diào)的miRNA166個(PDR<0.05)。通過單變量COX回歸分析發(fā)現(xiàn)84個miRNA的表達(dá)與患者預(yù)后顯著相關(guān),將其中<0.001的11個miRNA進一步進行多變量COX回歸分析,其中4個miRNA(has-miR-30e、has-miR-337、has-miR-6507、has-miR-1251)納入了風(fēng)險評估模型。根據(jù)多因素COX分析的回歸系數(shù),構(gòu)建由4個miRNA組成的預(yù)后風(fēng)險評估模型,根據(jù)風(fēng)險評分將OSCC患者分為高風(fēng)險組和低風(fēng)險組。Kaplan-Meier生存曲線表明高風(fēng)險組生存率顯著低于低風(fēng)險組生存率(=1.026e-05),構(gòu)建的ROC曲線下面積AUC為0.669,C-index為0.63。結(jié)論:4個miRNA,has-miR-30e、has-miR-337、has-miR-6507及has-miR-1251的組合可以作為預(yù)測OSCC患者預(yù)后的潛在標(biāo)志物。

TCGA;OSCC;microRNA;預(yù)后;風(fēng)險

引言

頭頸腫瘤是世界第六大高發(fā)腫瘤,包括鼻竇、鼻腔、咽部、喉部及口腔等部位的上皮惡性腫瘤,約占所有病例6%,全球每年約有65萬例新發(fā)病例以及35萬例與頭頸腫瘤相關(guān)的死亡病例[1]。而口腔癌是頭頸部最常見的腫瘤之一,在60歲以上的男性患者中發(fā)病率為75%,約95%的病例為鱗狀細(xì)胞癌[2]。然而,盡管在過去的幾十年里外科手術(shù)和化療取得了顯著的進展[3],但口腔癌的5年生存率及預(yù)后依然沒有得到很好的改善,沒有可用的早期診斷的標(biāo)志物。微小RNA(miRNA)是生物體中一種非編碼的短小RNA,其在機體的發(fā)育中具有重要的作用,其表達(dá)異常與腫瘤的發(fā)生發(fā)展具有密切關(guān)系,其在口腔腫瘤中的研究也得到了廣泛的發(fā)展[4]。本研究以TCGA數(shù)據(jù)庫為基礎(chǔ),篩選OSCC與正常口腔組織差異表達(dá)的miRNA,并結(jié)合相應(yīng)的病例樣本臨床信息,通過單因素和多因素COX回歸分析,建立基于miRNA表達(dá)的預(yù)后風(fēng)險評估模型,為OSCC的診療提供一定的參考。

1 材料與方法

1.1 數(shù)據(jù)處理

OSCC患者樣本的miRNA表達(dá)數(shù)據(jù)及相應(yīng)的臨床信息于2020年4月從TCGA下載。一共包括430個樣本,包括32個正常樣本和398個OSCC樣本。OSCC組織和正常組織的差異表達(dá)miRNA應(yīng)用R語言的edgeR包進行分析。以<0.05和|Log2FC|≥1作為差異miRNA的篩選標(biāo)準(zhǔn)。

1.2 差異表達(dá)miRNA的生存分析

應(yīng)用perl腳本將差異表達(dá)的miRNA的表達(dá)數(shù)據(jù)和患者的生存狀態(tài)和生存信息進行處理形成矩陣,再通過R語言的survival包分析每個差異表達(dá)基因與患者生存率之間的關(guān)系。

1.3 差異表達(dá)miRNA的單因素及多因素COX回歸分析

將上一步得到的miRNA與患者生存狀態(tài)及生存時間的矩陣,通過R語言的coxph函數(shù)進行單因素回歸分析。將顯著性<0.001的基因,通過R語言的coxph函數(shù),用于多因素COX回歸分析。根據(jù)風(fēng)險系數(shù)及miRNA的表達(dá)量對每位患者進行風(fēng)險評估打分,并根據(jù)風(fēng)險評估打分的中位值將患者分為高風(fēng)險組和低風(fēng)險組,再利用R語言的survival包,構(gòu)建風(fēng)險生存曲線。

1.4 miRNA風(fēng)險評估模型的可信度評價

ROC曲線是用來評價連續(xù)變量反應(yīng)敏感性與特異性的綜合指標(biāo)。使用R語言的survivalROC包分析包括風(fēng)險評分和其他指標(biāo)預(yù)測患者的能力。同時利用survcomp包計算C-index指數(shù),并建立風(fēng)險分布圖、生存狀態(tài)圖以及風(fēng)險熱圖。

2 結(jié)果

2.1 口腔鱗狀細(xì)胞癌與正常口腔組織的差異miRNA分析

從TCGA數(shù)據(jù)庫下載2020年4月的OSCC的表達(dá)譜數(shù)據(jù),包括腫瘤組織398份,正常組織32份。共獲得差異表達(dá)的miRNA363個,其中上調(diào)的miRNA197個,下調(diào)的miRNA166個(PDR<0.05)(表1,圖1)。

表1 OSCC和正常口腔組織的差異miRNA分析(前20)

miRNAlogFClogCPMPValueFDR hsa-miR-381-3.6950702717.2782040684.04E-886.45E-85 hsa-miR-101-2-2.13189724712.183137262.68E-652.14E-62 hsa-miR-101-1-2.1277466512.170679598.63E-654.59E-62 hsa-miR-299-2.8362481273.514671991.49E-565.92E-54 hsa-miR-411-2.841516674.0662013012.40E-547.64E-52 hsa-miR-378c-2.6135387163.871188793.34E-538.87E-51 hsa-miR-30e-1.33578958513.30831491.56E-503.55E-48 hsa-miR-135a-2-4.688685417-0.1213615568.41E-481.68E-45 hsa-miR-195-2.0550794554.9959671762.56E-464.53E-44 hsa-miR-378a-2.2876874110.711337527.86E-461.25E-43 hsa-miR-30a-2.29612496813.529842062.65E-453.85E-43 hsa-miR-375-3.87772179711.14670586.20E-458.23E-43 hsa-miR-139-1.8469886586.0642711748.71E-411.07E-38 hsa-miR-376c-2.3240974363.2578064341.63E-401.86E-38 hsa-miR-29c-2.21667873611.080778021.28E-381.36E-36 hsa-miR-885-3.7770857731.2882918256.49E-386.46E-36 hsa-miR-29a-1.49116854112.87639611.37E-361.29E-34 hsa-miR-26a-1-1.4131069910.090893711.46E-361.30E-34 hsa-miR-26a-2-1.40984363810.099642881.63E-361.36E-34 hsa-miR-379-2.16028499110.395346161.41E-351.03E-33

圖1 差異表達(dá)的miRNA

2.2 差異表達(dá)的miRNA的生存分析

結(jié)合樣本病例的生存時間及生存狀態(tài)信息,分析差異表達(dá)miRNA與患者生存率的關(guān)系。研究結(jié)果表明,一共有27個基因與患者的生存率顯著相關(guān)(<0.05)(如圖2)。

圖2 與OSCC患者生存率顯著相關(guān)的部分miRNA(前10)

2.3 差異miRNA的COX回歸分析及預(yù)后風(fēng)險模型的構(gòu)建

通過R程序,利用coxph函數(shù),進行單因素COX回歸分析,分析結(jié)果表明,差異顯著的miRNA共有84個(<0.05),<0.001的miRNA有11個(表2),此11個基因進一步用于多因素COX回歸分析。多因素COX回歸分析顯示,其中4個miRNA,即hsa-miR-30e、hsa-miR-337、hsa-miR-1251和hsa-miR-6507可以作為評估OSCC預(yù)后的獨立因子,其AIC值為1735.77(表3,圖3)。hsa-miR-30e的HR值小于1,所以其可以作為獨立保護因子,而hsa-mir-337、hsa-miR-1251和hsa-miR-6507的HR>1,認(rèn)為這些miRNA可以作為OSCC患者的風(fēng)險因子。

表2 單因素COX分析

miRNAHRzp hsa-miR-3371.2761736964.0163492475.91E-05 hsa-miR-65071.8107365733.9616896327.44E-05 hsa-miR-3691.2921013723.5310323640.000413941 hsa-miR-4931.2657022733.5051814180.000456296 hsa-miR-376c1.2580884253.5019418590.00046188 hsa-miR-376a-21.2539026923.4803779720.000500707 hsa-miR-6541.2147677373.3839216340.000714584 hsa-miR-30e0.6101686253.3330051140.000859134 hsa-miR-487b1.2595115983.3018696360.000960427 hsa-miR-12511.6337001953.2990937640.000969975 hsa-miR-3771.2432676283.2948616280.000984702

表3 多因素COX回歸分析

idcoefexp(coef)se(coef)zp hsa-miR-30e-0.437030.645950.15597-2.802040.005078 hsa-miR-3370.1924041.212160.0625593.0755780.002101 hsa-miR-12510.4698461.5997470.1591822.951630.003161 hsa-miR-65070.4588051.5821830.1530912.9969410.002727

圖3 多因素COX森林圖

2.4 風(fēng)險評估模型的可信度檢測

以各基因的表達(dá)量為自變量,生存時間為因變量,得到風(fēng)險得分公式為:Risk score=-0.43703377×(hsa-mir-30e)+0.192404036×(hsa-mir-337)+0.469845758×(hsa-mir-1251)+0.458805225×(hsa-mir-6507),計算每位患者的風(fēng)險得分,根據(jù)風(fēng)險得分的中位置,將患者分為高風(fēng)險組和低風(fēng)險組。建立風(fēng)險生存曲線,結(jié)果顯示,高風(fēng)險組的生存率顯著低于低風(fēng)險組(=1.026e-05)(圖4A)。構(gòu)建的ROC曲線顯示,AUC=0.699(圖4B),計算獲得C-index=0.63,這表明所構(gòu)建的風(fēng)險模型具有一定的可信度。通過構(gòu)建風(fēng)險曲線、生存狀態(tài)分布發(fā)現(xiàn),隨著風(fēng)險值的增加患者死亡率增加(圖4C,D)。分析風(fēng)險熱圖發(fā)現(xiàn),hsa-mir-337、hsa-miR-1251和hsa-miR-6507隨著表達(dá)量的增加,患者風(fēng)險增加;而hsa-miR-30e隨著表達(dá)量的增加,患者風(fēng)險降低(圖4E)。

2.5 4個關(guān)鍵miRNA與患者生存率的關(guān)系

利用R語言的survival包分析顯示,hsa-mir-337高表達(dá)的患者的生存率顯著低于低表達(dá)的患者,hsa-miR-30e高表達(dá)的患者的生存率顯著高于低表達(dá)的患者(圖5)。hsa-miR-1251和hsa-miR-6507的高表達(dá)和低表達(dá)對患者生存率沒有顯著影響(圖5)。

圖5 4個關(guān)鍵miRNA與患者生存率之間的關(guān)系

3 討論

在本研究中,從TCGA數(shù)據(jù)庫下載了OSCC的表達(dá)譜及相應(yīng)患者的生存信息,通過生物信息學(xué)的方法,進行了處理與提取,最終獲得了4個可以作為評估OSCC患者預(yù)后的miRNA,這對于臨床口腔癌患者的治療的早期評估具有一定的意義。

miRNA作為廣泛存在于機體的非編碼小片段RNA,對腫瘤的早期診斷以及治療具有重要的意義。已有相關(guān)的研究證明miRNA可以作為腫瘤診療的生物標(biāo)志物。HUI等[5]研究表明,miR-149、miR-3189、miR-3677、miR-3917、miR-4999及miR-6854等6個miRNA可以作為結(jié)腸癌的預(yù)后標(biāo)志物。Sujaya Srinivasan的研究表明,hsa-miR-20a等10個miRNA可以用于預(yù)測膠質(zhì)母細(xì)胞瘤細(xì)胞患者的生存率[6]。在口腔癌中,miR211通過靶向抑制TCF12以及增強抗氧化活性促進致癌物引起的口腔癌[7],miR146a通過靶向irak1,TRAF6及NUMB基因增強口腔癌的致瘤性[8]。

在本研究中,從TCGA下載了OSCC的miRNA表達(dá)譜數(shù)據(jù),通過生物信息學(xué)的方法分析獲得了OSCC與正常口腔組織的差異表達(dá)miRNA,并通過單因素COX回歸分析以及多因素回歸分析,獲得了4個miRNA(hsa-mir-337、hsa-miR-1251、hsa-miR-6507和hsa-miR-30e)用于構(gòu)建OSCC預(yù)后風(fēng)險模型,并通過ROC曲線、風(fēng)險曲線等驗證了所構(gòu)建模型具有一定的可信度。從高、低風(fēng)險組的生存曲線可看出,多個miRNA表達(dá)水平構(gòu)建的預(yù)測風(fēng)險模型,比單一miRNA表達(dá)水平的生存分析差異更顯著,這說明多基因表達(dá)構(gòu)建的預(yù)測模型比單一miRNA構(gòu)建的模型預(yù)測精度更高。

在用于構(gòu)建風(fēng)險評估模型的4個miRNA中,hsa-miR-6507目前未見到有相關(guān)的報導(dǎo),而其他三個miRNA,在多種腫瘤中都有相關(guān)的研究,并呈現(xiàn)不同的功能。hsa-mir-337對腫瘤的發(fā)生發(fā)展具有重要作用,在黑色素瘤中,hsa-miR-337的表達(dá)低于癌旁組織,hsa-miR-337低表達(dá)的患者的預(yù)后更差[9]。Wang等[10]的研究表明,hsa-miR-337-3p能夠通過靶向ARHGAP10基因抑制胃癌細(xì)胞的轉(zhuǎn)移。Du等[12]發(fā)現(xiàn),在乳腺癌中hsa-miR-337-3p的下調(diào)能夠激活STAT3信號,從而促進EMT介導(dǎo)的遷移[11]。在肝癌細(xì)胞中,上調(diào)hsa-miR-337-3p的表達(dá)抑制細(xì)胞的增殖、遷移和侵襲。hsa-miR-337-3p也能夠通過環(huán)狀RNA的調(diào)節(jié),促進胃癌細(xì)胞的增殖和遷移[13]。在本研究中,hsa-miR-337的高表達(dá)增加了患者的風(fēng)險,且高表達(dá)的hsa-miR-337的病例的生存率更低。這與hsa-miR-337在其他腫瘤的研究結(jié)論相反,這可能是腫瘤的差異性所導(dǎo)致。

在胰腺癌中,沉默circRNA circ_0001666可通過上調(diào)hsa-miR-1251和下調(diào)SOX4抑制EMT[14]。hsa-miR-1251-5p通過靶向腫瘤抑制因子TBCC促進卵巢癌細(xì)胞的癌變和自噬[15]。hsa-miR-1251-5p過表達(dá)通過靶向NPTX2抑制透明細(xì)胞腎細(xì)胞癌的增殖、遷移和免疫逃逸[16]。hsa-miR-1251-5p通過靶向AKAP12促進肝細(xì)胞癌的生長和轉(zhuǎn)移[17]。

在乳腺癌中,hsa-miR-30e通過靶向IRS1抑制腫瘤的生長以及化療的耐藥性[18]。在前列腺癌,miR-30e可以通過下調(diào)CHRM3抑制MAPK信號通路的激活,從而抑制前列腺癌細(xì)胞的黏附、遷移、侵襲和細(xì)胞周期進程[19]。miRNA-30e可通過靶向RPS6KB1抑制食道癌細(xì)胞的增殖、侵襲和腫瘤生長[20]。在頭頸部鱗狀細(xì)胞癌中,miR-30e-5p直接靶向AEG-1抑制血管生成和轉(zhuǎn)移[21]。口腔鱗狀細(xì)胞癌屬于頭頸腫瘤,這與本研究的結(jié)果一致,has-miR-30e高表達(dá)的患者風(fēng)險降低,且生存率增加。

4 結(jié)束語

綜上所述,本研究通過綜合生物信息學(xué)分析建立了4-miRNA(hsa-mir-337、hsa-miR-1251、hsa-miR-6507、hsa-miR-30e)組合的風(fēng)險評估模型,以作為預(yù)測OSCC患者預(yù)后的潛在生物標(biāo)志物。但本研究沒有使用臨床樣本進行驗證,因此需要進一步進行研究探索。

[1] Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249.

[2] Akram S, Mirza T, Aamir M M, et al. Emerging patterns in clinico-pathological spectrum of oral cancers[J]. Pakistan Journal of Medical Sciences, 2013, 29(3): 783-787.

[3] Xi S, Grandis J R. Gene therapy for the treatment of oral squamous cell carcinoma[J]. Journal of Dental Research, 2003, 82(1): 11-16.

[4] Momen-Heravi F, Bala S. Emerging role of non-coding RNA in oral cancer[J]. Cellular Signalling, 2018(42): 134-143.

[5] Zhang H, Wang Z, Ma R, et al. MicroRNAs as biomarkers for the progression and prognosis of colon carcinoma[J]. International Journal of Molecular Medicine, 2018, 42(4): 2080-2088.

[6] Srinivasan S, Patric I R, Somasundaram K. A ten-microRNA expression signature predicts survival in glioblastoma[J]. PLoS One, 2011, 6(3): e17438.

[7] Chen Y F, Yang C C, Kao S Y, et al. MicroRNA-211 enhances the oncogenicity of carcinogen-induced oral carcinoma by repressing TCF12 and increasing antioxidant activity[J]. Cancer Research, 2016, 76(16): 4872-4886.

[8] Hung P, Liu C, Chou C, et al. miR-146a enhances the oncogenicity of oral carcinoma by concomitant targeting of the IRAK1, TRAF6 and NUMB genes[J]. PloS one, 2013, 8(11): e79926.

[9] Xiao W, Yao E, Zheng W, et al. miR-337 can be a key negative regulator in melanoma[J]. Cancer Biology and Therapy, 2017, 18(6): 392-399.

[10] Wang Z, Yao L, Li Y, et al. miR3373p inhibits gastric tumor metastasis by targeting ARHGAP10[J]. Molecular Medicine Reports, 2020, 21(2): 705-719.

[11] Du P, Zeng H, Xiao Y, et al. Chronic stress promotes EMT-mediated metastasis through activation of STAT3 signaling pathway by miR-337-3p in breast cancer[J]. Cell Death and Disease, 2020, 11(9): 761.

[12] Zuo X L, Chen Z Q, Wang J F, et al. miR-337-3p suppresses the proliferation and invasion of hepatocellular carcinoma cells through targeting JAK2[J]. American Journal of Cancer Research, 2018, 8(4): 662-674.

[13] Gao Q, Liu Q, Chen H. Circular RNA hsa_circ_0000117 accelerates the proliferation and invasion of gastric cancer cells by regulating the microRNA-337-3p/signal transducer and activator of transcription 3 axis[J]. Bioengineered, 2021, 12(1): 1381-1390.

[14] Zhang R, Zhu W, Ma C, et al. Silencing of circRNA circ_0001666 Represses EMT in Pancreatic Cancer Through Upregulating miR-1251 and Downregulating SOX4[J]. Frontiers in Molecular Biosciences, 2021, 8: 684866.

[15] Shao Y, Liu X, Meng J, et al. MicroRNA-1251-5p Promotes Carcinogenesis and Autophagy via Targeting the Tumor Suppressor TBCC in Ovarian Cancer Cells[J]. Molecular Therapy, 2019, 27(9): 1653-1664.

[16] Yue L, Lin H, Yuan S, et al. miR-1251-5p Overexpression Inhibits Proliferation, Migration, and Immune Escape in Clear Cell Renal Cell Carcinoma by Targeting NPTX2[J]. Journal of Oncology, 2022, 2022: 3058588.

[17] Han S, Wang L, Sun L, et al. MicroRNA-1251-5p promotes tumor growth and metastasis of hepatocellular carcinoma by targeting AKAP12[J]. Biomedicine and Pharmacotherapy, 2020, 122: 109754.

[18] Liu M M, Li Z, Han X D, et al. MiR-30e inhibits tumor growth and chemoresistance via targeting IRS1 in Breast Cancer[J]. Scientific Reports, 2017, 7(1): 15929.

[19] Zheng X M, Zhang P, Liu M H, et al. MicroRNA-30e inhibits adhesion, migration, invasion and cell cycle progression of prostate cancer cells via inhibition of the activation of the MAPK signaling pathway by downregulating CHRM3[J]. International Journal of Oncology, 2019, 54(2): 443-454.

[20] Wang L, Ji X B, Wang L H, et al. MiRNA-30e downregulation increases cancer cell proliferation, invasion and tumor growth through targeting RPS6KB1 [J]. Aging, 2021, 13(21): 24037-24049.

[21] Zhang S, Li G, Liu C, et al. miR-30e-5p represses angiogenesis and metastasis by directly targeting AEG-1 in squamous cell carcinoma of the head and neck[J]. Cancer Science, 2020, 111(2): 356-368.

Establishment of Prognostic Risk Model of Oral Squamous Cell Carcinoma Associated microRNA Based on TCGA Database

Objective: This study aims to predict the survival rate of patients with oral squamous cell carcinoma (OSCC) by detecting the expression of microRNA. Methods: The expression profile data and corresponding clinical information of 397 OSCC patients were downloaded from TCGA database. The differentially expressed miRNAs between OSCC and normal tissues were analyzed by bioinformatics methods, and the prognosis related miRNAs were screened by Cox regression analysis and other bioinformatics methods. Kaplan-Meier analysis and receiver operating characteristic (ROC) curve analysis were used to evaluate the reliability of the selected miRNAs as prognostic indicators. Results: 363 miRNA were differentially expressed by bioinformatics analysis, including 197 up-regulated miRNAs and 166 down-regulated miRNAs (FDR<0.05). Through univariate Cox regression analysis, it was found that the expression of 84 miRNAs was significantly correlated with the prognosis of patients. Among them, 11 miRNAs with< 0.001 were further analyzed by multivariable Cox regression analysis, of which 4 miRNAs (has-miR-30e, has-miR-337, has-miR-6507 and has-miR-1251) were included in the risk assessment model. According to the regression coefficient of multivariate COX analysis, a prognostic risk assessment model composed of 4 miRNAs was constructed, and OSCC patients were divided into high risk group and low risk group according to the risk score. Kaplan-Meier survival curve indicates that the survival rate of the high-risk group was significantly lower than that of the low-risk group (=1.026E-05). The AUC and C-index under the constructed ROC curve were 0.669 and 0.63 respectively. Conclusion: The combination of 4 miRNAs, has-miR-30e, has-miR-337, has-miR-6507 and has-miR-1251, can be used as potential markers to predict the prognosis of OSCC patients.

TCGA; OSCC; miRNA; prognosis; risk

R739.81

A

1008-1151(2022)09-0107-05

2022-06-27

廣西高校大學(xué)生創(chuàng)新創(chuàng)業(yè)計劃項目(201910598058)。

李晶晶(2000-),女,廣西醫(yī)科大學(xué)口腔醫(yī)學(xué)院學(xué)生,研究方向為口腔疾病。

粟小平(1987-),男,廣西醫(yī)科大學(xué)口腔醫(yī)學(xué)院助理研究員,博士,從事口腔腫瘤發(fā)生機制研究工作。

猜你喜歡
差異分析模型
一半模型
相似與差異
音樂探索(2022年2期)2022-05-30 21:01:37
隱蔽失效適航要求符合性驗證分析
重要模型『一線三等角』
重尾非線性自回歸模型自加權(quán)M-估計的漸近分布
找句子差異
電力系統(tǒng)不平衡分析
電子制作(2018年18期)2018-11-14 01:48:24
生物為什么會有差異?
電力系統(tǒng)及其自動化發(fā)展趨勢分析
3D打印中的模型分割與打包
主站蜘蛛池模板: 国产麻豆精品手机在线观看| 少妇露出福利视频| 免费观看成人久久网免费观看| 国产va免费精品观看| 久久久久久久久亚洲精品| 欧美中文字幕在线二区| 国产在线观看第二页| 亚洲国产精品VA在线看黑人| 国产香蕉97碰碰视频VA碰碰看| 毛片视频网址| 亚洲精品高清视频| 美女高潮全身流白浆福利区| 一本无码在线观看| 亚洲国产综合精品一区| 一本无码在线观看| 国产视频 第一页| 精品国产自在在线在线观看| 成人午夜视频在线| 999国内精品视频免费| 成人午夜视频在线| 久久男人视频| 国产在线麻豆波多野结衣| 在线va视频| 欧美人在线一区二区三区| 欧美日韩高清| 亚洲热线99精品视频| 国产精品无码在线看| 国产女主播一区| 精品一区二区无码av| 国产一级做美女做受视频| 国产精品浪潮Av| 亚洲国产欧美国产综合久久| 中文一区二区视频| 伊人婷婷色香五月综合缴缴情| 国产裸舞福利在线视频合集| www.av男人.com| 亚洲天堂伊人| 欧美成人在线免费| 天天综合色网| 国产毛片久久国产| 永久毛片在线播| 免费久久一级欧美特大黄| 五月婷婷亚洲综合| 免费国产无遮挡又黄又爽| 老司国产精品视频| 91色爱欧美精品www| 亚洲IV视频免费在线光看| 亚洲欧美日韩高清综合678| 国产婬乱a一级毛片多女| 成人字幕网视频在线观看| 久久精品无码国产一区二区三区| 欧美色图久久| 97av视频在线观看| 老色鬼久久亚洲AV综合| 亚洲一级毛片在线观播放| 国产在线专区| 三上悠亚一区二区| 成人午夜视频网站| 操操操综合网| 国产精品亚洲а∨天堂免下载| 性做久久久久久久免费看| 亚洲综合第一页| 国产乱子伦视频三区| 人妻中文字幕无码久久一区| 欧美a在线看| 97在线碰| 97免费在线观看视频| 91国语视频| 3344在线观看无码| 天堂亚洲网| 国产玖玖视频| 五月婷婷亚洲综合| 91久久夜色精品国产网站 | 欧美日在线观看| 国产色婷婷| 欧美一级在线播放| 精品无码日韩国产不卡av | 亚洲精品制服丝袜二区| 国产不卡在线看| 不卡视频国产| 九色在线观看视频| 久久精品无码专区免费|