□ 劉鴻超 □ 周剛毅 □ 付應乾
1.寧波大學 沖擊與安全工程教育部重點實驗室 浙江寧波 315211 2.寧波大學 機械工程與力學學院 浙江寧波 315211
應力-應變關系是評估材料力學性能的重要依據,對工藝流程、結構設計、仿真模擬的準確性等而言,都至關重要[1-2]。應力-應變關系的計算與處理至今仍然存在一些爭議,特別是對于塑性材料,測試過程中會發生次級的幾何變化,對計算造成影響。對此,學者們進行了許多試驗,對承受不同載荷的工程材料進行機械測試,具體包括拉伸[3]、壓縮[4]、剪切[5]、扭轉[6]、缺口拉伸[7]等,用于測試材料的應力-應變關系。上述方法中,大部分僅在應變小于0.5時可以獲得真正的應力-應變關系,然而在鍛造、擠壓、軋制等金屬成型中,最大應變通常超過1.0,在多級自動冷鍛中,應變可以達到3.0。拉伸試驗是材料力學性能測試中最常見的試驗類型[8],通過拉伸試驗,可以獲得材料的拉伸強度、屈服強度、屈服點、彈性模量、伸長率百分比、面積減小百分比等主要參數。但是,拉伸試驗同樣也很難獲得超過拉伸強度,即頸縮應變后大應變下材料的真應力-應變曲線。為了評估材料裂紋尖端或壁薄部分的韌性斷裂,包括頸縮后應變在內的真應力-應變曲線是必不可少的。
真應力-應變曲線對于研究材料機械性能具有重要意義,在文獻中只能檢索到有限關于真應力-應變曲線的信息,大多數模擬仿真所使用的軟件提供的材料特性也沒有完全得到驗證[9]。筆者基于數字圖像相關技術,提出一種處理扁平啞鈴型拉伸試樣局部真應力-應變曲線的新方法,并通過設計拉伸試驗對計算結果進行驗證。
在處理拉伸試驗數據時,試樣的工程應力利用拉伸試驗機的力傳感器所記錄的試樣兩端力-時間信號除以試樣初始橫截面積得到,試樣的工程應變由試樣伸長量除以初始長度得到,即:
(1)
εE(t)=ΔL(t)/L0
(2)
式中:σE(t)為試樣工程應力;εE(t)為試樣工程應變;t為時間;F(t)為t時間試樣兩端的力;A0為試樣拉伸標段初始橫截面積;w0為試樣拉伸標段初始寬度;h0為試樣拉伸標段初始厚度;ΔL(t)為t時間試樣伸長量;L0為試樣拉伸標段初始長度。
由于試樣兩端采用夾具固定,拉伸試驗機給出的位移與試樣拉伸標段的實際變形位移存在誤差,因此通常采用高速相機記錄試樣變形圖像,結合二維數字圖像相關技術給出試樣拉伸標段的位移及應變場。
然而,在拉伸加載超過材料彈性極限后,試樣的長度和橫截面積是時刻變化的,因此上述計算式計算得到的工程應力-應變并不能代表試樣真實力學狀態和本構特性。結合應力、應變的定義,可以得出真應力、真應變計算式[10]:
(3)
(4)
式中:σt(t)為試樣真應力;εt(t)為試樣真應變;A(t)為t時間試樣橫截面積。
通過式(3)、式(4)可以將頸縮出現之前的工程應力-應變計算轉換為真應力-應變,因為在頸縮形成之前,整個試樣上的變形是均勻的,在頸縮形成之后,所有后續變形都發生在頸縮區域,頸部橫截面積逐漸減小,應變在試樣長度方向不均勻分布,導致試樣局部真應力與真應變不斷增大,直至試樣失效,由此,采用式(3)、式(4)計算大應變下的真應力-應變曲線是沒有意義的。后文將式(3)、式(4)計算結果稱為平均真應力-應變。
圖像處理技術是未來重要的一個發展方向[11],其中,數字圖像相關是一種借助于對相機拍攝的物體變形前后的表面圖像進行計算,分析灰度信息相關性,獲取被測物體力學性能,直接提供亞像素精度全場位移和全場應變的技術[12-13]。筆者基于數字圖像相關技術,提出一種計算試樣不同位置真應力-應變曲線的方法。
對于扁平拉伸試樣,任意時間真應力的定義為對應時間的拉力除以對應時間的受力面積,即:
(5)
式中:σT(t)為t時間試樣真應力;A(t)為t時間試樣橫截面積;w(t)為t時間試樣寬度;h(t)為t時間試樣厚度。
如圖1所示,在試樣拉伸標段內任意取一個截面A-A,在截面上下取微段dl(0),則初始時刻所選微段的體積V(0)為:
V(0)=w0h0dl(0)
(6)

▲圖1 試樣標段
假設試樣任意一個截面厚度的變形是均勻的,由于塑性變形過程中材料體積不變,因此t時間微段的體積V(t)為:
V(t)=w(t)h(t)dl(t)=V(0)
(7)
式中:dl(t)為試樣拉伸變形過程t時間微段的長度。
試樣截面處橫截面積A(t)為:
A(t)=w(t)h(t)=w0h0dl(0)/dl(t)
(8)
將式(8)代入式(5),得到試樣截面處t時間真應力為:
(9)
由此可見,只需要通過數字圖像相關得到試樣拉伸過程任意截面處微段長度的變化信息,就可以方便地得到該截面處的真實應力大小。試驗中,利用高速相機記錄試樣表面變形,結合數字圖像相關位移分析,得到任意截面處微段長度的演化過程。對于試樣任意截面處的真應變,在數字圖像相關全場應變分析中將該截面中點處應變分析結果導出,便可以得到試樣任意位置處的真應力-應變。
試驗材料由TA2鈦合金冷軋退火板切割成型,成分中,鈦不低于99.6%,碳為0.021%,鐵為0.064%,氮為0.025%,氫為0.004%,氧為0.11%,其它元素不高于0.18%,材料金相如圖2所示,屬于平均尺寸約為20 μm的α等軸晶組織。

▲圖2 材料金相
采用啞鈴型平板拉伸試樣,線切割取樣,經精磨加工,表面粗糙度Ra達到3.2 μm,以減小加工表面對試驗結果的影響。對試樣拉伸標段噴涂人工散斑,以便采用數字圖像相關技術進行試樣變形過程的全場位移、應變分析。試樣如圖3所示,試樣尺寸如圖4所示,試樣厚度為2 mm。

▲圖3 試樣

▲圖4 試樣尺寸
拉伸試驗是評估金屬材料性能最普遍的試驗方法之一。筆者采用HTM-5020液壓伺服高速拉伸試驗機作為動態單軸拉伸試驗的加載設備,并結合高速相機對試樣拉伸過程的變形與位移進行記錄。試驗設備如圖5所示。

▲圖5 試驗設備
HTM-5020拉伸試驗機的最高加載速度可達20 m/s,最大可承受拉伸荷載為50 kN,能夠精準測試加載過程中的速度與載荷。拉伸試驗機通過控制拉伸速度,達到所需要的加載,通過在計算機控制端輸入不同的拉伸速度,可以對安裝好的試樣進行不同應變率加載下的拉伸試驗。本次拉伸試驗時,拉伸速度為150 mm/s。理論上,試樣拉伸的平均應變率為10 s-1。另一方面,為了保證力-變形數據采集的同步性,采用同步觸發和數據同步采集裝置,使拉伸試驗機加載起始時刻同步觸發拉伸試驗機的力、位移傳感器和高速相機,對各傳感器信號和圖像進行同步采集。
通過數字圖像相關技術可以對試樣進行全場位移與應變分析,試樣拉伸標段應變演化云圖如圖6所示。由圖6可知,開始拉伸加載后,試樣拉伸標段內應變開始均勻增大,在工程應變增大到0.124左右后,應變開始不均勻化發展,進一步加載,試樣逐漸頸縮破壞。

▲圖6 試樣拉伸標段應變演化云圖
在試樣拉伸斷裂點P1處截取一個微段,再沿拉伸方向在P2、P3處分別截取一個微段,如圖7所示。微段初始長度為0.38 mm。通過數字圖像相關技術分析處理,可以得到微段長度的變化。結合應變分析和所采集的力信號,即可計算得到試樣拉伸加載過程中的應力-應變曲線。試樣應力-應變曲線如圖8所示。圖8中的平均真應力-應變曲線由式(3)、式(4)計算得到。工程應力-應變曲線在早期便與真應力-應變曲線分離,僅能代表彈性加載段的平均應力與應變,不能很好反映試樣拉伸過程中的真實力學狀態。采用式(3)、式(4)計算得到的平均真應力-應變曲線在應變約為0.21之前與P1、P2處的真應力-應變曲線具有較高的重合度,P3處的真應力-應變曲線在應變約為0.12時開始與P1、P2處的真應力-應變曲線分離,可見平均真應力-應變曲線只能近似反映試樣某個位置的應力與應變情況,且該位置介于P2和P3之間。平均真應力-應變曲線更加適合反映試樣拉伸加載前期均勻變形階段材料的機械性能。采用微段法計算得到的試樣不同位置處的真應力-應變曲線在加載前期小應變時具有較高的重復性,反映了相同的應力和應變情況。隨著試樣不均勻變形,試樣不同位置處的真應力-應變曲線呈現出不同變化趨勢,反映不同位置處材料的真實力學狀態,并且可以有效計算頸縮后大應變變形情況下試樣不同位置的真應力-應變曲線。

▲圖7 微段位置
筆者基于數字圖像相關技術提出一種處理拉伸試樣局部真應力-應變曲線的新方法,通過設計拉伸試驗對計算結果進行驗證。結果表明,工程應力-應變曲線僅能代表試樣彈性加載段的平均應力與應變,傳統計算方法得到的平均真應力-應變曲線只能近似反映試樣某個位置處的應力與應變情況,更適合反映材料均勻塑性變形階段的機械性能。筆者提出的方法可以有效、合理地計算得到拉伸過程中試樣不同位置處的真應力與真應變,包括頸縮后大應變變形下的真應力與真應變,能夠反映材料從加載到斷裂破壞過程中不同位置的機械性能。

▲圖8 試樣應力-應變曲線