曹中凱 陳鳳華 謝俊霞 石麗敏

[摘要] 目的 探討1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)誘導的帕金森病(PD)模型小鼠未定帶小清蛋白(PV)和一氧化氮合酶(NOS)陽性神經元的數目變化。方法 7周齡雄性C57BL/6小鼠12只,隨機分為對照組及MPTP組,每組6只。MPTP組采用連續5 d腹腔注射MPTP(30 mg·kg-1·d-1)的方法制備PD小鼠模型,對照組以等量生理鹽水代替MPTP。采用免疫熒光技術觀察黑質區酪氨酸羥化酶(TH)陽性神經元及未定帶PV、NOS陽性神經元的表達變化。結果 與對照組相比,MPTP組小鼠黑質區TH陽性神經元的數目明顯減少,差異有統計學意義(t=6.888,P<0.01);未定帶PV陽性神經元和NOS陽性神經元數目均明顯減少,差異有顯著性(t=3.618、15.390,P<0.01)。結論 MPTP誘導PD模型小鼠未定帶PV和NOS陽性神經元數目明顯下降。
[關鍵詞]帕金森病;1-甲基-4-苯基-1,2,3,6-四氫吡啶;未定帶;小白蛋白;一氧化氮合酶;神經元;小鼠
[中圖分類號]R338.2[文獻標志碼]A[文章編號]2096-5532(2022)03-0345-04
doi:10.11712/jms.2096-5532.2022.58.122
CHANGES IN THE NUMBER OF NEURONS WITH POSITIVE PARVALBUMIN AND NITRIC OXIDE SYNTHASE IN THE ZONA INCERTA OF MICE WITH PARKINSONS DISEASE
CAO Zhongkai, CHEN Fenghua, XIE Junxia, SHI Limin
(Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University Medical College, Qingdao 266071, China)
[ABSTRACT] Objective To investigate the changes in the number of neurons with positive parvalbumin (PV) and nitric oxide synthase (NOS) in the zona incerta of mice with Parkinsons disease (PD) induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP).Methods A total of 12 male C57BL/6 mice, aged 7 weeks, were randomly divided into control group and MPTP group, with 6 mice in each group. The mice in the MPTP group were given intraperitoneal injection of MPTP (30 mg·kg-1·d-1) for 5 consecutive days to establish a mouse model of PD, and those in the control group were given an equal volume of normal saline. Immunofluorescence assay was used to observe the changes in the expression of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra and PV- and NOS-positive neurons in the zona incerta.Results Compared with the control group, the MPTP group had significant reductions in the number of TH-positive neurons in the substantia nigra (t=6.888,P<0.01) and the number of PV- and NOS-positive neurons in the zona incerta (t=3.618,15.390;P<0.01).Conclusion MPTP can induce a significant reduction in the number of PV- and NOS-positive neurons in the zona incerta of mice with PD.
[KEY WORDS] Parkinson disease;? 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine;? zona incerta;? parvalbumins;? nitric oxide synthase;? neurons;? mice
帕金森?。≒D)是一種常見的神經退行性疾病,主要病理特征為黑質致密帶多巴胺能神經元進行性丟失及紋狀體軸突末梢多巴胺含量減少[1-3]。PD病人可出現靜止性震顫、肌僵直及運動遲緩等多種運動癥狀及便秘、睡眠障礙等多種非運動癥狀[4-5]。近年來,越來越多的臨床研究表明,在未定帶進行深部電刺激能夠改善PD病人的運動癥狀[6-8]。未定帶位于丘腦腹側,被認為是底丘腦的一部分,主要分為頭端、背側、腹側和尾側四部分,其中背側和腹側是其中心區域,主要分布一氧化氮合酶(NOS)陽性神經元和小清蛋白(PV)陽性神經元[9-10]。盡管臨床證據提示未定帶與PD密切相關,然而在PD發病過程中,未定帶PV及NOS陽性神經元的數目是否發生改變目前尚不清楚。本實驗選用經典神經毒素1-甲基-4-苯基-1,2,3,6-四氫吡啶(MPTP)制備PD小鼠模型,通過免疫熒光技術觀察MPTP對未定帶PV及NOS陽性神經元數目的影響,為了解未定帶在 PD 進展和治療中的作用提供實驗依據。
1材料與方法
1.1動物及主要試劑
選擇SPF級雄性C57BL/6小鼠,7周齡,體質量(22±2)g,購自北京維通利華公司。小鼠飼養于25 ℃、晝夜循環光照條件下,可自由飲水、攝食、活動,實驗前適應環境1周。MPTP購自美國Sigma公司,酪氨酸羥化酶(TH)抗體購于美國Millipore公司,PV抗體購于美國Abcam公司,NOS抗體和驢抗兔二抗購于美國Thermo Fisher公司,其他試劑均為國產分析純。
1.2分組及給藥方法
將小鼠隨機分為對照組和MPTP組,每組6只。MPTP組小鼠給予MPTP連續5 d腹腔注射,劑量為30 mg/(kg·d);對照組則以等量生理鹽水代替MPTP。
1.3腦標本采集
麻醉小鼠后,固定其四肢,暴露心臟,將靜脈注射針頭小心插入左心室同時剪開右心耳。先后用9 g/L NaCl及40 g/L多聚甲醛溶液(用0.1 mol/L PBS配制,pH值7.2~7.4,現用現配,4 ℃避光保存)對小鼠進行灌注。待小鼠肝臟由紅色變為黃白且四肢和尾部僵直時,停止灌注操作。取出小鼠的大腦,用40 g/L多聚甲醛溶液固定過夜,再先后用200 g/L及300 g/L蔗糖溶液(0.1 mol/L PBS配制)脫水,待大腦沉底,脫水完成。
1.4腦組織切片及免疫熒光染色
用恒溫冷凍切片機(Leica,CM1950)進行冷凍切片。切片時,提前30 min開機進行機器預冷,并將腦組織用包埋劑OCT(Sakura Finetek)包埋、固定在凍頭托上。將小鼠腦組織切成厚度為20 μm的腦片,黑質及未定帶兩個部位的腦片分別按先后順序切成完整的4套,將腦片置于含有0.01 mol/L PBS溶液的12孔板中,每次進行免疫熒光實驗時取出完整的1套進行染色。染色時,將腦片取出,用40 g/L多聚甲醛溶液固定5 min,以PBS清洗3次(每次10 min),用含體積分數0.05驢血清(Jackson)的PBST緩沖液室溫封閉1 h,加一抗4 ℃冰箱孵育過夜。次日,用PBS清洗3次,每次10 min;加PBST稀釋的熒光二抗室溫孵育2 h;用PBS清洗3次,每次10 min;用體積分數0.70的甘油(ddH2O配制)封片,避光保存。實驗中用到的一抗分別為anti-nNos (1∶300,rabbit)、anti-parvalbumin (1∶100,rabbit)和anti-tyrosine hydroxylase(1∶1 000,rabbit);實驗中用到的二抗分別為donkey anti-rabbit488和donkey anti-rabbit 555,稀釋比為1∶500。
在Olympus光學顯微鏡下拍片,應用OlyVIA軟件進行計數。由于染色的是4套腦片中的1套,故先計數該套腦片在20倍物鏡下未定帶及黑質區陽性神經元個數,再乘以4即可得到未定帶NOS、PV陽性神經元和黑質區TH陽性神經元的個數。
1.5統計學分析
應用Graph Pad Prism 6軟件進行統計學處理。計量資料結果以x±s形式表示,兩組均數比較采用t檢驗。P<0.05表示差異有統計學意義。
2結果
與對照組相比較,MPTP組黑質區TH陽性神經元數目減少,差異有統計學意義(t=6.888,P<0.01);未定帶PV陽性神經元和NOS陽性神經元數目均明顯減少,差異均有統計學意義(t=3.618、15.390,P<0.01)。見表1。
3討論
未定帶是底丘腦的重要核團,處于大腦神經軸的中央位置,位于丘腦底核和大腦腳的背側、內側丘系的外側[11]。未定帶與皮質、中腦、下丘腦、腦干、脊髓等多個腦區存在廣泛的投射,參與機體多種功能的調控,影響攝食、姿勢與運動、睡眠與覺醒、大腦皮質發育、神經病理痛等多種生理病理過程[12-21]。近年來,越來越多的臨床研究顯示,在未定帶進行深部電刺激后PD病人的震顫、運動遲緩等癥狀得到有效緩解,其效果等同于或者優于傳統的丘腦底核電刺激,且無明顯副作用,術后病人認知、吞咽及語言功能均未受影響,提示未定帶是治療PD的安全有效的作用靶點[22-28]。神經病毒示蹤顯示,未定帶與基底神經核諸多核團之間存在投射關系,它接受來自黑質網狀帶/蒼白球內側部的抑制性γ-氨基丁酸(GABA)輸入以及黑質致密帶的多巴胺能投射,同時發出興奮性谷氨酸能投射到黑質致密帶,因此也被建議納入基底神經核的范疇[29-31]。盡管臨床研究和基礎解剖聯系均提示未定帶與PD密切相關,然而目前未定帶參與PD病變的具體神經細胞機制尚不清楚。
本研究關注的是未定帶NOS和PV陽性神經元。未定帶以GABA能神經元為主,但細胞異質性強,由于神經化學標志物的表達不同又分為多種亞型。其中,NOS陽性神經元主要分布在背側未定帶,PV陽性神經元集中分布在腹側未定帶,背側和腹側構成了未定帶的中心區域。這些不同亞型的GABA能神經元與不同核團之間存在廣泛的纖維投射,參與機體對多種運動行為的調節。例如,激活未定帶PV陽性神經元-丘腦后內側核團環路可以增強聲音誘導的逃跑行為[14];前扣帶回皮質-未定帶NOS陽性神經元環路參與了小鼠探索運動的調控[32]。為驗證PD過程中未定帶的PV及NOS陽性神經元的數量是否會發生改變,本研究利用經典神經毒素MPTP制備PD小鼠模型,首先通過免疫熒光技術檢測到黑質區TH陽性神經元數目減少,證實黑質多巴胺能神經元損傷,PD模型建立成功,進而觀察到未定帶NOS和PV陽性神經元數目較對照組顯著減少。
然而,神經化學標志物NOS和PV的表達為何受到影響目前尚不清楚。本實驗采用連續5 d腹腔注射MPTP方法制備亞急性PD小鼠模型。MPTP是一種經典的神經毒素,其本身沒有毒性,但極易通過血-腦脊液屏障,進入腦內后在單胺氧化酶B的作用下轉變為MPP+,后者經細胞膜上的多巴胺轉運體進入多巴胺能神經元,阻斷線粒體電子傳遞系統,導致能量代謝障礙和自由基的生成增加,最終導致多巴胺能神經元損傷[33-34]。我們推測,黑質致密帶多巴胺能神經元的丟失可能會影響到從黑質致密帶到未定帶的多巴胺能投射,進而抑制未定帶中PV、NOS陽性神經元這兩種GABA能神經元的表達。此外,黑質多巴胺能神經元的損傷也可以引起其他多個腦區神經元電活動的異常,如皮質和腳橋核,而這兩個核團與未定帶也有密切的纖維投射[25,35-37]。因此,黑質多巴胺能神經元可能通過上述直接或者間接投射,影響了未定帶PV及NOS陽性神經元的數目變化。本實驗初步觀察了PD中未定帶區域PV陽性神經元及NOS陽性神經元的數目變化,為闡明PD影響未定帶神經元的病理表達提供了初步的實驗證據。
[參考文獻]
[1]KALIA L V, LANG A E. Parkinsons disease[J].? Lancet (London, England), 2015,386(9996):896-912.
[2]PRZEDBORSKI S. The two-century journey of Parkinson di-sease research[J].? Nature Reviews Neuroscience, 2017,18(4):251-259.
[3]SCHRAG A, HORSFALL L, WALTERS K, et al. Prediagnostic presentations of Parkinsons disease in primary care: a case-control study[J].? The Lancet Neurology, 2015,14(1):57-64.
[4]PONT-SUNYER C, HOTTER A, GAIG C, et al. The onset of nonmotor symptoms in Parkinsons disease (the ONSET PD study)[J].? Movement Disorders: Official Journal of the Movement Disorder Society, 2015,30(2):229-237.
[5]ZHANG H, ZHANG C K, QU Z W, et al. STN-ANT plasti-city is crucial for the motor control in Parkinsons disease mo-del[J].? Signal Transduction and Targeted Therapy, 2021,6(1):215.
[6]BLOMSTEDT P, STENMARK PERSSON R, HARIZ G M, et al. Deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinsons disease: a randomised blinded evaluation[J].? Journal of Neurology, Neurosurgery, and Psychiatry, 2018,89(7):710-716.
[7]SANDSTRM L, SCHALLING E, KARLSSON F, et al. Speech function following deep brain stimulation of the caudal zona incerta: Effects of habitual and high-amplitude stimulation[J].? Journal of Speech, Language, and Hearing Research: JSLHR, 2021,64(6S):2121-2133.
[8]SANDSTR?M L, HGGLUND P, JOHANSSON L, et al. Speech intelligibility in Parkinsons disease patients with zona incerta deep brain stimulation[J].? Brain and Behavior, 2015,5(10):e00394.
[9]MITROFANIS J. Some certainty for the “zone of uncertainty”? Exploring the function of the zona incerta[J].? Neuroscience, 2005,130(1):1-15.
[10]HEISE C E, MITROFANIS J. Reduction in parvalbumin expression in the zona incerta after 6OHDA lesion in rats[J].? Journal of Neurocytology, 2005,34(6):421-434.
[11]KOLMAC C, MITROFANIS J. Distribution of various neurochemicals within the zona incerta: an immunocytochemical and histochemical study[J].? Anatomy and Embryology, 1999,199(3):265-280.
[12]ZHANG X B, VAN DEN POL A N. Rapid binge-like eating and body weight gain driven by zona incerta GABA neuron activation[J].? Science (New York, N Y), 2017,356(6340):853-859.
[13]DE GIT K C G, HAZELHOFF E M, NOTA M H C, et al. Zona incerta neurons projecting to the ventral tegmental area promote action initiation towards feeding[J].? The Journal of Physiology, 2021,599(2):709-724.
[14]WANG X Y, CHOU X L, PENG B, et al. A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta[J].? eLife, 2019,8:e42728.
[15]CHOU X L, WANG X Y, ZHANG Z G, et al. Inhibitory gainmodulation of defense behaviors by zona incerta[J].? Nature[CM)]Communications, 2018,9(1):1151.
[16]LIU K, KIM J, KIM D W, et al. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep[J].? Nature, 2017,548(7669):582-587.
[17]CHEN J D, KRIEGSTEIN A R. A GABAergic projection from the zona incerta to cortex promotes cortical neuron deve-lopment[J].? Science, 2015,350(6260):554-558.
[18]HU T T, WANG R R, DU Y, et al. Activation of the intrinsic pain inhibitory circuit from the midcingulate Cg2 to zona incerta alleviates neuropathic pain[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2019,39(46):9130-9144.
[19]WANG H, DONG P, HE C, et al. Incerta-thalamic circuit controls nocifensive behavior via cannabinoid type 1 receptors[J].? Neuron, 2020,107(3):538-551.e7.
[20]PARK A, HOFFMAN K, KELLER A. Roles of GABAA and GABAB receptors in regulating thalamic activity by the zona incerta: a computational study[J].? Journal of Neurophysiology, 2014,112(10):2580-2596.
[21]LI L X, LI Y L, WU J T, et al. Glutamatergic neurons in the caudal zona incerta regulate parkinsonian motor symptoms in mice[J].? Neuroscience Bulletin, 2022,38(1):1-15.
[22]DE MARCO R, BHARGAVA D, MACEROLLO A, et al. Could ZI have a role in DBS for Parkinsons disease? An observational study to optimize DBS target localization[J].? Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, 2020,77:89-93.
[23]MOSTOFI A, EVANS J M, PARTINGTON-SMITH L, et al. Outcomes from deep brain stimulation targeting subthala-mic nucleus and caudal zona incerta for Parkinsons disease[J].? NPJ Parkinsons Disease, 2019,5:17.
[24]KARLSSON F, MALINOVA E, OLOFSSON K, et al. Voice tremor outcomes of subthalamic nucleus and zona incerta deep brain stimulation in patients with parkinson disease[J].? Journal of Voice: Official Journal of the Voice Foundation, 2019,33(4):545-549.
[25]OSSOWSKA K. Zona incerta as a therapeutic target in Parkinsons disease[J].? Journal of Neurology, 2020,267(3):591-606.
[26]PLAHA P, BEN-SHLOMO Y, PATEL N K, et al. Stimulation of the caudal zona incerta is superior to stimulation of the subthalamic nucleus in improving contralateral Parkinsonism[J].? Brain: a Journal of Neurology, 2006,129(Pt 7):1732-1747.
[27]PHILIPSON J, BLOMSTEDT P, FREDRICKS A, et al. Short- and long-term cognitive effects of deep brain stimulation in the caudal zona incerta versus best medical treatment in patients with Parkinsons disease[J].? Journal of Neurosurgery, 2020:134(2):1-9.
[28]SUNDSTEDT S, HOLM?N L, ROVA E, et al. Swallowing safety in Parkinsons disease after zona incerta deep brain stimulation[J].? Brain and Behavior, 2017,7(6):e00709.
[29]HEISE C E, MITROFANIS J. Evidence for a glutamatergic projection from the zona incerta to the basal Ganglia of rats[J].? The Journal of Comparative Neurology, 2004,468(4):482-495.
[30]KOLMAC C I, POWER B D, MITROFANIS J. Patterns of connections between zona incerta and brainstem in rats[J].? Journal of Comparative Neurology, 1998,396(4):544-555.
[31]ZHOU M, LIU Z H, MELIN M D, et al. A central amygdala to zona incerta projection is required for acquisition and remote recall of conditioned fear memory[J].? Nature Neuroscience, 2018,21(11):1515-1519.
[32]沈曉帆. 皮層未定帶神經環路在探索樣運動中的作用[D].? 杭州:浙江大學, 2019.
[33]JUHNG K N, KOKATE T G, YAMAGUCHI S, et al. Induction of seizures by the potent K+channel-blocking scorpion venom peptide toxins tityustoxin-K(alpha) and pandinustoxin-K(alpha)[J].? Epilepsy Research, 1999,34(2/3):177-186.
[34]HONG Y, DENG N, JIN H N, et al. Saikosaponin A modulates remodeling of Kv4.2-mediated A-type voltage-gated potassium currents in rat chronic temporal lobe epilepsy[J].? Drug Design, Development and Therapy, 2018,12:2945-2958.
[35]HEIKENFELD C, MEDEROS S, CHEN C, et al. Prefrontal-subthalamic pathway supports action selection in a spatial working memory task[J].? Scientific Reports, 2020,10(1):10497.
[36]ORIEUX G, FRAN?OIS C, FGER J, et al. Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat[J].? The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2002,22(19):8762-8770.
[37]PELLED G, BERGMAN H, GOELMAN G. Bilateral overactivation of the sensorimotor cortex in the unilateral rodent model of Parkinsons disease-a functional magnetic resonance imaging study[J].? European Journal of Neuroscience, 2002,15(2):389-394.
(本文編輯馬偉平)