劉蘇傳
在現代科技發展過程中,創新意識具有關鍵性價值,此時,發散性思維的科學培養具有重要的意義,因此,小學數學教師在具體開展教育工作時,需要對學生的發散思維進行科學培養,確保學生能更為高效地解答數學問題,提升學生的創新能力。
在進行小學數學教學時,培養學生的發散思維是非常重要的教學內容,教師需要對其進行深入分析,合理優化課堂教學過程,確保能使學生對數學問題進行更深入的探索,提升整體教學效果,保障學生能從多個角度探究數學問題,提升學生的數學解題能力,強化學生的數學素養。
一、激發學生的求異心理
一般情況下,小學生具有較強的好奇心,學生在進行數學學習時,如果對課堂教學內容缺乏興趣,則會使學生對外界事物分心。教師在數學課堂教學時,需要科學選擇例題,對其進行問題情境的科學創設,確保能夠對學生求異心理進行有效激發,如果學生思維模式出現求異因素時,教師需要對學生進行有效的激勵,提升學生的獨立思維能力。當學生探索問題失敗后,教師需要對學生進行科學引導,幫助學生科學轉變思維模式,并對其進行求異思維認知的科學培養,長此以往,才能使學生具有更為強烈的求異思維。
二、分析知識的內在聯系
數學思維對學生數學能力具有很大的影響,數學教師在進行課堂教學時,如果想要對學生的數學思維進行有效培養,必須不斷提升學生的數學能力。在具體進行數學教學時,教師需要引導學生對數學進行全面思考,確保有效提升學生的思維深度,使學生能對事物本質進行有效辨別,保障學生在解題中能抓住主要矛盾,同時還可以對數學知識的內在聯系和本質屬性進行深入探究,進而保障學生能迅速找出解題方法和解題策略,所以對學生進行思維能力培養,強化知識內在聯系是非常重要的教學手段。例如,在進行“合數”的教學時,此時,學生需要判斷兩個質數相乘是否能得出合數,同時還需要說明理由。教師在具體進行教學活動時,教師首先需要引導學生分析整數和因數,并將其向質數與合數拓展,使學生可以充分了解知識的內在聯系,從而對學生思維能力進行更為有效的培養。
三、拓展學生的解題思路
數學教師在進行課堂教學時,需要對學生的運算速度進行綜合考慮,同時還需要確保學生充分掌握數學原理和數學概念的本質。與此同時,運算速度不僅受到學生理解能力的影響,學生思維概括能力和運算習慣也會對其造成很大影響,所以,教師在進行具體教學活動時,需要在速度方面向學生提出一定的要求,使學生能更充分地掌握速算要領。一般情況下,客觀事物始終處于變化之中,此時,人們需要基于發展眼光分析問題,教師如果想要強化學生的數學思維,需要確保學生在學習中能夠發現新的因素,使學生在發現思維受阻之后,可以對其原定策略進行及時改變,并對其思考路線進行合理修正,對問題解決方法進行更為深入的探索。教師還需要確保學生思維的靈活性,保障學生能夠從不同方向和不同角度分析問題。學生思維靈活的具體表現是解法好、方法多、思路廣。數學教師在進行課堂教學時,需要對學生進行有效啟發,確保學生可以對問題進行更為深入的思考,鼓勵學生一題多解。同時還需要進行開放性練習的科學設計,確保學生思維靈活,能夠得到更大的發展,進而保障學生可以對問題進行更為有效的解決。例如,教師在進行“比和比例”的相關內容教學時,可以為學生設置一道題目:甲、乙兩車共同運輸100噸的貨物,其中,乙車比甲車少運了■,問兩輛車分別運輸多少貨物?教師需要引導學生分析該題目的具體類型,然后進行解題方法的科學選擇,對學生思路進行科學引導,確保學生能夠從多個思路進行分析和交流,進而保障學生能對該問題進行更有效的解答。
四、強化多種形式訓練
為了強化學生發散思維,完成培養目標,不僅需要教師對學生變通能力和求異心理高度重視,還需要明確學生學習近況和教材版本,針對具體情況設置培訓方法。一題多變是基于劇情、問題和題目條件共同設計的,只需要對其內容進行比較、順逆、收縮、延伸,確保學生能進入不同情境模式,基于不同角度分析數量關系,使學生能全面了解相同問題的解題思路和問題框架,進而確保學生能對傳統思維模式進行有效突破,實現學生發散思維能力的進一步提升。與此同時,還需要對學生一題多問技能進行科學培養,學生在分析具體事物時,教師需要引導學生基于不同角度進行分析和探索,確保學生對事物具有更為全面的認識,從而保障學生能更深刻地理解新知識,對學生思維靈動性和敏捷性進行科學培養,實現學生發散思維的進一步提升。
總之,在進行小學數學教學時,通過激發學生求異心理,分析知識內在聯系,拓展學生解題思路,強化多種形式訓練,才能確保更有效地培養學生的發散思維,使學生對數學問題進行更有效的解答,提升整體教學效果,推進現代教育發展。