顧 超 ,宋樹平 ,方 凱
(1.蘇州供電公司虞東變電運維班,江蘇 蘇州 215000;2.常熟理工學院電氣與自動化工程學院,江蘇 常熟 215506)
隨著世界能源產業結構的調整和人類對環境問題的重視[1-2],太陽能憑借資源豐富、布局靈活的優勢,成為當今新能源發展的主流,當前越來越多的光伏電站投入運營[3]。光伏電站的可靠運行,需要匯流箱、逆變器等設備在無故障狀態下運行,對光伏設備的狀態監測十分重要。目前,光伏電站主要采用人工定期檢查、網絡化監控的方式對設備進行監測[4]。由于人力資源有限及傳統光伏監測系統智能化不足,這兩種方式都存在光伏陣列監測不足、遇到故障時無法快速定位的問題[5]。
在此背景下,本文對某企業屋頂光伏電站的監測系統進行了智能化設計。該監控系統為光伏電站匯流箱、逆變器等設備配備通信模塊,利用RS485總線與各通信模塊相連,將運行數據傳輸至上位機,并利用組態軟件在上位機建立監控界面,對運行數據進行分析,實現光伏電站運行狀態實時動態監測,設備故障時上位機通過監控界面發出報警信號,提高了光伏電站的安全性[6]。
企業廠區4個屋頂被分成A、B、C、D四個光伏發電區域,采用集中式和分布式相結合的方式發電。C區廠房面積較大且自用電較少,故對C區廠房采用集中式結構,根據工廠屋頂面積配置與之相對應的光伏面板,并以20路為一組接入直流匯流箱,匯流箱的電流輸入到集中式逆變器。A、B、D區采用分布式結構,使用組串式逆變器將直流轉換為交流后直接并入電網,最后再將四個區域通過交流電纜將電流輸送至并網柜。
為了能夠在光伏設備發生故障時快速定位故障點,在硬件上選用智能型的匯流箱、逆變器;使用組態軟件構建一個界面,將每個智能元器件在界面上顯示出來,通過RS485總線將數據匯總到機柜串口后,通過光纖與上位機進行連接從而實現監視功能。該系統實現數據采集和狀態監控的同時,可進行簡單、直觀的人機交互。其中,數據采集、狀態監控和簡單的數據分析由各種智能元器件來實現,人機交互通過組態軟件實現;在組態軟件中建立監控界面,將實時數據導入其中進行分析處理,兩者之間的連接通過建立在C區的串口機柜實現,數據傳輸示意圖如圖1所示。

圖1 數據傳輸示意圖
設備故障時報警設計方案如下:在監測系統中設有報警裝置,當光伏面板發電量低于正常值便會發出報警信號。晴天時,軟件系統及時響應所有的故障告警信號;陰雨天,軟件屏蔽逆變器孤島保護及回流量0 A電流輸入的告警,但是響應其他的告警;晚上不響應任何故障告警。
根據上述設定,采用一臺通過GPS校時的上位機電腦,查詢當地歷史平均每個月或者每10天,日出、日落的時間。超出日出、日落范圍的時間認為是晚上,不響應故障告警;在該范圍內的時間認為是晴天,響應所有故障告警。此外,由于軟件算法很難計算陰雨、多云、低光照強度的天氣,因此,該工作由值班人員完成。軟件提供功能開關,值班人員可以在陰雨天氣,關閉孤島保護和0 A電流輸入的告警。
直流匯流箱需要監視各個光伏面板的輸出電流,當任意一個回路發生電流故障,該模塊提供報警信號。另外,匯流箱要采集保護斷路器的觸點信號,了解該斷路器的位置,在發生跳閘后需要第一時間送出信號。因此,直流匯流箱選用常熟開關制造有限公司生產的CXPV-16/Z光伏直流匯流箱。
根據設計要求,逆變器需提供遠程控制功能,并且發生故障時,能夠第一時間輸出報警信號。因此選用兩種型號的逆變器,一種為CS1并網型光伏逆變器。該型號逆變器具有較多的通信接口和遠程控制功能,且輸入電壓范圍寬,使其適用于小型組串低壓設備[7]。另一種選用SUN2000-60KTL-M0組串式逆變器。這種型號的組串式逆變器基于模塊化的設計,能夠減少電池組件最佳工作點不匹配逆變器的情況,大幅增加發電量。
利用Riyear-PowerNet系統設計該光伏電站的工業現場信息。采集到的元器件數據用Riyear-PowerNet系統進行儲存,建立歷史及實時數據庫,在系統發生故障時,利用存儲的數據對故障進行分析定位。
智能硬件系統通過Modbus驅動程序與上位機相連接,人機界面就可以顯示設備數據的記錄、數據報警等,系統軟件結構如圖2所示。

圖2 軟件結構
首先,添加組態,選用常熟開關設備制造有限公司的兩種I/O組態;其次,為了能夠讀取數據,需要定義好數據庫;其三,定義中間變量。在定義數據庫變量之前,需要先確定設備類型和設備模塊,數據由Modbus標準命令采集,存儲在各種寄存器中,便于軟件讀取數據。在設備配置中根據相關要求設置設備地址、串口編號以及相關通信參數。數據庫變量的作用域包括整個應用程序[8]。定義數據庫即定義地址,將變量與對應的設備連接起來。此時,在進行連接時就可以依靠事先設定好的地址,準確地找到想要的數據[9]。
當設備發生故障,經過軟件判斷需要給予響應時,第一時間切換至該設備的故障界面,同時播放報警聲音。逆變器發生故障時,系統主界面顯示區域閃爍,使值班人員能夠快速定位故障發生區域,系統故障報警顯示如圖3所示。

圖3 故障報警
首先啟動軟件,加載完成軟件基本環境后,TCP/IP進行網絡連通,連接完成后初始化各個串口,根據地址向硬件設備發送數據。如果發送失敗,則再連續嘗試發送三次,如果仍然未能發送成功,則判斷該臺設備離線;如果成功,在智能設備接收數據信息后,將自身數據回饋至上位機,軟件接收數據后存入實時數據庫,并在人機界面讀取數據。將各個串口互相連接通信并將歷史數據加載讀取。如果智能設備出現故障,將向系統發送故障數據,系統根據定義好的算法判斷設備的故障類型,在界面上顯示報警區域,在故障解除之后軟件系統回到正常狀態[10]。流程圖如圖4所示。

圖4 軟件運行流程
毋庸置疑,設備監測對光伏電站的安全運行、管理具有重要意義。為了便于電站智能化、精細化管理,本文設計并開發了光伏電站智能監測系統。該系統對光伏電站的設備進行數據采集,然后利用RS485總線將數據傳輸至上位機;隨后,利用Riyear-PowerNet軟件把電站的歷史和實時運行數據建成數據庫。基于此,該軟件實現對電站的實時、在線監測。光伏設備發生故障時,監測系統通過對數據庫數據分析,可以快速、準確地定位故障位置。該監測系統有效保障了光伏電站的可靠運行和集中管理。