李紀(jì)賓,饒歡樂(lè),王晨,錢(qián)依凡,洪哲揚(yáng)
(杭州電子科技大學(xué) 自動(dòng)化學(xué)院,浙江 杭州 310018)
相較于傳統(tǒng)光源,大功率LED 具有高光效和靈活可控等優(yōu)勢(shì),在提供交互式或動(dòng)態(tài)照明方面頗具潛力,如建筑照明[1]、太陽(yáng)光模擬器[2]等。這類光源通常要求光度輸出寬范圍動(dòng)態(tài)可調(diào),并且快速達(dá)到預(yù)定的精度要求。盡管LED 自身開(kāi)關(guān)特性可達(dá)兆赫茲,但由于系統(tǒng)散熱存在時(shí)滯、時(shí)變不確定特性,使得光度輸出規(guī)律難以預(yù)測(cè)。構(gòu)建可分析、可計(jì)算和執(zhí)行的調(diào)光模型對(duì)實(shí)現(xiàn)更加精細(xì)化的調(diào)光控制具有重要意義。
經(jīng)典光電熱[3]理論表明LED 結(jié)溫、光通量、電流存在多參數(shù)耦合關(guān)系。而后,Tao[4]等人通過(guò)機(jī)理分析,構(gòu)建動(dòng)態(tài)光電熱模型,用于計(jì)算光通量輸出隨系統(tǒng)溫升的衰減變化。文獻(xiàn)[5]~[6]考慮環(huán)境溫度的熱因素影響,構(gòu)建不同操作功率下的線性擾動(dòng)模型,設(shè)計(jì)了溫度前饋補(bǔ)償器,以保證光度的恒定輸出。文獻(xiàn)[7]建立了基于狀態(tài)空間表達(dá)的線性預(yù)測(cè)模型,便于移植到低成本控制器中去。文獻(xiàn)[8]采用多項(xiàng)式插值方法辨識(shí)不同驅(qū)動(dòng)電流下的傳遞函數(shù)的零極點(diǎn)增益,構(gòu)建了線性參數(shù)時(shí)變模型,但該方法需預(yù)先設(shè)置整個(gè)工作范圍的操作條件,計(jì)算量較大。盡管LED 物理機(jī)制明確,但多數(shù)模型[3-6]基于等效阻容網(wǎng)絡(luò)分析,部分物理量(如結(jié)溫)并不易于測(cè)量,且模型采用離線設(shè)計(jì),在長(zhǎng)時(shí)運(yùn)行或環(huán)境變化較大的條件下將存在失配問(wèn)題。
自組織模糊神經(jīng)網(wǎng)絡(luò)是具有可變結(jié)構(gòu)和參數(shù)的非線性逼近器,通過(guò)學(xué)習(xí)規(guī)則來(lái)刻畫(huà)非線性模態(tài)。聚類技術(shù)[9-11]是一種無(wú)監(jiān)督學(xué)習(xí)的規(guī)則提取方法,能夠避免人為設(shè)定規(guī)則的主觀性。文獻(xiàn)[12]采用誤差分級(jí)學(xué)習(xí)機(jī)制實(shí)現(xiàn)規(guī)則生長(zhǎng),文獻(xiàn)[13]則基于鄰域完備性優(yōu)化網(wǎng)絡(luò)結(jié)構(gòu),文獻(xiàn)[14]提出的自組織模糊網(wǎng)絡(luò)引入了最優(yōu)腦外科方法修剪冗余規(guī)則。這些方法雖能夠保證一定的學(xué)習(xí)精度,但復(fù)雜生長(zhǎng)和修剪策略降低了學(xué)習(xí)效率,使網(wǎng)絡(luò)難以理解和表達(dá)。綜合上述文獻(xiàn)的啟發(fā),本文提出一種結(jié)合密度聚類、誤差和誤差率分析的規(guī)則生成策略,使模型在精度和復(fù)雜度方面得到權(quán)衡,并應(yīng)用于大功率LED調(diào)光模型的設(shè)計(jì)中。
LED 是功率型器件,其伏安特性具有類似二極管的負(fù)溫度特性,通常由如下Shokely 方程描述:

其中,I0是反向飽和電流,Tj是結(jié)溫,kB是玻爾茲曼常數(shù),q 是電荷,n 是理想因 子,T0是標(biāo)稱溫 度,kv為描述LED 在不同結(jié)溫下的電熱漂移系數(shù)。
注入LED 的電功率等于發(fā)出的熱功率和光功率之和:

其中,ηp為電光轉(zhuǎn)換效率。由文獻(xiàn)[7]有:


大功率LED 模塊通常有單顆或多顆LED 集成在散熱器上,其結(jié)構(gòu)和熱傳遞等效阻容網(wǎng)絡(luò)如圖1 所示。其中,Tj、Tc、Ts、Th、Ta分別表示結(jié)溫、封裝外殼溫度、導(dǎo) 熱體溫度、熱沉溫度和環(huán)境溫度。在實(shí)際工作中,由于熱沉熱阻遠(yuǎn)小于空氣熱阻,使得“LED 結(jié)溫→散熱器→環(huán)境”為主要傳熱路徑。

圖1 LED 模塊結(jié)構(gòu)及其等效傳熱網(wǎng)絡(luò)
系統(tǒng)各部分傳熱方程為:


其中,m為等效質(zhì)量,c為等效熱容。符號(hào)R,C=mc 分別表示相應(yīng)部分的熱阻和熱容。由于二極管和其外殼的熱容遠(yuǎn)小于散熱器熱容,當(dāng)采樣間隔較小時(shí),其溫度變化可忽略。令式(5)、式(6)左邊為0,代入式(8)有:

其中,α1、α2、α3為相應(yīng)的常數(shù)項(xiàng)。利用式(9)求解出正 解。結(jié)合式(4),得到系統(tǒng)輸出總光通量為:

本文將模型(4)~(10)轉(zhuǎn)化為差分形式,作為建模方法數(shù)值驗(yàn)證的參考模型,用于產(chǎn)生訓(xùn)練和測(cè)試數(shù)據(jù)。
基于TSK 型的模糊神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖2 所示。

圖2 T-S 型模糊神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)圖
第1 層(輸入層):將輸入變量x 進(jìn)行歸一化處理得到X=[X1,X2,…,Xn]T。
第2 層(模糊層):將輸入模糊映射到模糊集上,并采用如下Cauchy 型函數(shù)[11]計(jì)算隸屬度:

第3 層(規(guī)則層):對(duì)應(yīng)if 部分,其節(jié)點(diǎn)個(gè)數(shù)等于規(guī)則數(shù)R,第l 條規(guī)則的點(diǎn)火強(qiáng)度:

輸出為各規(guī)則貢獻(xiàn)度λl:

第4 層(參數(shù)層):對(duì)應(yīng)then 部分多個(gè)線性多項(xiàng)式:

第5 層(輸出層):經(jīng)線性加權(quán)得到網(wǎng)絡(luò)輸出:

2.2.1 規(guī)則修正準(zhǔn)則
傳統(tǒng)方法會(huì)導(dǎo)致規(guī)則頻繁生成和修剪。為提高網(wǎng)絡(luò)收斂效率,本文引入密度聚類方法來(lái)確定規(guī)則中心,并用于規(guī)則的修正。
設(shè)z(k)=(x(k)T,y(k)T)為k 時(shí)刻系統(tǒng)輸入-輸出數(shù)據(jù),維數(shù)為n和m。當(dāng)新數(shù)據(jù)散度值S(z(k))大于或小于所有聚類中心散度值,且位于某一中心領(lǐng)域范圍δi=0.5σi,表明該點(diǎn)概括性更強(qiáng),該點(diǎn)將替代舊規(guī)則中心為新規(guī)則中心:

其中,S(z(k))、S(z*)分別表示樣本點(diǎn)和聚類中心的散度值,其計(jì)算方法可由文獻(xiàn)[11]確定。
2.2.2 規(guī)則生成準(zhǔn)則
定義1(系統(tǒng)誤差[15])對(duì)于觀測(cè)數(shù)據(jù)z(k),期望輸出為yr,各規(guī)則辨識(shí)誤差||ei||=||yr-yi||。若||ei||>ke,則考慮生成一條規(guī)則:

其中,emin為期望精度,emax為最大輸出誤差,t為學(xué)習(xí)時(shí)間。
定義2(可容納邊界) 對(duì)于觀測(cè)數(shù)據(jù)z(k),計(jì)算其與規(guī)則中心的最小距離:

若di,min大于可容納邊界kd,考慮增加一條新規(guī)則。
定義3(泛化因子)
第五天清早,我噙著淚水,告別了我的毛毛。走了好遠(yuǎn),我回頭望,遠(yuǎn)方那座青山漸漸模糊,山頂那棵黃桷樹(shù)也只能望見(jiàn)一點(diǎn)兒影子了。這是一塊傷心地,我來(lái)去匆匆走過(guò)一遭,除了把親生的骨肉撂在這兒,其他么事都冇留下。轉(zhuǎn)身離去,把憂傷撇在身后,我暈暈乎乎地往前走。兩天后,我來(lái)到了蘄州對(duì)岸的長(zhǎng)江邊兒。坐在江堤上,望著茫茫大江,我的頭里邊好像也是一片迷茫。我這大老遠(yuǎn)跑出來(lái)是為么事?現(xiàn)在我是要回河浦嗎……見(jiàn)到大梁,他會(huì)埋怨我吧?我也實(shí)在是太對(duì)不起他了,狼剩兒冇找到,又把懷的毛毛給丟了,我還有臉再見(jiàn)他嗎……江濤聲聲,江風(fēng)陣陣,堤腳的防波林,樹(shù)葉迎風(fēng)招搖,像一大片綠色的冥幡……
文獻(xiàn)[16]泛化因子GF 用于檢驗(yàn)?zāi)P偷姆夯芰Γ?/p>

若GF<kGF(kGF為預(yù)先設(shè)定值),表明現(xiàn)有規(guī)則不足,模型泛化性能較差,需考慮增加規(guī)則。在本文中,當(dāng)滿足定義1~定義3 中的判斷條件時(shí),則生成一條新規(guī)則。相應(yīng)地,網(wǎng)絡(luò)規(guī)則層節(jié)點(diǎn)數(shù)都會(huì)適當(dāng)增加:

為提高模型抗噪能力,采用帶遺忘因子的加權(quán)遞推最小二乘法(WRLS)對(duì)線性參數(shù)π 進(jìn)行估計(jì):

(1)初始化網(wǎng)絡(luò)參數(shù)。
(2)根據(jù)輸入x(k+1)及規(guī)則,輸出預(yù)測(cè)值y(k+1)。
(3)獲取新觀測(cè)數(shù)據(jù)z(k+1),計(jì)算其散度值。
(4)更新現(xiàn)有規(guī)則中心散度值。
(5)判斷是否滿足式(16)前提,若滿足,執(zhí)行后轉(zhuǎn)至步驟(6);否則,判斷是否滿足式(20)前提,滿足則執(zhí)行。
(6)調(diào)整神經(jīng)元參數(shù)σ 及后件參數(shù)π。
在各采樣時(shí)刻,循環(huán)執(zhí)行步驟(2)~步驟(6)實(shí)現(xiàn)在線建模。
為驗(yàn)證本方法有效性,考慮如下非線性動(dòng)態(tài)系統(tǒng):

給定輸入信號(hào)u(t)=sin(2πt/25),初始狀態(tài)y(0)=0,y(1)=0。由式(23)產(chǎn)生1 000 個(gè)樣本,前800 個(gè)樣本用于訓(xùn)練t=1,2,…,800,后200 個(gè)樣本用以測(cè)試其泛化性能t=801,802,…,1 000。網(wǎng)絡(luò)參數(shù)設(shè)置如下:ρ=0.95,Ω=800,δ=1.0,emin=0.03,emax=0.5,εmin=0.25,εmax=0.75,kerr=0.001 5,kGF=0.99。
訓(xùn)練結(jié)果如圖3、圖4 所示,表1 給出了與現(xiàn)有模糊網(wǎng)絡(luò)建模方法的對(duì)比,所有算法均采用同樣的訓(xùn)練集和測(cè)試集。
由圖3、圖4 可以看出,經(jīng)過(guò)不斷的增進(jìn)式學(xué)習(xí),最終生成5 條規(guī)則,且測(cè)試誤差在[-0.001 5,0.001 5]范圍內(nèi),說(shuō)明模型具有一定的泛化能力。由表1 可知,相較于僅依據(jù)密度聚類eTS 模型、ANFIS 網(wǎng)絡(luò)以及DFNN 模型,網(wǎng)絡(luò)結(jié)構(gòu)更加緊湊;盡管模型精度和泛化能力方面稍遜色于GDFNN,但其計(jì)算速度更快。因此,本文所提出的模型具有較優(yōu)的綜合性能。

表1 與其他方法的比較

圖3 規(guī)則生長(zhǎng)及RMSE 變化曲線

圖4 測(cè)試樣本擬合曲線及其預(yù)測(cè)誤差
本文采用大功率LED 暖白(CREE family Xlamp Xp-G)作為實(shí)驗(yàn)對(duì)象,參考模型來(lái)自于模型(4)~(8),模型中的熱阻、熱容等其他參數(shù)可由文獻(xiàn)[7]及相應(yīng)的數(shù)據(jù)手冊(cè)確定。網(wǎng)絡(luò)輸入為熱沉溫度Tr、環(huán)境溫度Ta以及驅(qū)動(dòng)電流If,輸出為下一時(shí)刻輸出光通量預(yù)測(cè)值。
首先,將模型(4)~(10)轉(zhuǎn)化為差分形式,采樣時(shí)間設(shè)置為1 s,初始熱沉溫度與室溫25 ℃一致,并施加±0.2 ℃的隨機(jī)干擾噪聲。驅(qū)動(dòng)電流以階躍形式由0.1 A 調(diào)至1.2 A,間隔0.3 A,持續(xù)100 s;再?gòu)?.2 A 下降至0.1 A,間隔0.3 A;模擬LED 由暗至亮再至暗的過(guò)程,共產(chǎn)生900 個(gè)數(shù)據(jù)作為訓(xùn)練集。
為檢驗(yàn)?zāi)P头夯芰Γ瑢岢翜囟瘸鯌B(tài)值設(shè)置為最后一組訓(xùn)練集的溫度值,且將室溫改變?yōu)樵?6±0.2 ℃區(qū)間內(nèi)。將原階躍電流信號(hào)變更為從0.1 A 到1.2 A,1.2 A 到0.1 A 連續(xù)變化的斜坡信號(hào),并將采樣間隔縮短為50 s,共計(jì)400 個(gè)數(shù)據(jù)用于測(cè)試。初始參數(shù)設(shè)置如下:ρ=0.95,Ω=800,δ=1.0,emin=0.15,emax=0.75,εmin=0.25,εmax=0.75,kerr=0.001 5,kGF=0.99。
圖5、圖6為在線建模的仿真結(jié)果,由圖5(a)可以看出,當(dāng)LED 操作電流在大范圍內(nèi)變化時(shí),不管是訓(xùn)練樣本還是測(cè)試樣本,所建立模型均能準(zhǔn)確預(yù)測(cè)隨熱沉溫度變化引起的光通量變化。由圖5(b)可知,僅在操作點(diǎn)變化時(shí)會(huì)出現(xiàn)較大預(yù)測(cè)誤差,但因引入誤差學(xué)習(xí)機(jī)制,模型能夠及時(shí)修改或生成規(guī)則以消除誤差。表2 給出一些模型評(píng)價(jià)指標(biāo),其中光通量預(yù)測(cè)最大誤差不超過(guò)3%;表3 給出了與其他網(wǎng)絡(luò)的廣泛比較。結(jié)果表明,本模型結(jié)構(gòu)緊湊,泛化能力強(qiáng),能夠依據(jù)工況變化自適應(yīng)調(diào)整,正確反映光度的動(dòng)態(tài)變化。

圖5 規(guī)則生長(zhǎng)及RMSE 變化曲線

圖6 大功率LED 輸出光的在線辨識(shí)結(jié)果

表2 模型的性能指標(biāo)

表3 與其他典型方法的比較
本文設(shè)計(jì)了基于模糊神經(jīng)網(wǎng)絡(luò)的大功率LED 調(diào)光模型。該模型能夠準(zhǔn)確預(yù)測(cè)隨溫度變化的系統(tǒng)的光通量輸出,且具有結(jié)構(gòu)緊湊、計(jì)算開(kāi)銷小等特點(diǎn),便于移植入低成本控制器。此外,本文提出算法可進(jìn)一步拓展,如引入色度、光譜函數(shù)等,為實(shí)現(xiàn)更優(yōu)的調(diào)光控制提供可計(jì)算、可分析和可執(zhí)行的模型基礎(chǔ)。