999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

DIFFERENTIAL MIXED EQUILIBRIUM PROBLEMS IN BANACH SPACE

2021-11-24 11:11:48WANGZhiweiJUGuiyin
數學雜志 2021年6期

WANG Zhi-wei,JU Gui-yin

(School of Applied Mathematics,Nanjing University of Finance and Economics,Nanjing 210023,China)

Abstract:In this paper,we investigate a new class of differential mixed equilibrium problems((DME),for short)in Banach space.By using Fan-KKM theorem and Ky Fan’s minmax inequality,we respectively prove the existence of solutions for mixed equilibrium problems under some suitable conditions.Moreover,we prove the superpositional measurability and upper semicontinuity for a class of set-valued mappings.Finally,by using the theory of semigroups and Filippov implicit function lemma,we obtain the existence theorem concerned with the mild solutions for(DME)and discuss the compactness of the solution set.The results enrich and extend the theory of equilibrium.

Keywords:differential mixed equilibrium problems;Banach space;Fan-KKM theorem;Ky Fan’s minmax inequality;Filippov implicit function lemma

1 Introduction and Preliminaries

It was well known that Pang and Stewart introduced and studied differential variational inequality in a finite-dimensional Euclidean space(see[1]).Recently,the existence of solutions for different types of differential variational inequalities problems(see[2-7])is considered by many authors.

In this paper,we introduce a class of differential mixed equilibrium problem.Under various conditions,we obtain the existence theorem concerned with the mild solutions for this class of problems.

Now we introduce some preliminaries which will be used in the paper.For any nonempty set Y,P(Y)denotes the family of all nonempty subsets of Y.We denote

2 The Introduction of Some New Problems

3 Existence and Properties of Solution Sets for Mixed Equilibrium Problems

4 Continuity and Superpositional Measurability for a Class of Set-Valued Mappings

5 Existence of Mild Solutions for a Class of Differential Mixed Equilibrium Problems

Therefore,FixΓ is bounded in C([0,T];E).

Applying Lemma 5.2 and Lemma 1.7 with F=Γ,we know the solution set of problem(EDI),which equals to FixΓ,is compact in C([0,T];E).

Step 3 Note that the set-valued mapping U is superpositionally measurable from Theorem 4.1.Therefore,by Filippov implicit function lemma(see[11]),we deduce that for every solution x of(EDI),there exists a measurable selection u(t)∈U(t,x(t))such that ˙x(t)=Ax(t)+f(t,x(t),u(t)),t∈[0,T].Hence,(x,u)is a mild solution of problem(DME)in the sense of Definition 2.1,which implies the set of all mild trajectories of problem(DME)is consistent with the solution set of problem(EDI).This completes the proof.

主站蜘蛛池模板: 毛片在线看网站| 国产精品美女免费视频大全 | 成人免费视频一区二区三区 | 最新日本中文字幕| 动漫精品啪啪一区二区三区| 蜜芽一区二区国产精品| 2020亚洲精品无码| 在线观看国产黄色| 亚洲成网777777国产精品| 亚洲色图综合在线| 91原创视频在线| 亚洲成a人片| 国产成人久久综合777777麻豆| 97久久超碰极品视觉盛宴| 国产精品自在自线免费观看| 日韩中文欧美| 精品国产Ⅴ无码大片在线观看81| 国产福利在线免费| 欧美日韩在线成人| 女人18毛片久久| 中文字幕 91| 在线免费亚洲无码视频| 欧美第一页在线| 天堂在线www网亚洲| 亚洲国产理论片在线播放| 色有码无码视频| 无码中文AⅤ在线观看| 欧美伊人色综合久久天天| 欧美视频免费一区二区三区| 亚洲中文字幕久久精品无码一区| 秋霞午夜国产精品成人片| 国产在线八区| 尤物视频一区| 久久香蕉国产线看观| 亚洲一区无码在线| 1024你懂的国产精品| 天天干天天色综合网| av在线手机播放| 视频二区亚洲精品| 欧美日韩北条麻妃一区二区| 亚洲综合精品第一页| 又爽又大又光又色的午夜视频| 亚洲成人网在线播放| 黄色不卡视频| 日本亚洲欧美在线| 国产日韩欧美黄色片免费观看| 欧美国产成人在线| 老色鬼欧美精品| 精品久久久久久久久久久| 亚洲午夜福利精品无码| 精品视频在线一区| 先锋资源久久| 日韩A级毛片一区二区三区| 在线观看亚洲人成网站| 69综合网| 99久久国产精品无码| 日韩东京热无码人妻| 精品一区二区无码av| 国产高清在线观看91精品| 国产黄网永久免费| 午夜国产精品视频黄| 亚洲国产中文精品va在线播放 | 久久99国产乱子伦精品免| 丁香六月激情综合| 毛片在线看网站| 欧美在线伊人| 成人伊人色一区二区三区| 国产人人乐人人爱| 国产亚洲视频中文字幕视频| 黄片一区二区三区| 2018日日摸夜夜添狠狠躁| 欧美精品不卡| www精品久久| 黄色一级视频欧美| 免费看一级毛片波多结衣| 久久中文字幕不卡一二区| 99re在线视频观看| 亚洲精品无码专区在线观看 | av一区二区三区高清久久| 成年人国产网站| 国产理论一区| 最近最新中文字幕在线第一页|