999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

THE REPRESENTATION CATEGORIES OF DIAGONAL CROSSED PRODUCTS OF INFINITE-DIMENSIONAL COFROBENIUS HOPF ALGEBRAS

2021-11-24 11:11:46YANGTaoLIUHuili
數學雜志 2021年6期

YANG Tao,LIU Hui-li

(College of Science,Nanjing Agricultural University,Nanjing 210095,China)

Abstract:The categorical interpretations on representations of diagonal crossed products of infinite-dimensional coFrobenius Hopf algebras are studied in this paper.By the tools of multiplier Hopf algebra and homological algebra theories,we get that the unital representation category of a diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra is isomorphic to its generalized Yetter-Drinfeld category,which generalizes the results of Panaite et al.in finitedimensional case.

Keywords:coFrobenius Hopf algebra;diagonal crossed product;Yetter-Drinfel’d module

1 Introduction

A Yetter-Drinfel’d module over a Hopf algebra,firstly introduced by Yetter(crossed bimodule in[1]),is a module and a comodule satisfying a certain compatibility condition.The main feature is that Yetter-Drinfel’d modules form a pre-braided monoidal category.Under favourable conditions(e.g.if the antipode of the Hopf algebra is bijective),the category is even braided(or quasisymmetric).Via a(pre-)braiding structure,the notion of Yetter-Drinfel’d module plays a part in the relations between quantum groups and knot theory.

When a Hopf algebra is finite-dimensional,the generalized(anti)Yetter-Drinfel’d module category was studied in[2].The authors showed thatHYDH(α,β) ~=H???H(α,β)M,where H??? H(α,β)is the diagonal crossed product algebra.Then one main question naturally arises:Does this isomorphism still hold for some infinite-dimensional Hopf algebra?

For this question,we first recall from our paper[3]the diagonal crossed product of an infinite-dimensional coFrobenius Hopf algebra,then we consider the representation category of the diagonal crossed product,and show that for a coFrobenius Hopf algebra H with its dual multiplier Hopf algebra^H,the unital^H ?? H(α,β)-module category is isomorphic to(α,β)-Yetter-Drinfeld module category introduced in[2,4],i.e.,HYDH(α,β) ~=^H??H(α,β)M.Moreover,as braided T-categories the representation category Rep(⊕(α,β)∈G^H ?? H(α,β))is isomorphic to YD(H)introduced in[2].

The paper is organized in the following way.In section 2,we recall some notions which will be used in the following,such as multiplier Hopf algebras and(α,β)-quantum double of an infinite dimensional coFrobenius Hopf algebra.

In section 3,we show that for a coFrobenius Hopf algebra H,the unital^H ?? H(α,β)-module category^H??H(α,β)M is isomorphic toHYDH(α,β).And as braided T-categories the representation theory Rep(A)is isomorphic to YD(H)introduced in[2],generalizing the classical result in[2,5].

2 Preliminaries

We begin this section with a short introduction to multiplier Hopf algebras.

Throughout this paper,all spaces we considered are over a fixed field K(such as thefield C of complex numbers).Algebras may or may not have units,but always should be non-degenerate,i.e.,the multiplication maps(viewed as bilinear forms)are non-degenerate.Recalling from the appendix in[6],the multiplier algebra M(A)of an algebra A is defined as the largest algebra with unit in which A is a dense ideal.

2.1 Multiplier Hopf Algebras

Now,we recall the definition of a multiplier Hopf algebra(see[6]for details).A comultiplication on an algebra A is a homomorphism Δ :A ?→ M(A?A)such that Δ(a)(1?b)and(a? 1)Δ(b)belong to A? A for all a,b ∈ A.We require Δ to be coassociative in the sense that

for all a,b,c ∈ A(where ι denotes the identity map).

A pair(A,Δ)of an algebra A with non-degenerate product and a comultiplication Δ on A is called a multiplier Hopf algebra,if the maps T1,T2:A?A?→M(A?A)defined by

have range in A?A and are bijective.

A multiplier Hopf algebra(A,Δ)is called regular if(A,Δcop)is also a multiplier Hopf algebra,where Δcopdenotes the co-opposite comultiplication defined as Δcop= τ?Δ with τ the usual flip map from A?A to itself(and extended to M(A?A)).In this case,Δ(a)(b?1)and(1?a)Δ(b)∈A?A for all a,b∈A.

Multiplier Hopf algebra(A,Δ)is regular if and only if the antipode S is bijective from A to A(see[7],Proposition 2.9).In this situation,the comultiplication is also determined by the bijective maps T3,T4:A?A?→A?A defined as follows

2.2 Diagonal Crossed Product of an Infinite Dimensional coFrobenius Hopf Algebra

3 Representation Category of the Diagonal Crossed Product

主站蜘蛛池模板: 国产精品妖精视频| 亚洲AV无码精品无码久久蜜桃| 1769国产精品视频免费观看| 秋霞午夜国产精品成人片| 欧美日韩激情在线| 中文字幕亚洲电影| 欧美亚洲日韩中文| 亚洲日本在线免费观看| 成人va亚洲va欧美天堂| 亚洲首页在线观看| 日韩a在线观看免费观看| 日韩欧美国产中文| a在线观看免费| 日本不卡在线播放| 99视频在线免费看| 日韩欧美网址| 亚洲妓女综合网995久久| 欧美特级AAAAAA视频免费观看| 亚洲永久精品ww47国产| 亚洲人网站| 人妻丰满熟妇αv无码| 亚洲精品少妇熟女| 国产精品区视频中文字幕| 五月激情综合网| 亚洲视频免| 亚洲bt欧美bt精品| 亚洲精品国产日韩无码AV永久免费网| 欧美成a人片在线观看| 国产美女免费| 99999久久久久久亚洲| 国产真实乱子伦精品视手机观看| 久久99久久无码毛片一区二区| 国产成人综合久久| 国产精品久久久久久久久| 国产福利2021最新在线观看| 2019年国产精品自拍不卡| 黄色在线网| 毛片网站观看| 国产一区免费在线观看| 欧美性久久久久| 亚洲狼网站狼狼鲁亚洲下载| 欧美不卡视频在线观看| 国产特级毛片aaaaaaa高清| 在线观看的黄网| 久久久噜噜噜| 久久精品欧美一区二区| 亚洲色成人www在线观看| 午夜福利网址| 五月六月伊人狠狠丁香网| 久久semm亚洲国产| 91在线无码精品秘九色APP| 日本在线视频免费| 一区二区影院| 99精品影院| 人妻出轨无码中文一区二区| 青草娱乐极品免费视频| 色网在线视频| 中字无码精油按摩中出视频| 免费国产好深啊好涨好硬视频| 久久国产精品夜色| 女高中生自慰污污网站| 无码一区二区三区视频在线播放| 成人在线观看不卡| 欧美午夜视频在线| 久久精品国产在热久久2019| 国产黄网永久免费| 欧美精品亚洲精品日韩专| 欧洲在线免费视频| 天堂网亚洲系列亚洲系列| 热99re99首页精品亚洲五月天| 亚洲欧美成人| 久久综合AV免费观看| 91久久偷偷做嫩草影院电| 国产色网站| 国产凹凸一区在线观看视频| 四虎在线高清无码| 91久久精品国产| 国产麻豆91网在线看| 亚洲无码电影| 欧美视频在线观看第一页| 亚洲网综合| 青青网在线国产|