999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

APPROXIMATIONS OF THE IDENTITY ADAPTED TO CONTINUOUS ELLIPSOID COVER

2021-11-24 11:11:44YUAnkangLIBaode
數學雜志 2021年6期

YU An-kang,LI Bao-de

(School of Mathematics and System Sciences,Xinjiang University,Urumqi 830046,China)

Abstract:In this paper we develop some approximation of the identity results adapted to continuous multi-level ellipsoid cover.By using real-variable methods of harmonic analysis,we obtain two approximations of the identity results uniformly in some compact subset of Rnand in L1(Rn)norm,respectively.These results generalize the corresponding classical and anisotropic approximation of the identity results.

Keywords: approximation of the identity;ellipsoid cover;anisotropy

1 Introduction

As we all know,approximation of identity plays an important role in analysis,see[1-3].There are numerous approximations of identity results associated with the Euclidian balls in Rn.For example,let φ be an integrable function on Rnsuch thatRRnφ(x)dx=1,and for t>0 define φt(x)=t?nφ(t?1x).Then,if f ∈ L1(Rn),φt? f → f(t→ 0)in L1(Rn).

In 2010,the continuous multi-level ellipsoid cover Θ introduced by Dahmen,Dekel and Petrushev[4]consist of ellipsoids θx,t=Mx,t(Bn)+x,where Mx,tis an invertible matrix and Bnis the unit ball in Rn(see Definition 2.1).The flexible framework of continuous ellipsoid cover Θ introduced in this paper may have the ability to solve the following problems.For example,the formation of shocks results in jump discontinuities of solutions of hyperbolic conservation laws across lower dimensional manifolds.The case such jumps cause a serious obstruction to appropriate regularity theorems,since the available regularity scales are either inherently isotropic or coordinate biased or are subject to an uncontrollable restricted regularity range.For more development of continuous ellipsoid cover,see[5-7].

Inspired by the above work,for any θx,t=Mx,t(Rn)+x ∈ Θ,let φ be an integrable function on Rnsuch thatRRnφdx=1,we can define

And then a question arises:Is it possible to obtain some approximations of the identity results adapted to ellipsoid cover Θ such as f?φx,t(x)→ f(x)(t→ ∞)in various senses?This article gives some affirmative answers for the question.It is worth pointing out that the approximation of the identity in this paper is done in Cc(Rn),which is a dense subset of L1(Rn),and the approximation of the identity in L1(Rn)is difficult for us,which is still open at the moment.

The organization of this article is as follows.In Section 2,we first present some notation and notions used in this article including continuous ellipsoid cover Θ and describe our main theorem.In Section 3,we show the proof details of the main theorem.

2 Preliminaries and Main Results

In this section we recall the properties of ellipsoid cover which was originally introduced by Dahmen,Dekel,and Petruschev[4].An ellipsoid ξ in Rnis an image of the Euclidean unit ball Bn:={x∈Rn:|x|<1}under an affine transform,i.e.,

3 Proof of Theorem 2.4

Proof(i)By f∈Cc(Rn),we know that there exists a positive constant N and M such that suppf?NBnand|f(x)|≤M for any x∈Rn,and f is a uniformly continuous function on Rn.By this,we obtain that,for any ε>0,there exists δ>0 such that,for all x∈Rn,y∈Rnwith|y|<δ,

主站蜘蛛池模板: 中文字幕亚洲另类天堂| 久久中文字幕2021精品| 久久国产精品娇妻素人| 国产色图在线观看| 丝袜无码一区二区三区| 71pao成人国产永久免费视频| 成人免费黄色小视频| 成人免费视频一区| 美女免费黄网站| 最新国产精品第1页| 天天色天天操综合网| 青青草原国产一区二区| 日日噜噜夜夜狠狠视频| 国产精品页| 夜夜操狠狠操| 97在线国产视频| 网友自拍视频精品区| 久久久久夜色精品波多野结衣| 91精品视频播放| 国产精品综合久久久| 成人日韩欧美| 国产女人在线| 国产精品亚洲专区一区| 欧美日韩国产在线人| 19国产精品麻豆免费观看| 成人免费网站久久久| 亚洲色图另类| 高h视频在线| 92午夜福利影院一区二区三区| 国产自在线播放| 熟女成人国产精品视频| 97人人做人人爽香蕉精品| 国产91麻豆免费观看| 日韩亚洲综合在线| 色偷偷男人的天堂亚洲av| 亚洲精品国产日韩无码AV永久免费网 | www.狠狠| 欧美色图第一页| 亚洲人成电影在线播放| 少妇露出福利视频| 国内精品视频区在线2021 | 激情综合激情| 国产精品毛片一区| 黄色一及毛片| 亚洲一区二区三区香蕉| 在线欧美日韩| 六月婷婷精品视频在线观看 | 免费一级全黄少妇性色生活片| 欧美国产菊爆免费观看| 鲁鲁鲁爽爽爽在线视频观看| 九色视频在线免费观看| 国产美女自慰在线观看| 国产在线拍偷自揄观看视频网站| 真人免费一级毛片一区二区| 国产日韩久久久久无码精品| 亚洲大学生视频在线播放| 啊嗯不日本网站| 国产99视频精品免费视频7| 中文字幕欧美日韩| 日韩成人在线网站| 中国国产高清免费AV片| 国产91麻豆免费观看| 五月天久久综合国产一区二区| 国产女人水多毛片18| 色综合日本| 最新日韩AV网址在线观看| 国产成年无码AⅤ片在线| 欧美日韩久久综合| 久久国产香蕉| 亚洲无码视频喷水| 玩两个丰满老熟女久久网| 无码日韩人妻精品久久蜜桃| 久久精品视频一| 色久综合在线| 91毛片网| 午夜不卡视频| 国产成人综合日韩精品无码首页 | 久久亚洲日本不卡一区二区| 五月婷婷亚洲综合| 国产日韩欧美在线视频免费观看| 日韩欧美91| 二级特黄绝大片免费视频大片|