吳漢媚
本文系廣東省教育科學(xué)規(guī)劃課題《初中數(shù)學(xué)進(jìn)階式“四有”微課程開發(fā)的研究》科研成果,立項(xiàng)編號:2018YQJK293
摘要:近幾年,微課已經(jīng)成為廣大師生耳熟能詳?shù)慕虒W(xué)資源。在教學(xué)實(shí)踐中,常發(fā)現(xiàn)微課用得不合時(shí)宜,本文將以一節(jié)公開課為例,淺談微課在初中數(shù)學(xué)教學(xué)中的有效介入。
關(guān)鍵詞:微課;恰逢其時(shí);有效介入
中圖分類號:G633.6文獻(xiàn)標(biāo)識碼:A文章編號:1992-7711(2021)15-0079
一、一節(jié)公開課引發(fā)的思考
在以信息技術(shù)與學(xué)科深度融合為主題的活動上,筆者與市里的其他教師聆聽了一節(jié)數(shù)學(xué)公開課,課題選自北師大版八年級下冊《1.3線段的垂直平分線》。當(dāng)講到知識點(diǎn)“請尺規(guī)作圖,過一點(diǎn)作某直線的垂線”時(shí),授課教師采取了“觀看微課——動手實(shí)踐——探討提升”螺旋上升式的認(rèn)知設(shè)計(jì)。考慮到學(xué)生在七年級就已經(jīng)具備作一條線段的垂直平分線的基本知識和技能,又以如此具體直觀生動的微課視頻作示范,學(xué)生理應(yīng)能用舊知帶動新知,從而實(shí)現(xiàn)新舊知識的順利過渡。然而,“理想很豐滿,現(xiàn)實(shí)很骨感”,部分學(xué)生在動手實(shí)踐環(huán)節(jié)的無措表情以及后面提升探討的鴉雀無聲,足以說明這個(gè)微課的教學(xué)效果甚微。在后面的評課議課環(huán)節(jié)中,大家都對此作出了反思,一致認(rèn)為微課做得很好,但介入的時(shí)機(jī)不對。
在該公開課中,教師試圖介入微課代替現(xiàn)場講解,表面上既直觀又省時(shí),實(shí)質(zhì)是對思考濃度的稀釋。問題要求作直線的垂線,如何想到要做線段的垂直平分線呢?為什么要先以P點(diǎn)為圓心在直線上截取線段呢?當(dāng)點(diǎn)P在直線外時(shí),該如何在直線上截取中線過點(diǎn)P的線段呢?這些才是解決問題的切入點(diǎn)和突破口,學(xué)生只有經(jīng)歷了對這些問題的思考,才能自主構(gòu)建新知,自覺將作法遷移到新問題上。因此可先讓學(xué)生動手嘗試,在生疑解惑過程中初步形成作法后再介入微課。
二、微課在初中數(shù)學(xué)教學(xué)中的有效介入
1.激發(fā)學(xué)習(xí)興趣之時(shí)介入微課
集聲音、圖像、文字、視頻于一體的微課可創(chuàng)設(shè)豐富的教學(xué)情境、可穿插各種奇聞趣談、可清晰呈現(xiàn)高能解答,可形象展示棘手操作……既能悅耳聽覺又能吸引眼球,無疑是激趣的得力助手。因此,教師可在新課引入時(shí)、課中活躍氣氛時(shí)、拉起課堂小高潮時(shí)介入微課以激趣。例如,在教學(xué)《多邊形的外角和》時(shí),筆者就制作了如下一個(gè)微課:將五邊形和七邊形擬化成兩個(gè)卡通形象小五和小七,通過小五和小七有趣的對話,引出“流水的邊數(shù)鐵打的360°”這一課堂主題。場景和對話有趣生動,學(xué)生一下子就記住了多邊形外角和是360°這一重要結(jié)論,為接下來的驗(yàn)證探究作好了鋪墊。
2.突破思維障礙之時(shí)介入微課
數(shù)學(xué)被稱為思維的體操,隨著所學(xué)知識難度的提升,思維的深度和廣度也隨之進(jìn)階,教師在只用一張嘴一根粉筆來揭示思維過程時(shí),往往會遭遇“只可意會不可言傳”的尷尬。比如中學(xué)數(shù)學(xué)中的動態(tài)幾何問題,便是鍛煉學(xué)生思維的極好素材,充分體現(xiàn)了數(shù)學(xué)中“變”與“不變”的和諧統(tǒng)一。但如何幫助學(xué)生面對不會動的文本試題清晰地看出動的軌跡,再從軌跡上動中求靜呢?這時(shí)介入微課就高效了。
例如,2020年廣東省數(shù)學(xué)中考試題第17題(圖略):有一架豎直靠在直角墻面的梯子正在下滑,一只貓緊緊盯住位于梯子正中間的老鼠,等待與老鼠距離最小時(shí)撲捉。把墻面、梯子、貓、老鼠都理想化為同一平面內(nèi)的線或點(diǎn),∠ABC=90°,點(diǎn)M、N分別在射線BA、BC上,MN長度始終不變,MN=4,E為MN的中點(diǎn),點(diǎn)D到BA、BC的距離分別為4和2。在此滑動過程中,貓與老鼠的距離DE的最小值為_________________。
講解上題時(shí),可在微課中插入幾何畫板演示點(diǎn)E的運(yùn)動軌跡,將靜態(tài)的題目表現(xiàn)為動態(tài)的生成過程,學(xué)生很容易發(fā)現(xiàn)“當(dāng)且僅當(dāng)B、E、D三點(diǎn)共線時(shí),DE取得最小值”,問題迎刃而解,輕松幫助學(xué)生突破思維障礙。
3.模擬棘手實(shí)驗(yàn)之時(shí)介入微課
信息技術(shù)在數(shù)學(xué)教學(xué)中的廣泛應(yīng)用,其優(yōu)勢除了形象生動之外,更應(yīng)體現(xiàn)在“豐富的計(jì)算方式、快捷的大數(shù)據(jù)處理能力”上。特別是在講授“概率與統(tǒng)計(jì)”模塊上,計(jì)算機(jī)的模擬實(shí)驗(yàn)有無可比擬的優(yōu)勢。比如,北師大版七年級數(shù)學(xué)下冊提道:一般地,大量重復(fù)的試驗(yàn)中,常用不確定事件A發(fā)生的頻率來估計(jì)事件A發(fā)生的概率。為什么要大量重復(fù)試驗(yàn)?zāi)兀繛槭裁纯梢匀绱斯烙?jì)呢?如何說明頻率具有穩(wěn)定性呢?試驗(yàn)教學(xué)是幫助學(xué)生透徹理解這些問題的重要途徑。可是大量重復(fù)試驗(yàn)耗時(shí)費(fèi)力,而且像拋硬幣這種試驗(yàn)還需要講究拋的手法才能保證實(shí)驗(yàn)結(jié)果的正確性,是比較棘手的實(shí)驗(yàn)。這時(shí),教師可以利用計(jì)算機(jī)產(chǎn)生隨機(jī)數(shù)的方法模擬無放回摸球或拋硬幣等隨機(jī)過程,然后將這些過程錄制成微課。課堂上通過觀看模擬實(shí)驗(yàn)微課,學(xué)生就能很清晰地了解數(shù)據(jù)產(chǎn)生的過程,并能快速得到實(shí)驗(yàn)結(jié)果,用以接下來的數(shù)據(jù)分析。
4.打造個(gè)性化學(xué)習(xí)之時(shí)介入微課
中山大學(xué)現(xiàn)代教育研究所的王竹立教授在他的論文《微課勿走“課內(nèi)整合”老路》中指出:讓微課主導(dǎo)課堂是一種錯(cuò)誤的定位,網(wǎng)絡(luò)時(shí)代的學(xué)習(xí)就是一個(gè)零存整取、不斷重構(gòu)的過程,微課的未來在課外。筆者很認(rèn)同這種觀點(diǎn),微課更廣闊的使用空間在課外。教師可以在課外給學(xué)生推送與教學(xué)內(nèi)容相關(guān)的微課,以助學(xué)生擴(kuò)大視野,豐富課堂內(nèi)容的內(nèi)涵和外延,打造個(gè)性化的知識體系。
總之,微課作為一種教學(xué)資源,我們要揚(yáng)其長,避其短,合理利用,適時(shí)介入,才能讓微課為初中數(shù)學(xué)教學(xué)潤色增彩。
參考文獻(xiàn):
[1]王竹立.微課勿重走“課內(nèi)整合”老路——對微課應(yīng)用的再思考[J].遠(yuǎn)程教育雜志,2014(5).
[2]胡鐵生.微課建設(shè)的誤區(qū)與發(fā)展建議[J].教育信息技術(shù),2014(5).
[3]金然,張繼剛,雷蕾.微課對初中數(shù)學(xué)教與學(xué)的影響[J].消費(fèi)電子,2014 (20):245.
(作者單位:廣東省茂名市育才學(xué)校525000)