周麗娜
(長(zhǎng)春東師中信實(shí)驗(yàn)學(xué)校,吉林長(zhǎng)春130000)
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“數(shù)學(xué)教學(xué)應(yīng)重視學(xué)生在學(xué)習(xí)活動(dòng)中的主體地位,學(xué)生在獲得知識(shí)技能的過(guò)程中,只有親身參與教師精心設(shè)計(jì)的教學(xué)活動(dòng),才能在數(shù)學(xué)思考、問(wèn)題解決和情感態(tài)度方面得到發(fā)展。”作者在學(xué)校“率性教學(xué)”理念指引下,更注重從教學(xué)對(duì)象,即學(xué)生角度出發(fā),結(jié)合學(xué)生的個(gè)體差異,結(jié)合“個(gè)別學(xué)習(xí)”“小組學(xué)習(xí)”“集體學(xué)習(xí)”三種不同的教學(xué)組織形式,探索“有過(guò)程”的教學(xué)。
教師教學(xué)應(yīng)該以學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)為基礎(chǔ),也就是說(shuō)我們要重視學(xué)生已有的經(jīng)驗(yàn)。學(xué)生的已有經(jīng)驗(yàn)既包括學(xué)生自然形成的生活經(jīng)驗(yàn)也包括學(xué)習(xí)過(guò)程中積累的知識(shí)方法上的數(shù)學(xué)經(jīng)驗(yàn)。教學(xué)之前要了解學(xué)生已經(jīng)知道了什么即已經(jīng)具備的、與教材內(nèi)容相關(guān)的知識(shí)和能力積累,根據(jù)學(xué)生原有的情況展開(kāi)教學(xué),進(jìn)行“有過(guò)程”的教學(xué)。也就是提出學(xué)習(xí)任務(wù)后,要根據(jù)學(xué)生的個(gè)別經(jīng)驗(yàn)、方法、觀點(diǎn)開(kāi)展教學(xué)。例如在北師版教材五年級(jí)上《多邊形的面積》單元中,在探究任意平行四邊形、三角形、梯形的面積時(shí),并不急于得出圖形的面積公式,而是在課堂上給學(xué)生充分的探索時(shí)間,呈現(xiàn)出基于他們已有經(jīng)驗(yàn)基礎(chǔ)上的各自不同的做法。再對(duì)這些不同的方法進(jìn)行比較、分析,最后歸納出平行四邊形、三角形、梯形的面積公式,更重要的是要在推導(dǎo)公式的過(guò)程中培養(yǎng)學(xué)生解決問(wèn)題的思想方法。即探索平行四邊形、三角形、梯形的面積怎樣計(jì)算時(shí),逐漸歸納出求多邊形面積的基本思想方法:轉(zhuǎn)化,進(jìn)而找到解決一類(lèi)問(wèn)題的通法通則。
《梯形的面積》一課教學(xué)片段:
動(dòng)手操作,推導(dǎo)公式,歸納方法。
1.獨(dú)立學(xué)習(xí)
師:梯形的面積到底該怎樣計(jì)算呢?接下來(lái)就請(qǐng)你們推理得到梯形面積的一般計(jì)算方法。老師給你們準(zhǔn)備了很多個(gè)這樣的梯形學(xué)具,放在學(xué)具筐里了,你需要幾個(gè)就用幾個(gè),你想怎么用就怎么用,請(qǐng)看學(xué)習(xí)指南。
師:清楚該怎樣學(xué)習(xí)了吧,開(kāi)始你們的探索吧,時(shí)間是8分鐘。
生:動(dòng)手操作,利用學(xué)具推導(dǎo)梯形的面積公式。
師:如果你還有不同方法,還可以再選擇一張學(xué)習(xí)卡研究。
2.小組學(xué)習(xí)
師:大家都推導(dǎo)出梯形的面積公式了嗎?是不是有的同學(xué)遇到困難了,接下來(lái)我們?cè)谛〗M里交流一下推導(dǎo)方法和遇到的問(wèn)題,每組推薦一種方法準(zhǔn)備在全班匯報(bào)。
3.集體交流
師:哪個(gè)小組愿意到前邊來(lái)匯報(bào)?
(1)倍拼法轉(zhuǎn)化成平行四邊形
生:展示轉(zhuǎn)化方法和講解公式推導(dǎo)過(guò)程。
師:你們聽(tīng)懂了嗎?
師:我們一起回顧一下是不是這樣的:他是又用一個(gè)這樣的梯形,把它翻轉(zhuǎn)過(guò)來(lái),拼在一起這樣就拼成了一個(gè)平行四邊形,平行四邊形的面積等于底乘高,這個(gè)底是平行四邊形的底,還是原梯形上底和下底的和,平行四邊形的高就是原梯形的高。平行四邊形的面積就等于(上底+下底)×高÷2,那梯形的面積等于什么呢?梯形的面積是拼成的平行四邊形面積的一半,所以梯形的面積=(上底+下底)×高÷2。
師:那是什么樣的梯形都能拼成平行四邊形嗎?大梯形能嗎?小梯形能嗎?等腰梯形能嗎?直角梯形能嗎?
生:能。
師:誰(shuí)來(lái)說(shuō)一說(shuō)只要滿足什么條件就能拼成平行四邊形呢?
生:兩個(gè)完全一樣的梯形就能拼成平行四邊形。
(2)割補(bǔ)法轉(zhuǎn)化成平行四邊形。
生:展示轉(zhuǎn)化方法并講解推導(dǎo)公式過(guò)程。
師:她們的方法你們聽(tīng)懂了嗎?他們是把這個(gè)梯形沿著兩腰的中點(diǎn)的連線剪開(kāi),也就是高的中點(diǎn)剪開(kāi),再翻轉(zhuǎn)下來(lái)拼成一個(gè)平行四邊形。這個(gè)平行四邊形的面積也就是底乘高,平行四邊形的底就是梯形的上底和下底,高是梯形高的一半。
師:這次轉(zhuǎn)化前后圖形的面積變了嗎?
生:沒(méi)變。
(3)分割法轉(zhuǎn)化成兩個(gè)三角形。
生:展示分割方法和講解公式推導(dǎo)過(guò)程。
師:大家都聽(tīng)懂了嗎?
師總結(jié):同學(xué)們,老師現(xiàn)在要給你們點(diǎn)贊,今天沒(méi)有格子也沒(méi)有數(shù)據(jù)的幫忙,你們卻用了這么多不同的方法,都推理出梯形的面積公式啦,你們太厲害了!你們仔細(xì)看看,有什么發(fā)現(xiàn)嗎?
生:我發(fā)現(xiàn)同學(xué)們的方法雖然不一樣,但得到的面積公式都是(上底+下底)×高÷2。
師:的確是方法不一樣,但咱們得到梯形的面積公式都是(上底+下底)×高÷2。
師:到今天為止,最后一個(gè)平面圖形梯形的面積我們也得到計(jì)算方法了,我們回頭看看,無(wú)論是探索平行四邊形的面積也好,三角形的面積,梯形的面積也好,你發(fā)現(xiàn)了什么,有什么好辦法分享給大家?
生:我發(fā)現(xiàn)無(wú)論探索哪種圖形的面積都是把它轉(zhuǎn)化成我們學(xué)過(guò)的圖形來(lái)計(jì)算。
師:說(shuō)的太對(duì)了,雖然我們探索的圖形不一樣,但方法一樣,就是把我們不知道的轉(zhuǎn)化成知道的。
平行四邊形、三角形、梯形的面積這三節(jié)課可以說(shuō)是一脈相承的,到了梯形的面積這節(jié)課,在課堂中更側(cè)重培養(yǎng)學(xué)生的抽象推理能力和解決問(wèn)題的思想方法。也就是說(shuō)從平行四邊形的面積、三角形的面積再到梯形的面積,這節(jié)課是學(xué)生直觀思維到抽象思維的過(guò)渡。前兩節(jié)課學(xué)生還在格子圖、還帶著數(shù)據(jù)由計(jì)算一個(gè)圖形的面積到歸納出圖形面積計(jì)算的一般公式,這節(jié)課就是直接過(guò)渡到圖形面積一般公式的推導(dǎo)。但也是基于學(xué)生已有的經(jīng)驗(yàn)、方法來(lái)展開(kāi)教學(xué)的,學(xué)生在課堂上推導(dǎo)梯形的面積公式時(shí)呈現(xiàn)出來(lái)多種不同的方法,雖然方法不一樣但都能得到相同的面積公式進(jìn)而總結(jié)出梯形面積的一般公式。那么這節(jié)課也不僅僅限于學(xué)生掌握梯形面積的公式,更重要的是在推導(dǎo)公式的過(guò)程中感悟掌握解決問(wèn)題的思想方法。學(xué)生經(jīng)歷了這樣數(shù)學(xué)知識(shí)發(fā)生發(fā)展的學(xué)習(xí)過(guò)程,數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)和數(shù)學(xué)思想就這樣在“做”的過(guò)程和“思考”的過(guò)程中積淀和逐步積累。
又如在《百分?jǐn)?shù)》的教學(xué)中,百分?jǐn)?shù)是在學(xué)生學(xué)過(guò)整數(shù)、小數(shù)特別是分?jǐn)?shù)的意義和應(yīng)用的基礎(chǔ)上進(jìn)行學(xué)習(xí)的。百分?jǐn)?shù)在生活中有著廣泛的應(yīng)用,學(xué)生在實(shí)際生活中接觸到很多百分?jǐn)?shù),如“實(shí)物營(yíng)養(yǎng)含量”“手機(jī)電量”“軟件下載進(jìn)度”等,積累了許多相關(guān)的生活經(jīng)驗(yàn),所以對(duì)認(rèn)識(shí)百分?jǐn)?shù)有一定的認(rèn)知基礎(chǔ)。為了在學(xué)生已有認(rèn)知的基礎(chǔ)上暴露出學(xué)生真正需要解決的問(wèn)題,所以在課堂上首先調(diào)查了學(xué)生對(duì)百分?jǐn)?shù)的了解程度,進(jìn)而提出了關(guān)于百分?jǐn)?shù)學(xué)生想要研究的問(wèn)題,教學(xué)片段如下:
師:你們以前聽(tīng)過(guò)“百分?jǐn)?shù)嗎”?在生活中見(jiàn)過(guò)它嗎?
生:聽(tīng)過(guò)也見(jiàn)過(guò)百分?jǐn)?shù),并隨口說(shuō)出一個(gè)百分?jǐn)?shù)。
師:誰(shuí)能寫(xiě)一個(gè)?會(huì)讀嗎?
生:寫(xiě)出25%并讀出百分之二十五。
師:指著“%”這個(gè)符號(hào)就是百分號(hào)。
師:誰(shuí)來(lái)說(shuō)說(shuō)你都在哪見(jiàn)過(guò)百分?jǐn)?shù)?
生1:在手機(jī)上,顯示手機(jī)電量用到百分?jǐn)?shù)
生2:在牛奶營(yíng)養(yǎng)成分表上,顯示各種營(yíng)養(yǎng)成份占多少用百分?jǐn)?shù)。.
.....
師:在生活中想找一個(gè)百分?jǐn)?shù)好找嗎?
生:好找
師:怎么這么容易?
生:因?yàn)楹枚嗟胤蕉加玫桨俜謹(jǐn)?shù)。
師:看來(lái)百分?jǐn)?shù)在我們生活中有著廣泛的應(yīng)用。
師:看周老師這件衣服,有一個(gè)百分?jǐn)?shù),誰(shuí)給大家讀一讀?
生:羊毛含量100%。
師:我還看見(jiàn)一個(gè)百分?jǐn)?shù),我手機(jī)目前的電量是94%。
師:那這些百分?jǐn)?shù)都是什么意思呢?以這個(gè)手機(jī)電量為例誰(shuí)能說(shuō)一說(shuō)?
生1:就是手機(jī)目前的電量是94%。
生2:94%就是手機(jī)滿電量是100%,目前只有94%啦。
師:通過(guò)剛才的調(diào)查,我發(fā)現(xiàn)有的同學(xué)對(duì)百分?jǐn)?shù)的了解還只是初步的感知,但還不能表達(dá)清楚百分?jǐn)?shù)的意義,看來(lái)我們還得深入的研究,那關(guān)于百分?jǐn)?shù)你們都想研究點(diǎn)什么呢?
學(xué)生在課堂上依次提出如下幾個(gè)問(wèn)題:
1.為什么產(chǎn)生百分?jǐn)?shù)?
2.什么是百分?jǐn)?shù)?
3.百分?jǐn)?shù)的意義是什么?
4.百分?jǐn)?shù)與分?jǐn)?shù)有什么區(qū)別?
5.百分?jǐn)?shù)都有哪些應(yīng)用?
......
以上學(xué)生根據(jù)自己的已有經(jīng)驗(yàn)提出的這些問(wèn)題,才是學(xué)生心中真正的疑惑,才能激發(fā)學(xué)生學(xué)習(xí)的需求。在此基礎(chǔ)上通過(guò)獨(dú)立學(xué)習(xí)、小組學(xué)習(xí)、集體學(xué)習(xí)等多種學(xué)習(xí)方式,讓學(xué)生經(jīng)歷自主探究、抽象歸納的學(xué)習(xí)過(guò)程,在比較、分析中感知知識(shí)產(chǎn)生的必要性,引發(fā)對(duì)數(shù)學(xué)知識(shí)本質(zhì)的思考,對(duì)百分?jǐn)?shù)達(dá)到真正意義上的理解。
在學(xué)生的學(xué)習(xí)過(guò)程中,出現(xiàn)個(gè)體差異是客觀事實(shí),教師在面向全體的同時(shí)也要關(guān)注學(xué)生的個(gè)體差異。特別是數(shù)學(xué)學(xué)科,學(xué)生的個(gè)體差異尤為明顯,一個(gè)知識(shí)點(diǎn),可能學(xué)生的學(xué)習(xí)起點(diǎn)就大不相同,有的學(xué)生已經(jīng)提前掌握,有的學(xué)生只是直觀感知,還有的學(xué)生卻從沒(méi)接觸過(guò)。面對(duì)這些不同的情況,教師既要尊重學(xué)生的這些差異,同時(shí)又要提前了解掌握學(xué)生的實(shí)際情況。對(duì)一些學(xué)有余力的學(xué)生,教師要有意識(shí)地根據(jù)他們的學(xué)習(xí)起點(diǎn)提供充足的材料和學(xué)習(xí)空間。對(duì)于一些學(xué)習(xí)有困難的學(xué)生,教師要提供學(xué)習(xí)指南幫助學(xué)生理清思路,明確學(xué)習(xí)的任務(wù)、操作的方法、步驟等。例如在《平行四邊形面積》這節(jié)課中,關(guān)于平行四邊形面積計(jì)算方法的掌握情況學(xué)生是存在差異的,以下教學(xué)片段就是根據(jù)學(xué)生不同的學(xué)習(xí)起點(diǎn)完成不同的學(xué)習(xí)任務(wù),具體如下:
師:我們知道長(zhǎng)方形的面積用長(zhǎng)乘寬,那平行四邊形的面積可能怎樣計(jì)算呢,你們知道嗎?
生1:我知道。
生2:不知道。
師:看來(lái)有的同學(xué)已經(jīng)提前知道平行四邊形的面積怎樣計(jì)算了,那老師調(diào)查一下,哪些同學(xué)已經(jīng)知道了平行四邊形面積的計(jì)算方法并且很是明白其中的道理?
生:舉手。
師:老師給你們單獨(dú)準(zhǔn)備了非常有挑戰(zhàn)性的學(xué)習(xí)任務(wù)和學(xué)習(xí)區(qū)域,現(xiàn)在你們可以拿好學(xué)習(xí)卡到那邊去完成。
師:還有一些同學(xué)不知道,請(qǐng)大膽猜一猜,平行四邊形的面積可能怎樣計(jì)算呢?
師:誰(shuí)來(lái)猜一猜?
生:用長(zhǎng)乘寬來(lái)計(jì)算。
師:你說(shuō)的長(zhǎng)和寬指的是哪兩條邊,到前邊來(lái)指一指。
生:手指平行四邊形兩條相鄰的邊。
師:就是這兩條相鄰的邊唄,在平行四邊形里不叫長(zhǎng)和寬,叫鄰邊,所以她的猜想我們可以寫(xiě)成鄰邊相乘,看來(lái)他是根據(jù)長(zhǎng)方形的面積計(jì)算方法猜測(cè)的,這么猜有點(diǎn)道理吧!
師:誰(shuí)還想來(lái)猜?
生:底×高。
師:我們剛剛學(xué)完底和高,他就利用上了,還說(shuō)明了道理,看來(lái)咱們同學(xué)的猜測(cè)都是有根據(jù)的。
師:下面老師給你提供一個(gè)平行四邊形,接來(lái)下就根據(jù)同學(xué)們的猜想,來(lái)算一算平行四邊形的面積。請(qǐng)同學(xué)們拿出學(xué)習(xí)卡1,你支持哪種猜想,先寫(xiě)出來(lái),再用尺子量出你所需要的數(shù)據(jù),算一算。
師:誰(shuí)來(lái)說(shuō)一說(shuō),你支持的是哪種猜想,再說(shuō)算法。
生3:我支持鄰邊相乘,用5×6=30(cm2)。
生4:我支用“底×高”來(lái)計(jì)算,用4×6=24(cm2)。
師:大家看這里,兩種猜想計(jì)算同一個(gè)平行四邊形的面積卻得出了不同的結(jié)果,哪個(gè)對(duì)?有什么辦法驗(yàn)證嗎?
生:數(shù)格子。
師:那我們用數(shù)格子的辦法來(lái)驗(yàn)證一下。
師:誰(shuí)愿意到前面來(lái)和大家分享你是怎么數(shù)的,結(jié)果是多少?
生:先數(shù)整格,整個(gè)的方格是20個(gè),余下的都不足1 個(gè)整格,進(jìn)行拼補(bǔ),拼成了6 個(gè)整格,加起來(lái)正好是18個(gè)方格。
師:還有更快的數(shù)法嗎?
生:我沿著這條線剪開(kāi)拼成長(zhǎng)方形的,再用長(zhǎng)乘寬來(lái)計(jì)算,4×6=24(cm2)。
師:你們把平行四邊形變?yōu)殚L(zhǎng)方形了,形狀變了,面積變沒(méi)變嗎?
生:沒(méi)變。
師:你們數(shù)的結(jié)果也是24 嗎?跟用底乘高算出來(lái)的結(jié)果是一樣的,看來(lái)鄰邊相乘不是平行四邊形面積的計(jì)算方法,底乘高很有可能就是計(jì)算平行四邊形面積的方法,所有平行四邊形的面積都用“底×高”來(lái)計(jì)算嗎,為什么呢?
師:老師給你提供了4種大小不一樣,形狀不一樣的平行四邊形和學(xué)習(xí)指南來(lái)探索這個(gè)學(xué)習(xí)任務(wù)。
以上教學(xué)中,如果我們不考慮學(xué)生的差異設(shè)置統(tǒng)一的學(xué)習(xí)任務(wù),如果這個(gè)學(xué)習(xí)任務(wù)是基于沒(méi)學(xué)過(guò)的孩子來(lái)設(shè)置,那么對(duì)于已經(jīng)會(huì)的同學(xué),毫無(wú)吸引力;如果要基于已經(jīng)會(huì)的同學(xué)設(shè)置學(xué)習(xí)任務(wù),那么原本不會(huì)的同學(xué)就會(huì)感到非常困難,甚至無(wú)法完成學(xué)習(xí)任務(wù)。基于這樣的思考,根據(jù)學(xué)生學(xué)習(xí)起點(diǎn)的差異,和課前調(diào)查問(wèn)卷,我們把學(xué)生分成兩種情況教學(xué),一是已經(jīng)知道平行四邊形的面積怎樣計(jì)算并且能清晰的說(shuō)明計(jì)算的道理;二是不知道平行的面積怎樣計(jì)算或者只知道計(jì)算公式是“底乘高”但不知道公式背后的道理。基于這兩種情況,為他們量身定做了適合他們自身情況的學(xué)習(xí)卡片,并在不同的區(qū)域分開(kāi)學(xué)習(xí)。在課堂中,學(xué)生的參與度都非常高,根據(jù)不同的學(xué)習(xí)起點(diǎn)經(jīng)歷不同的學(xué)習(xí)過(guò)程,滿足了他們的實(shí)際需求。
數(shù)學(xué)知識(shí)與其他學(xué)科的知識(shí)相比,還是比較抽象的,數(shù)學(xué)的許多概念和運(yùn)算法則都是從現(xiàn)實(shí)世界中抽象出來(lái)的或從已有知識(shí)推理出來(lái)。在小學(xué)數(shù)學(xué)教學(xué)的過(guò)程中,數(shù)學(xué)歸納過(guò)程的體驗(yàn),具有十分重要的意義,為學(xué)生積累了最正確的思考問(wèn)題的經(jīng)驗(yàn)。培養(yǎng)學(xué)生的歸納推理能力,也是學(xué)生在學(xué)習(xí)的過(guò)程中將零碎的知識(shí)變成系統(tǒng)性知識(shí)的一種能力,為日后學(xué)習(xí)更高深的科學(xué)知識(shí)奠定堅(jiān)實(shí)的基礎(chǔ)。小學(xué)數(shù)學(xué)歸納教學(xué)中,學(xué)生由一個(gè)問(wèn)題引出多個(gè)學(xué)生的不同經(jīng)驗(yàn)和方法,讓學(xué)生經(jīng)歷抽象、歸納的過(guò)程,進(jìn)而歸納出知識(shí)的本質(zhì),找到解決問(wèn)題的通法通則。例如三年級(jí)上《需要多少錢(qián)》一課,具體教學(xué)片段如下:
師:從圖中你都發(fā)現(xiàn)了哪些數(shù)學(xué)信息?
生:買(mǎi)了3個(gè)游泳圈,每個(gè)游泳圈12元。
師:根據(jù)這些數(shù)學(xué)信息你能提出什么數(shù)學(xué)問(wèn)題?
生:3個(gè)游泳圈多少元?
師:怎樣列算式呢?
生:12×3=。
師:列乘法你是怎樣想的?
生:求3個(gè)12是多少用乘法。
師:像這樣的兩位數(shù)乘一位數(shù)怎樣計(jì)算呢?請(qǐng)按照學(xué)習(xí)指南獨(dú)立完成學(xué)習(xí)卡1,建議學(xué)習(xí)時(shí)間8分鐘。
師:接下來(lái)我們?cè)谛〗M里交流你的算法,推薦一種方法來(lái)匯報(bào)。
師:哪個(gè)小組愿意來(lái)匯報(bào)?
生:邊擺人民幣學(xué)具邊講,我們是先付3 個(gè)10元的,用3×10=30(元),再付3 個(gè)2 元的,用 3×2=6(元),再用30+6=36(元)。
師:你們聽(tīng)懂了嗎?還有什么問(wèn)題嗎?
生:聽(tīng)懂了!
師:還有哪個(gè)小組愿意來(lái)匯報(bào)?
生:我們組是這樣圈點(diǎn)子圖的,先圈3 個(gè)10,是30個(gè),再圈3個(gè)2是6個(gè),合起來(lái)是36個(gè)。
師:我有一個(gè)問(wèn)題,為什么分成10和2呢?
生:因?yàn)榉殖?0和2后,算3×10好算。
師:還有一種算法你能看懂嗎?(出示表格算法)。

× 3 10 30 2 6
生:先把12 分成10 和2,再用3×10=30,2×3=6,最后把兩個(gè)積加在一起即30+6=36。
師:我們一起來(lái)看看這幾種算法,你發(fā)現(xiàn)了什么?
生:我發(fā)現(xiàn)這幾種算法都有共同點(diǎn),都是分成兩部分來(lái)算,先算3個(gè)10,再算3個(gè)2,再把兩部分合起來(lái)。
師:如果沒(méi)有人民幣,也沒(méi)有點(diǎn)子圖,那你能說(shuō)一說(shuō)12×3怎樣計(jì)算嗎?
生:先用3×10=30,2×3=6,再把30 和6 加一塊,即30+6=36。
師:你們太厲害了,幾種不同的計(jì)算方法你們卻發(fā)現(xiàn)了它們共同之處。
師:還有沒(méi)有其他想法?
生:我用2×3=6,6 寫(xiě)在個(gè)位上,3×1=3,3 寫(xiě)在十位上。
師:這樣計(jì)算太簡(jiǎn)便了,但你們同意嗎?有道理嗎?
生:2×3=6 就是在算 3 個(gè) 2 是多少;3×1=3,3 寫(xiě)在十位上,就是在算3 個(gè)10 是多少,這樣結(jié)果就是36。
師:說(shuō)的太好了,這就是兩位數(shù)乘一位數(shù)的計(jì)算方法。
以上教學(xué)片段中,學(xué)生借助不同的工具,如人民幣模型、點(diǎn)子圖、表格來(lái)展開(kāi)運(yùn)算的方法和經(jīng)驗(yàn)。不論是人民幣模型,還是點(diǎn)子圖,抑或是表格,這些工具的目的都是為了支撐學(xué)生更好地理解算理,但是理解算理不是目的,最終的目的是要讓算理內(nèi)化,形成“算法”,運(yùn)算算法是直觀運(yùn)算的抽象和提升。學(xué)生通過(guò)對(duì)各種算法進(jìn)行比較歸納,進(jìn)而擺脫對(duì)直觀的依賴,達(dá)到了能用數(shù)字進(jìn)行兩位數(shù)乘一位數(shù)的口算。這樣從個(gè)別到一般,從直觀到抽象的過(guò)程,由淺入深、層層推進(jìn),才能發(fā)現(xiàn)這些方法的特征,歸納出運(yùn)算的本質(zhì),培養(yǎng)學(xué)生的數(shù)學(xué)思維。