趙鳳展,張啟承,張 宇,杜松懷,郝 帥,蘇 娟,趙婷婷
·農(nóng)業(yè)生物環(huán)境與能源工程·
基于VMD-MPC法的并網(wǎng)型微電網(wǎng)多時(shí)間尺度能量協(xié)調(diào)優(yōu)化調(diào)度
趙鳳展1,張啟承1,張 宇2,杜松懷1,郝 帥1,蘇 娟1,趙婷婷2
(1. 中國(guó)農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083; 2. 國(guó)網(wǎng)北京市電力公司,北京 100031)
對(duì)于含有不同類型儲(chǔ)能和分布式電源(Distributed Generation, DG)的并網(wǎng)型微電網(wǎng),如何優(yōu)化調(diào)度這些設(shè)備以提高設(shè)備的使用壽命同時(shí)平抑DG出力和負(fù)荷的波動(dòng)性與不確定性對(duì)配電網(wǎng)的影響具有重要的研究意義。該研究提出一種基于變分模態(tài)分解(Variational Modal Decomposition, VMD)和模型預(yù)測(cè)控制(Model Predictive Control, MPC)相結(jié)合的、多時(shí)間尺度滾動(dòng)優(yōu)化兼具反饋矯正的微電網(wǎng)優(yōu)化調(diào)控模型,該模型在調(diào)度過程中考慮了不同類型儲(chǔ)能和可控微電源在不同時(shí)間尺度上的運(yùn)行特性,設(shè)計(jì)了1 h和15 min相結(jié)合的調(diào)度控制策略,有效解決了含多種微電源及儲(chǔ)能設(shè)備的微電網(wǎng)的經(jīng)濟(jì)優(yōu)化調(diào)度問題;最后,通過算例對(duì)比驗(yàn)證了此模型能比較顯著地降低鉛酸蓄電池充放電頻率和系統(tǒng)的運(yùn)行成本、改善了調(diào)度經(jīng)濟(jì)性,證明了該方法的有效性和優(yōu)越性。
模型;預(yù)測(cè);控制;并網(wǎng)型微電網(wǎng);變分模態(tài)分解;多時(shí)間尺度;可控微電源;能量?jī)?yōu)化調(diào)度
分布式光伏(Photovoltaic,PV)在電網(wǎng)中的滲透率不斷提高。PV以微電網(wǎng)形式接入配電網(wǎng)被認(rèn)為是提高分布式電源(Distributed Generation,DG)消納能力的一種友好的接入方式[1-3]。并網(wǎng)型微電網(wǎng)的控制策略改善了DG的不確定性對(duì)配電網(wǎng)的影響[4-7]。以往并網(wǎng)型微電網(wǎng)協(xié)調(diào)優(yōu)化調(diào)度采用傳統(tǒng)單斷面優(yōu)化調(diào)度,即根據(jù)某一采樣時(shí)刻微電網(wǎng)各分布式單元功率進(jìn)行優(yōu)化計(jì)算,得到這一時(shí)刻各分布式單元最優(yōu)出力值,但這種開環(huán)優(yōu)化方法效率低,優(yōu)化性能差,無法作為微電網(wǎng)最優(yōu)調(diào)度結(jié)果。模型預(yù)測(cè)控制(Model Predictive Control,MPC)采用某一時(shí)刻微電網(wǎng)各分布式單元預(yù)測(cè)功率進(jìn)行優(yōu)化計(jì)算,得到各分布式單元最優(yōu)出力值進(jìn)行計(jì)劃控制[8-13]。隨著負(fù)荷、PV預(yù)測(cè)方法的逐漸完善及預(yù)測(cè)精度逐步提高[14-19],采用分布式單元預(yù)測(cè)功率進(jìn)行優(yōu)化的微電網(wǎng)模型預(yù)測(cè)控制理論正越來越受到學(xué)者的關(guān)注。模型預(yù)測(cè)控制采用日前最優(yōu)經(jīng)濟(jì)調(diào)度、日內(nèi)模型預(yù)測(cè)控制滾動(dòng)優(yōu)化反饋校正的思路[20-25],在日前根據(jù)短期預(yù)測(cè)結(jié)果計(jì)算成本最低調(diào)度方案,在日內(nèi)根據(jù)超短期預(yù)測(cè)結(jié)果提前計(jì)算設(shè)備出力變化量從而對(duì)出力進(jìn)行調(diào)整,同時(shí)結(jié)合系統(tǒng)實(shí)時(shí)狀態(tài)進(jìn)行閉環(huán)反饋校正,最大限度地消除了DG不確定性的影響,確保了日前計(jì)劃的合理性及系統(tǒng)運(yùn)行的穩(wěn)定性。
微電網(wǎng)中不同的可控微電源(Controllable Micro-Source,CMS)含有不同時(shí)間尺度的運(yùn)行特性,有些CMS可以進(jìn)行短時(shí)間、高強(qiáng)度能量調(diào)度,有些CMS只能進(jìn)行長(zhǎng)時(shí)間、緩慢能量調(diào)度,在并網(wǎng)型微電網(wǎng)協(xié)調(diào)優(yōu)化調(diào)度中,應(yīng)當(dāng)考慮這些CMS在時(shí)間上運(yùn)行特性的不同,針對(duì)性的設(shè)計(jì)多時(shí)間尺度的控制模型[26]。
變分模態(tài)分解(Variational Mode Decomposition,VMD)是一種非遞歸、變模式的信號(hào)分解方法[27],VMD可以將負(fù)荷序列分解為一系列頻率尺度由低到高的有限帶寬子序列。在電力系統(tǒng)負(fù)荷預(yù)測(cè)過程中已經(jīng)應(yīng)用VMD方法對(duì)原始負(fù)荷值進(jìn)行分解得到一系列頻率尺度由低到高的子序列并分別建立預(yù)測(cè)模型[28-29]。本文設(shè)計(jì)了一套基于變分模態(tài)分解和模型預(yù)測(cè)控制(VMD-MPC)的并網(wǎng)型微電網(wǎng)多時(shí)間尺度能量協(xié)調(diào)優(yōu)化調(diào)度策略,該方法采用VMD得到不同頻率尺度的日PV、負(fù)荷子序列,并對(duì)應(yīng)各CMS在不同時(shí)間尺度上的運(yùn)行特性建立多個(gè)不同時(shí)間尺度的協(xié)調(diào)優(yōu)化調(diào)度模型,利用各模型計(jì)算相加得到各CMS調(diào)度結(jié)果。算例證明了該策略的有效性和經(jīng)濟(jì)性。
本文采用變分模態(tài)分解VMD將日負(fù)荷、光伏序列分解為一系列頻率尺度由低到高的有限帶寬子序列。VMD采用非遞歸、變模態(tài)原理將信號(hào)分解成一系列有限帶寬子序列;VMD具有更好諧波分離能力,并且每個(gè)分序列具有更好波動(dòng)特性[27]。VMD具體分解步驟詳見文獻(xiàn)[27-28]。
采用VMD將當(dāng)日24 h的96個(gè)時(shí)刻的負(fù)荷值(每15 min一個(gè)測(cè)量值)、PV預(yù)測(cè)功率值分解為一系列頻率尺度由低到高的有限帶寬子序列。以日負(fù)荷為例說明,將日負(fù)荷序列通過VMD分解為負(fù)荷子序列1、2、3、4,其結(jié)果如圖1所示。
由圖1可見,4個(gè)子序列反映了不同頻率尺度上的日負(fù)荷曲線變化情況。子序列1、2為變化分量,子序列1反映了曲線的總體變化趨勢(shì),子序列2反映了曲線的變化形狀;子序列3、4為波動(dòng)分量,反映了曲線不同頻率尺度的隨機(jī)波動(dòng)細(xì)節(jié)。
模型預(yù)測(cè)控制(Model Predictive Control,MPC)是一種基于滾動(dòng)優(yōu)化和反饋校正方法的有限時(shí)域內(nèi)閉環(huán)優(yōu)化控制模型。MPC在日前進(jìn)行最優(yōu)經(jīng)濟(jì)調(diào)度,得到下一日的基本調(diào)度計(jì)劃,并將該調(diào)度計(jì)劃提前下達(dá)至各CMS,并在下一日對(duì)其進(jìn)行實(shí)時(shí)反饋校正。MPC日內(nèi)反饋校正的機(jī)理為:在每一采樣時(shí)刻,考慮當(dāng)前系統(tǒng)的運(yùn)行狀態(tài),以負(fù)荷和PV的超短期預(yù)測(cè)功率為輸入量,在線求解一個(gè)有限時(shí)長(zhǎng)內(nèi)微電網(wǎng)的最優(yōu)調(diào)度問題,得到當(dāng)前時(shí)刻及一個(gè)有限時(shí)長(zhǎng)內(nèi)各CMS的調(diào)度結(jié)果,并只執(zhí)行當(dāng)前時(shí)刻調(diào)度結(jié)果,在下一個(gè)采樣時(shí)刻,根據(jù)前一時(shí)刻調(diào)度后的系統(tǒng)狀態(tài),重復(fù)上述過程。本文參考文獻(xiàn)[22]的MPC日內(nèi)滾動(dòng)優(yōu)化調(diào)度模型,以文獻(xiàn)[14]及文獻(xiàn)[17]的負(fù)荷、PV超短期功率預(yù)測(cè)方法為基礎(chǔ),以負(fù)荷、PV的日前短期預(yù)測(cè)功率值與日內(nèi)超短期預(yù)測(cè)功率值的差值作為擾動(dòng)輸入,以各CMS的功率增量作為控制變量,進(jìn)行了MPC日內(nèi)滾動(dòng)優(yōu)化調(diào)度。MPC流程圖如圖2所示。
本文基于含有多種DG、儲(chǔ)能裝置和負(fù)荷的并網(wǎng)型微電網(wǎng)設(shè)計(jì)日前優(yōu)化調(diào)度模型,微電網(wǎng)結(jié)構(gòu)示意圖如圖3所示。
微電網(wǎng)內(nèi)不同CMS在不同時(shí)間尺度上存在不同的運(yùn)行特性:鉛酸蓄電池(Lead-Acid Battery,LAB)適合功率的慢速調(diào)控,超級(jí)電容器(Supercapacitor,SC)適合功率的快速調(diào)控[30],兩種儲(chǔ)能優(yōu)先向負(fù)荷進(jìn)行供電,剩余電量輸送至配電網(wǎng),這部分剩余電量產(chǎn)生的利潤(rùn)納入微電網(wǎng)-配電網(wǎng)的售電利潤(rùn)中;微型燃?xì)廨啓C(jī)(Micro-Turbine,MT,常用于冷熱電聯(lián)供系統(tǒng));小型生物質(zhì)發(fā)電機(jī)(Biomass Power Generation,BPG,裝設(shè)于城市垃圾處理廠或農(nóng)村秸稈處理廠中,采用環(huán)保燃燒發(fā)電模式)功率較小,既適應(yīng)于功率快速調(diào)控、又適應(yīng)于功率慢速調(diào)控,本文采用線性模型實(shí)現(xiàn)機(jī)組的簡(jiǎn)化計(jì)算。
為了實(shí)現(xiàn)微電網(wǎng)各CMS的高效調(diào)控和系統(tǒng)整體的經(jīng)濟(jì)運(yùn)行,本文設(shè)計(jì)了考慮不同儲(chǔ)能調(diào)控特性與多CMS協(xié)調(diào)優(yōu)化調(diào)控的多時(shí)間尺度日前優(yōu)化調(diào)度模型,具體設(shè)計(jì)如下:首先輸入日前短期預(yù)測(cè)得到的負(fù)荷和PV功率序列,并經(jīng)VMD分解得到表征不同頻率尺度的4個(gè)子序列:子序列1、2代表序列的趨勢(shì)和形狀分量,將用于微電網(wǎng)內(nèi)功率的緩慢調(diào)度,即長(zhǎng)時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度模型;子序列3、4代表序列變化的波動(dòng)分量,將用于微電網(wǎng)內(nèi)功率的快速調(diào)度,即短時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度模型。由此,對(duì)應(yīng)設(shè)計(jì)了兩個(gè)時(shí)間尺度的4個(gè)協(xié)調(diào)優(yōu)化調(diào)度模型:長(zhǎng)時(shí)間尺度調(diào)度模型每隔1 h優(yōu)化一次,即執(zhí)行時(shí)長(zhǎng)為1 h;短時(shí)間尺度調(diào)度模型每隔15 min優(yōu)化一次,即執(zhí)行時(shí)長(zhǎng)為15 min。
長(zhǎng)時(shí)間尺度優(yōu)化控制模型以1 h作為時(shí)間間隔,設(shè)計(jì)思路為:從負(fù)荷、PV的子序列1、2的96個(gè)采樣時(shí)刻值中抽取24個(gè)整點(diǎn)時(shí)刻值作為輸入值,以LAB、MT、BPG出力/充放電功率為控制變量,構(gòu)建2個(gè)長(zhǎng)時(shí)間尺度成本模型,滾動(dòng)求解微電網(wǎng)未來24個(gè)整點(diǎn)時(shí)刻LAB、MT、BPG出力/充放電功率及公共耦合點(diǎn)電網(wǎng)聯(lián)絡(luò)功率PCC(Point of Common Coupling)。
3.1.1 優(yōu)化目標(biāo)
為保證并網(wǎng)型微電網(wǎng)系統(tǒng)的運(yùn)行經(jīng)濟(jì)性,長(zhǎng)時(shí)間尺度優(yōu)化控制模型的優(yōu)化目標(biāo)為系統(tǒng)調(diào)度成本最小,調(diào)度成本包括運(yùn)行成本和環(huán)境成本,即
式中()為時(shí)刻并網(wǎng)型微電網(wǎng)調(diào)度成本,單位為美元($),()為時(shí)刻運(yùn)行成本函數(shù),()為時(shí)刻環(huán)境成本函數(shù),、是多目標(biāo)的權(quán)重系數(shù)。運(yùn)行成本和環(huán)境成本具體如下:
1)運(yùn)行成本函數(shù),包括各DG發(fā)電成本函數(shù)、LAB運(yùn)行成本、微電網(wǎng)與配電網(wǎng)之間交易成本,具體為

2)環(huán)境成本函數(shù),包括各DG及LAB 的污染排放總成本,具體為

表1 DG及LAB、SC污染排放總成本系數(shù)
注: PV, Photovoltaic; MT, Micro-Turbine; BPG, Biomass Power Generation; LAB, Lead-Acid Battery; SC, Supercapacitor.
3.1.2 約束條件
1)功率平衡約束[5]
2)聯(lián)絡(luò)線傳輸功率約束[6]
3)DG出力上下限約束[5]
4)DG出力爬坡約束[6]
5)LAB充放電功率限值約束[22]
6)LAB剩余容量約束[22]
由于LAB充放電效率及漏電等限制,在[-1,]()時(shí)段內(nèi)向LAB進(jìn)行充放電電量并不能完全轉(zhuǎn)化為儲(chǔ)能容量。LAB充電時(shí),時(shí)刻的剩余容量為
LAB放電時(shí),時(shí)刻的剩余容量為
則LAB剩余容量約束為

7)LAB周期性電量約束
為了保證一日內(nèi)第個(gè)LAB調(diào)度的周期性,當(dāng)日LAB的充電電量應(yīng)等于當(dāng)日LAB的放電電量,即

短時(shí)間尺度優(yōu)化控制模型以15 min作為時(shí)間間隔,設(shè)計(jì)思路為:以負(fù)荷、PV的子序列3、4做為輸入值,以SC、MT、BPG出力/充放電功率為控制變量,構(gòu)建2個(gè)短時(shí)間尺度成本模型,滾動(dòng)求解微電網(wǎng)未來96個(gè)時(shí)刻的SC、MT、BPG出力/充放電功率及PCC聯(lián)絡(luò)功率。
3.2.1 優(yōu)化目標(biāo)
短時(shí)間尺度優(yōu)化控制模型的優(yōu)化目標(biāo)同樣為系統(tǒng)調(diào)度成本最小,系統(tǒng)調(diào)度成本同樣包括運(yùn)行成本和環(huán)境成本,具體如下:
1)運(yùn)行成本函數(shù),包括各DG發(fā)電成本函數(shù)、SC運(yùn)行成本、微電網(wǎng)與配電網(wǎng)之間交易成本,具體為

2)環(huán)境成本函數(shù),包括各DG及SC的污染排放總成本,具體為
3.2.2 約束條件
短時(shí)間尺度優(yōu)化控制的約束條件與長(zhǎng)時(shí)間尺度優(yōu)化控制的約束條件基本相同,不同之處如下:
1)功率平衡約束[5]
2)SC充放電功率限值約束[22]

3)SC剩余容量約束[22]
SC充電時(shí),時(shí)刻的剩余容量為
SC放電時(shí),時(shí)刻的剩余容量為
SC剩余容量約束為

4)SC周期性電量約束

本文設(shè)計(jì)一套基于VMD-MPC的并網(wǎng)型微電網(wǎng)多時(shí)間尺度能量協(xié)調(diào)優(yōu)化調(diào)度策略,其主要思路為:采用VMD將日前負(fù)荷和PV的預(yù)測(cè)功率分別分解為4個(gè)不同頻率尺度的子序列,并對(duì)應(yīng)各子序列設(shè)計(jì)2個(gè)長(zhǎng)時(shí)間尺度優(yōu)化控制模型和2個(gè)短時(shí)間尺度優(yōu)化控制模型,各控制模型針對(duì)含不同時(shí)間尺度運(yùn)行特性的CMS及各自的控制目標(biāo)分別執(zhí)行單獨(dú)的模型預(yù)測(cè)控制,各CMS功率相加得到微電網(wǎng)日前調(diào)度計(jì)劃;在日內(nèi)對(duì)各CMS的功率進(jìn)行反饋校正。該策略流程圖如圖4所示。該策略具體步驟如下:
步驟1:將日前負(fù)荷、PV的96個(gè)時(shí)刻的短期預(yù)測(cè)數(shù)據(jù)進(jìn)行VMD分解,得到4個(gè)子分量。
步驟2:從負(fù)荷、PV的子序列1、2的96個(gè)采樣時(shí)刻值中抽取24個(gè)整點(diǎn)時(shí)刻值作為長(zhǎng)時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度模型的輸入數(shù)據(jù)。
步驟3:以1h為時(shí)間間隔的子序列1和子序列2分別輸入長(zhǎng)時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度模型1、模型2,以15 min為時(shí)間間隔的子序列3和子序列4分別輸入短時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度模型3、模型4,4個(gè)優(yōu)化模型根據(jù)不同負(fù)荷、PV子序列計(jì)算得到時(shí)刻LAB、SC、MT、BPG的出力/充放電功率及PCC聯(lián)絡(luò)功率結(jié)果。
步驟4:若為整點(diǎn)時(shí)刻,則最終各CMS有功功率為4個(gè)優(yōu)化模型計(jì)算的各CMS有功功率相加;若不為整點(diǎn)時(shí)刻,則最終各CMS有功功率為優(yōu)化模型3、模型4計(jì)算的各CMS有功功率加時(shí)刻之前最近整點(diǎn)時(shí)刻的優(yōu)化模型1、模型2計(jì)算的各CMS有功功率。
步驟5:在日內(nèi)每時(shí)刻對(duì)各CMS的功率進(jìn)行反饋校正。
步驟6:調(diào)度時(shí)刻更新為下一15 min,根據(jù)調(diào)度后的系統(tǒng)狀態(tài)及下一時(shí)刻PV、負(fù)荷的超短期預(yù)測(cè)數(shù)據(jù),重復(fù)上述過程。
1)實(shí)例介紹:本文采用中國(guó)北方某地電網(wǎng)一實(shí)際光伏發(fā)電微電網(wǎng)進(jìn)行基于VMD-MPC的并網(wǎng)型微電網(wǎng)多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度仿真,微電網(wǎng)LAB、SC、MT、BPG設(shè)備數(shù)量均為1,其參數(shù)如表2所示,當(dāng)日各時(shí)段電力市場(chǎng)單位能量交易價(jià)格見文獻(xiàn)[20]。
2)起始數(shù)據(jù):微電網(wǎng)內(nèi)各設(shè)備起始功率如表3所示,LAB、SC起始容量分別為40、20 kW·h。
3)輸入數(shù)據(jù):本算例輸入數(shù)據(jù)為2019年2月25日典型日的PV、負(fù)荷96個(gè)時(shí)刻的預(yù)測(cè)功率。
4)輸出數(shù)據(jù):當(dāng)日96個(gè)時(shí)刻MT、BPG、LAB、SC、PCC的出力/充放電功率/聯(lián)絡(luò)功率。

表2 微電網(wǎng)內(nèi)各設(shè)備參數(shù)
注:PCC, Point of Common Coupling.

表3 微電網(wǎng)內(nèi)各設(shè)備起始功率
5.2.1 功率調(diào)度效果分析
圖5給出了當(dāng)日96個(gè)時(shí)刻PV、負(fù)荷預(yù)測(cè)功率及LAB、SC、MT、BPG的出力/充放電功率及PCC聯(lián)絡(luò)功率計(jì)算結(jié)果。由圖5可以看出:
1)PV:在7:00-18:00期間PV面板接受光照,因此該時(shí)段PV出力。
2)負(fù)荷LOAD:負(fù)荷在當(dāng)日波動(dòng)較大,由于工作生產(chǎn)及居家生活需要,負(fù)荷在上午及傍晚增長(zhǎng)較大。
3)LAB:LAB進(jìn)行長(zhǎng)時(shí)間尺度優(yōu)化調(diào)度,相鄰1h時(shí)段充放電功率變化緩慢,沒有出現(xiàn)突變情況;同時(shí)可以看出,凌晨至早晨負(fù)荷變化較小,LAB基本不工作;7:00-16:00期間PV出力,微電網(wǎng)電量充足,LAB存儲(chǔ)電量;16:00-24:00期間PV出力降低,LAB放電。
4)SC:SC進(jìn)行短時(shí)間尺度優(yōu)化調(diào)度,相鄰15 min時(shí)段充放電功率變化迅速,與負(fù)荷功率曲線對(duì)比可知SC對(duì)負(fù)荷突增有很好的跟蹤性能;在12:30時(shí)刻,SC放電功率為7.73 kW,微電網(wǎng)向配電網(wǎng)售電功率為11.46 kW,說明SC在向負(fù)荷供電后仍有多余電量通過PCC輸入配電網(wǎng)中,產(chǎn)生的利潤(rùn)納入微電網(wǎng)-配電網(wǎng)的售電利潤(rùn)中,減小了微電網(wǎng)運(yùn)行成本。
5)MT、BPG:由于MT、BPG成本及污染較高,MT、BPG一天內(nèi)出力基本穩(wěn)定,無較大波動(dòng),說明該策略能最大限度地采用可再生能源供電。
6)PCC:凌晨至早晨負(fù)荷較小,微電網(wǎng)向配電網(wǎng)購電;白天PV出力,微電網(wǎng)電量充足,微電網(wǎng)向配電網(wǎng)售電;傍晚至凌晨微電網(wǎng)負(fù)荷升高,微電網(wǎng)電量不足,但電價(jià)較高,微電網(wǎng)購電量較少,負(fù)荷缺額主要由LAB供給。
5.2.2 2種儲(chǔ)能運(yùn)行效果分析
LAB、SC的荷電狀態(tài)即剩余容量如圖6所示。由圖5、圖6結(jié)合看出,0:00-7:00期間LAB剩余容量變化較小;以16:00為分界線,LAB在7:00-16:00期間充電,剩余容量增大,在16:00-24:00期間放電,剩余容量減小;而SC則根據(jù)負(fù)荷波動(dòng)進(jìn)行充放電,剩余容量變化頻率較大,但變化量較小。由此再一次證明LAB具有長(zhǎng)時(shí)間尺度功率調(diào)度的作用,SC具有短時(shí)間尺度功率調(diào)度的作用。
分別采用策略1:沒有VMD且非預(yù)測(cè)控制的傳統(tǒng)有功調(diào)度策略(Traditional strategy);策略2:文獻(xiàn)[22]的MPC多時(shí)間尺度調(diào)度策略(MPC);策略3:本文所提的VMD-MPC多時(shí)間尺度調(diào)度策略(VMD-MPC)進(jìn)行仿真,并對(duì)功率調(diào)度效果、運(yùn)行成本進(jìn)行對(duì)比,以驗(yàn)證本文所提調(diào)度策略具有更高的實(shí)用性及經(jīng)濟(jì)性。其中策略1、策略2的時(shí)間間隔均為15min。
5.3.1 功率調(diào)度效果對(duì)比分析
通過分析3種策略每時(shí)刻的LAB充放電功率,驗(yàn)證各策略的功率調(diào)度效果優(yōu)劣。采用3種策略得到的LAB充放電功率如圖7所示。由圖7看出,由于采用了低頻率尺度的負(fù)荷、PV子分量進(jìn)行1h尺度的優(yōu)化調(diào)度,策略3的LAB充放電功率較前兩者相比變化更緩慢,說明本文所提的VMD-MPC調(diào)度策略更具可行性。
5.3.2 運(yùn)行成本對(duì)比分析
采用3種策略得到的每時(shí)段系統(tǒng)運(yùn)行成本如圖8所示。可以看出圖8的3條成本曲線呈現(xiàn)出的相同趨勢(shì)為:凌晨負(fù)荷需求較低,成本較小;白天微電網(wǎng)向配電網(wǎng)售電,成本較小;傍晚微電網(wǎng)從配電網(wǎng)購入電量,期間電力交易價(jià)格較高,因此成本較大。同時(shí),比較這3條成本曲線可見,由策略3得到的運(yùn)行成本曲線在當(dāng)日各時(shí)段都為最低值。將3種策略當(dāng)日96個(gè)時(shí)刻的系統(tǒng)運(yùn)行成本分別相加,得到當(dāng)日總成本依次為:192 272、174 388、155 031美元。策略3當(dāng)日總成本與前2種策略相比分別下降了19.37%、11.10%,由此可見,本文所提的VMD-MPC調(diào)度策略可以有效降低微電網(wǎng)運(yùn)行成本,更具經(jīng)濟(jì)性優(yōu)勢(shì)。
本文采用VMD將原始PV和負(fù)荷預(yù)測(cè)功率序列分解為不同頻率尺度的子序列,并考慮微電網(wǎng)中各CMS在不同時(shí)間尺度上的運(yùn)行特性,設(shè)計(jì)了以成本最低為目標(biāo)的多個(gè)不同時(shí)間尺度的協(xié)調(diào)優(yōu)化調(diào)度模型及一套基于VMD-MPC的多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度策略。該策略利用由VMD分解得到的不同頻率尺度的PV、負(fù)荷子序列分別控制不同時(shí)間尺度運(yùn)行特性的CMS,實(shí)現(xiàn)了微電網(wǎng)各CMS的差異化控制。
算例分析及對(duì)比表明,本文所提的VMD-MPC多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度策略具有2個(gè)方面的特點(diǎn)及優(yōu)勢(shì):1)實(shí)現(xiàn)了儲(chǔ)能設(shè)備的優(yōu)化利用。本策略考慮了不同類型儲(chǔ)能(鉛酸蓄電池和超級(jí)電容器)的運(yùn)行特性,設(shè)計(jì)了長(zhǎng)、短時(shí)間尺度能量協(xié)調(diào)優(yōu)化調(diào)度策略,更有利于儲(chǔ)能運(yùn)行及延長(zhǎng)壽命。2)算例當(dāng)日總成本較對(duì)比策略分別下降了19.37%和11.10%,此策略顯著降低了系統(tǒng)的運(yùn)行成本、改善了調(diào)度經(jīng)濟(jì)性。
在本文提出的微電網(wǎng)多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度策略的基礎(chǔ)上,可以進(jìn)一步研究包含更多能源類型、更多場(chǎng)景的綜合能源系統(tǒng)的多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度問題。
[1] 王成山,王瑞,于浩,等. 配電網(wǎng)形態(tài)演變下的協(xié)調(diào)規(guī)劃問題與挑戰(zhàn)[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2020,40(8):2385-2396.
Wang Chengshan, Wang Rui, Yu Hao, et al. Problems and challenges of coordinated planning in distribution network configuration evolution[J]. Chinese Journal of Electrical Engineering, 2020, 40(8): 2385-2396. (in Chinese with English abstract)
[2] Danish M S S, Matayoshi H, Howlader H R, et al. Microgrid planning and design: resilience to sustainability[C]//2019 IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), Bangkok, Thailand, 2019: 253-258.
[3] 李軍徽,張嘉輝,穆鋼,等. 計(jì)及負(fù)荷峰谷特性的儲(chǔ)能調(diào)峰日前優(yōu)化調(diào)度策略[J]. 電力自動(dòng)化設(shè)備,2020,40(7):128-133,140.
Li Junhui, Zhang Jiahui, Mu Gang, et al. Optimal scheduling strategy for energy storage before peak and valley load characteristics[J]. Electric Power Automation Equipment, 2020, 40(7): 128-133, 140. (in Chinese with English abstract)
[4] 嚴(yán)干貴,蔡長(zhǎng)興,段雙明,等. 考慮電池儲(chǔ)能單元分組優(yōu)化的微電網(wǎng)運(yùn)行控制策略[J]. 電力系統(tǒng)自動(dòng)化,2020,44(23):38-46.
Yan Gangui, Cai Changxing, Duan Shuangming, et al. Microgrid operation Control Strategy considering grouping optimization of battery energy storage units[J]. Power System Automation, 2020, 44(23): 38-46. (in Chinese with English abstract)
[5] 劉峪涵,汪沨,譚陽紅. 并網(wǎng)型微電網(wǎng)多目標(biāo)容量?jī)?yōu)化配置及減排效益分析[J]. 電力系統(tǒng)及其自動(dòng)化學(xué)報(bào),2017,29(9):70-75.
Liu Yuhan, Wang Feng, Tan Yanghong. Multi-objective optimal capacity configuration and emission reduction benefit analysis of grid-connected microgrid[J]. Proceedings of the CSU-EPSA, 2017, 29(9): 70-75. (in Chinese with English abstract)
[6] 徐意婷,艾芊. 含微電網(wǎng)的主動(dòng)配電網(wǎng)協(xié)調(diào)優(yōu)化調(diào)度方法[J]. 電力自動(dòng)化設(shè)備,2016,36(11):18-26.
Xu Yiting, Ai Qian. Coordinated optimal dispatch of active distribution network with microgrids[J]. Electric Power Automation Equipment, 2016, 36(11): 18-26. (in Chinese with English abstract)
[7] 周燁,汪可友,李國(guó)杰,等. 基于多智能體一致性算法的微電網(wǎng)分布式分層控制策略[J]. 電力系統(tǒng)自動(dòng)化,2017,41(11):142-149.
Zhou Ye, Wang Keyou, Li Guojie, et al. Distributed hierarchical control strategy for micro grid based on multi-agent consistency algorithm[J]. Power System Automation, 2017, 41(11): 142-149. (in Chinese with English abstract)
[8] Batiyah S, Zohrabi N, Abdelwahed S, et al. An MPC-based power management of a PV/battery system in an islanded DC microgrid[C]//2018 IEEE Transportation Electrification Conference and Expo (ITEC), Long Beach, CA, 2018: 231-236.
[9] 樂健,廖小兵,章琰天,等. 電力系統(tǒng)分布式模型預(yù)測(cè)控制方法綜述與展望[J]. 電力系統(tǒng)自動(dòng)化,2020,44(23):179-191.
Le Jian, Liao Xiaobing, Zhang Yantian, et al. Review and prospect of distributed model predictive control methods for power systems[J]. Automation of Electric Power Systems, 2020, 44(23): 179-191. (in Chinese with English abstract)
[10] Zhang W, Zhang F, Zhang J, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control[C]//Proceedings of 2018 International Computers, Signals and Systems Conference (ICOMSSC 2018), Dalian, China, 2018: 732-736.
[11] 曾宇,劉友波,高紅均,等. 基于模型預(yù)測(cè)控制的高壓配電網(wǎng)負(fù)荷轉(zhuǎn)供與儲(chǔ)能電站協(xié)同運(yùn)行[J/OL]. 電網(wǎng)技術(shù):1-11. https://doi.org/10.13335/j.1000-3673.pst. 2020. 1575.
Zeng Yu, Liu Youbo, Gao Hongjun, et al. Model predictive control based collaborative operation of high voltage distribution network load transfer and energy storage power station[J/OL]. Grid Technology: 1-11. https://doi.org/ 10.13335/j.1000-3673.pst.2020.1575. (in Chinese with English abstract)
[12] 劉穎明,王曉東,彭朝陽. 計(jì)及儲(chǔ)能出力水平的平滑風(fēng)電功率模型預(yù)測(cè)控制策略[J]. 電網(wǎng)技術(shù),2020,44(5):1723-1731.
Liu Yingming, Wang Xiaodong, Peng Chaoyang. Smooth wind power model predictive control strategy considering storage output level[J]. Power Grid Technology, 2020, 44(5): 1723-1731. (in Chinese with English abstract)
[13] 葛樂,張偉,嚴(yán)鋒,等. 基于自適應(yīng)模型預(yù)測(cè)控制的柔性互聯(lián)配電網(wǎng)優(yōu)化調(diào)度[J]. 電力自動(dòng)化設(shè)備,2020,40(6):15-23.
Ge Le, Zhang Wei, Yan Feng, et al. Optimal scheduling of flexible interconnected distribution network based on adaptive model predictive control[J]. Electric Power Automation Equipment, 2020, 40(6): 15-23. (in Chinese with English abstract)
[14] 姚程文,楊蘋,劉澤健. 基于CNN-GRU混合神經(jīng)網(wǎng)絡(luò)的負(fù)荷預(yù)測(cè)方法[J]. 電網(wǎng)技術(shù),2020,44(9):3416-3424.
Yao Chengwen, Yang Ping, Liu Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44(9): 3416-3424. (in Chinese with English abstract)
[15] 陸繼翔,張琪培,楊志宏,等. 基于CNN-LSTM混合神經(jīng)網(wǎng)絡(luò)模型的短期負(fù)荷預(yù)測(cè)方法[J]. 電力系統(tǒng)自動(dòng)化,2019,43(8):131-137.
Lu Jixiang, Zhang Qipei, Yang Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. (in Chinese with English abstract)
[16] 王育飛,楊啟星,薛花. 考慮混沌特征的增強(qiáng)型大腦情緒神經(jīng)網(wǎng)絡(luò)光伏發(fā)電功率超短期預(yù)測(cè)模型[J/OL]. 高電壓技術(shù),1-15. https://doi.org/10. 13336/j.1003- 6520.hve. 20201811.
Wang Yufei, Yang Qixing, Xue Hua. Ultra-short term prediction model of photovoltaic power generation based on enhanced brain emotional neural network considering chaotic characteristics [J/OL].High Voltage Technology, 1-15. https://doi.org/10.13336/j.1003-6520. hve. 20201811. (in Chinese with English abstract)
[17] 肖白,劉慶永,牛強(qiáng),等. 基于元胞負(fù)荷特性分析的RBF神經(jīng)網(wǎng)絡(luò)空間負(fù)荷預(yù)測(cè)方法[J]. 電網(wǎng)技術(shù),2018,42(1):301-307.
Xiao Bai, Liu Qingyong, Niu Qiang, et al. Spatial load prediction method based on RBF neural network based on cellular load characteristics analysis[J]. Power Grid Technology, 2018, 42(1): 301-307. (in Chinese with English abstract)
[18] 張金金,張倩,馬愿,等. 基于改進(jìn)的隨機(jī)森林和密度聚類的短期負(fù)荷頻域預(yù)測(cè)方法[J]. 控制理論與應(yīng)用,2020,37(10):2257-2265.
Zhang Jinjin, Zhang Qian, Ma Yuan, et al. Short-term load frequency domain prediction method based on improved random forest and density clustering[J]. Control Theory and Application, 2020, 37(10): 2257-2265. (in Chinese with English abstract)
[19] 王小楊,羅多,孫韻琳,等. 基于ABC-SVM和PSO-RF的光伏微電網(wǎng)日發(fā)電功率組合預(yù)測(cè)方法研究[J]. 太陽能學(xué)報(bào),2020,41(3):177-183.
Wang Xiaoyang, Luo Duo, Sun Yunlin, et al. Research on the combination prediction method of daily power generation of PV micro-grid based on ABC-SVM and PSO-RF[J]. Journal of Solar Energy, 2020, 41(3): 177-183. (in Chinese with English abstract)
[20] 孫惠娟,張樂樂,彭春華. 基于差異化需求響應(yīng)模型預(yù)測(cè)控制的微網(wǎng)時(shí)域滾動(dòng)優(yōu)化調(diào)度[J/OL]. 電網(wǎng)技術(shù):1-10. http://kns.cnki.net/kcms/detail/11.2410.tm.20210107.1548.005.html.
Sun Huijuan, Zhang Lele, Peng Chunhua. Time-domain rolling optimal scheduling of micro-grid based on differential demand response model predictive control [J/OL]. Grid technology: 1-10. http://kns.cnki.net/kcms/detail/11.2410.tm. 20210107.1548.005.html. (in Chinese with English abstract)
[21] 王磊,周建平,朱劉柱,等. 基于分布式模型預(yù)測(cè)控制的綜合能源系統(tǒng)多時(shí)間尺度優(yōu)化調(diào)度[J/OL]. 電力系統(tǒng)自動(dòng)化:1-13. http://kns.cnki.net/kcms/detail/ 32.1180.TP. 20210315.1837.004.html.
Wang Lei, Zhou Jianping, Zhu Liuzhu, et al. Multi-time scale optimal scheduling of integrated energy system based on distributed model predictive control [J/OL]. Automation of Electric Power Systems: 1-13. http://kns.cnki.net/kcms/detail/ 32.1180.TP.20210315.1837. 004.html. (in Chinese with English abstract)
[22] 肖浩,裴瑋,孔力. 基于模型預(yù)測(cè)控制的微電網(wǎng)多時(shí)間尺度協(xié)調(diào)優(yōu)化調(diào)度[J]. 電力系統(tǒng)自動(dòng)化,2016,40(18):7-14,55.
Xiao Hao, Pei Wei, Kong Li. Multi-time scale coordinated optimal dispatch of microgrid based on model predictive control[J]. Automation of Electric Power Systems, 2016, 40(18): 7-14, 55. (in Chinese with English abstract)
[23] 董雷,陳卉,蒲天驕,等. 基于模型預(yù)測(cè)控制的主動(dòng)配電網(wǎng)多時(shí)間尺度動(dòng)態(tài)優(yōu)化調(diào)度[J]. 中國(guó)電機(jī)工程學(xué)報(bào),2016,36(17):4609-4617.
Dong Lei, Chen Hui, Pu Tianjiao, et al. Multi-time scale dynamic optimal dispatch in active distribution network based on model predictive control[J]. Proceedings of the CSEE, 2016, 36(17): 4609-4617. (in Chinese with English abstract)
[24] 竇曉波,曉宇,袁曉冬,等. 基于改進(jìn)模型預(yù)測(cè)控制的微電網(wǎng)能量管理策略[J]. 電力系統(tǒng)自動(dòng)化,2017,41(22):56-65.
Dou Xiaobo, Xiao Yu, Yuan Xiaodong, et al. Energy management strategy based on improved model predictive control for microgrid[J]. Automation of Electric Power Systems, 2017, 41(22): 56-65. (in Chinese with English abstract)
[25] 張哲,王成福,董曉明,等. 基于分層模型預(yù)測(cè)控制的風(fēng)電場(chǎng)電壓協(xié)調(diào)控制策略[J]. 電力系統(tǒng)自動(dòng)化,2019,43(11):34-42,94.
Zhang Zhe, Wang Chengfu, Dong Xiaoming, et al. Wind farm voltage coordination control strategy based on hierarchical model predictive control[J]. Power System Automation, 2019, 43(11): 34-42, 94. (in Chinese with English abstract)
[26] 張穎,季宇,唐云峰. 基于MPC含分布式光伏配電網(wǎng)有功功率—無功功率協(xié)調(diào)控制[J]. 電力系統(tǒng)自動(dòng)化,2017,41(21):140-146.
Zhang Ying, Ji Yu, Tang Yunfeng. Coordinated control of active and reactive power for distribution network with distributed photovoltaic based on model predictive control[J]. Automation of Electric Power Systems, 2017, 41(21): 140-146. (in Chinese with English abstract)
[27] Abdoos A A. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting[J]. Neurocomputing, 2016, 203: 111-120.
[28] 趙鳳展,郝帥,張宇,等. 基于變分模態(tài)分解BA-LSSVM算法的配電網(wǎng)短期負(fù)荷預(yù)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):190-197.
Zhao Fengzhan, Hao Shuai, Zhang Yu. et al. Short-term load forecasting for distribution transformer based on VMD-BA-LSSVM algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 190-197. (in Chinese with English abstract)
[29] 梁智,孫國(guó)強(qiáng),李虎成,等. 基于VMD與PSO優(yōu)化深度信念網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)[J]. 電網(wǎng)技術(shù),2018,42(2):598-606.
Liang Zhi, Sun Guoqiang, Li Hucheng, et al. Short-term load forecasting based on VMD and PSO optimized deep belief network[J]. Power System Technology, 2018, 42(2): 598-606. (in Chinese with English abstract)
[30] Yao Liangzhong, Yang Bo, Cui Hongfen, et al. Challenges and progresses of energy storage technology and its application in power systems[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(4): 519-528.
Multi-time scale coordinated optimal energy dispatch of grid-connected microgrid using VMD-MPC
Zhao Fengzhan1, Zhang Qicheng1, Zhang Yu2, Du Songhuai1, Hao Shuai1, Su Juan1, Zhao Tingting2
(1. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China;2. State Grid Beijing Electronic Power Company, Beijing 100031, China)
Distributed Photovoltaic (PV) is ever increasing in the power grid, as the current PV generation rapidly developed. However, it is difficult to directly coordinate the PV into the conventional power grid, due mainly to the intermittent and uncertain nature of PV power generation. As such, there is a great impact on the power flow of a system, particularly the volatility and uncertainty of the output and load demands of Distributed Generation (DG) power in grid-connected microgrids. A friendly way is widely expected that the PV can access the distribution network in the form of a microgrid for the enhanced DG absorption capacity. It is highly urgent to reduce the impact of such volatility and randomness on the energy transmission between microgrids and distribution networks. In this study, a multi-time scale coordinated optimization was performed on energy scheduling strategies using a Variational Modal Decommission-Model Predictive Control (VMD-MPC). Specifically, an MPC was a sort of optimal control with a closed-loop over a finite time domain, suitable for the nonlinear, time-varying, and uncertainty of the system. There was no differentiation scheduling on the forecast of PV power for each Controllable Micropower (CMS)in the microgrid operation because the load was directly applied in the previous multiple-time scale scheduling using MPC optimization. Consequently, some CMS (such as a Lead-Acid Battery, LAB) was run in a short time, high strength, and energy scheduling, whereas, some CMS (such as a Super Capacitor, SC) was only for a long and slow energy scheduling. Thus, the operating characteristics of CMS in different time scales should be considered in the optimization of scheduling. A VMD was utilized to acquire the different loads and subsequence in the PV series of frequency scales, thereby achieving the multiple coordinated optimization scheduling CMS models in different time scales. The scheduling model included a longtime scale of 1 hour and 15 min interval time for a short scale. Dispatching LAB, Micro gas Turbine (MT), and small Biomass Generator (BPG) were usually responded to the signals of a long-time scale. Scheduling SC, MT and BPG were responded to the signals of a short-time scale. The final scheduling was achieved for each CMS to realize the differentiated optimal processing of signals on different time scales, where the calculated values of each model were summed up. Then a feedback correction model was constructed to form a closed-loop control using the day-ahead scheduling, where the difference between the ultra-short-term forecast within the day and the day-ahead forecast was taken as the disturbance input, while the current operating state of the system was taken as the parameter, and the power increment of each CMS was taken as the control variable. The feedback correction effectively enhanced the robustness, while reduced the impact of the system that resulted from the uncertainty of load and PV output. As such, the optimal energy scheduling strategy effectively coordinated the grid-connected microgrids with multiple micro power sources and time scales. Taking a PV microgrid in North China as an example, an MATLAB software was used to simulate and verify the model, indicating optimal scheduling. Better feasibility, effectiveness, and economy of strategy were achieved from the perspectives of power scheduling and operating cost, compared with the traditional active power and MPC multi-time scale scheduling strategy. Accordingly, this finding can provide a practical and effective technical approach for high-permeability microgrids in energy trading under the environment of multiple renewable energy consumption and electricity market.
models; prediction; control; grid-connected microgrid; variational mode decomposition; multi-time scale; controllable micro-source; optimal energy dispatch
2020-12-07
2021-03-23
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFB0900101);國(guó)家電網(wǎng)公司總部科技項(xiàng)目(52272216002N)
趙鳳展,博士,副教授,研究方向?yàn)橹悄芘潆娋W(wǎng)與微網(wǎng)分析、控制與評(píng)價(jià)。Email:zhaofz@cau.edu.cn
10.11975/j.issn.1002-6819.2021.07.023
TM 731
A
1002-6819(2021)-07-0190-09
趙鳳展,張啟承,張宇,等. 基于VMD-MPC法的并網(wǎng)型微電網(wǎng)多時(shí)間尺度能量協(xié)調(diào)優(yōu)化調(diào)度[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):190-198. doi:10.11975/j.issn.1002-6819.2021.07.023 http://www.tcsae.org
Zhao Fengzhan, Zhang Qicheng, Zhang Yu, et al. Multi-time scale coordinated optimal energy dispatch of grid-connected microgrid using VMD-MPC[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 190-198. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.023 http://www.tcsae.org