999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于X-ray μCT技術的玉米籽粒結構特征的粒位效應分析

2021-06-30 07:34:16銀學波侯俊峰王克如李少昆謝瑞芝
農業工程學報 2021年7期

銀學波,明 博,侯俊峰,王克如,李少昆,謝瑞芝

基于X-rayCT技術的玉米籽粒結構特征的粒位效應分析

銀學波1,明 博1,侯俊峰2,王克如1,李少昆1,謝瑞芝1※

(1. 中國農業科學院作物科學研究所/農業農村部作物生理生態重點實驗室,北京 100081;2. 浙江省農業科學院/玉米與特色旱糧研究所,東陽 322100)

玉米籽粒因其在果穗上著生位置不同存在較大差異,明確籽粒結構特征的粒位效應為玉米的消費、加工和播種質量等玉米產量和品質性狀的評價提供參考。該研究以3個不同籽粒類型的玉米品種登海618(DH618)、KX3564和先玉335(XY335)為材料,利用X射線計算機斷層(X-ray micro-computed tomography,X-rayCT)技術掃描測試樣本,通過圖像濾波、閾值分割等圖像分析方法重建籽粒3維結構,獲取玉米果穗不同粒位籽粒的胚、胚乳、皮下空腔、胚空腔、硬質胚乳、粉質胚乳、胚乳空腔等結構參數。數據分析表明,籽粒不同結構指標在果穗上呈現不同的變化規律,從基部到頂部(不考慮果穗兩端的極端籽粒),胚、胚乳及硬質胚乳體積線性下降,各指標在果穗上的變化范圍分別為15.82~33.36、180.15~296.50及87.13~166.00 mm3;胚乳空腔>皮下空腔>胚空腔,果穗中部籽粒的空腔較小且穩定,3個品種表現一致;胚與胚乳的比值在粒位間基本穩定,粉質胚乳體積、硬質胚乳與粉質胚乳的比值從基部至頂部逐漸減小,但不同指標的變化斜率存在差異。3個供試品種的籽粒結構參數不同:DH618果穗不同部位籽粒胚與胚乳的比值大于KX3564和XY335,XY335籽粒硬質胚乳與粉質胚乳的比值大于DH618和KX3564。在籽粒空腔方面,KX3564皮下空腔的比例較高,而XY335胚乳空腔的比例較高。3個品種胚、胚乳、皮下空腔體積在玉米籽粒中的比例平均分別為9.27%、89.87%、0.86%。X-rayCT掃描技術為玉米籽粒性狀的研究提供新的方法與思路,明確果穗籽粒結構的粒位效應有利于全面地掌握玉米果穗上籽粒的性狀特征,為玉米的生產、加工及品種改良等提供借鑒。

作物;玉米;粒位效應;籽粒結構;X-rayCT

0 引 言

籽粒內部結構影響玉米的農藝性狀、商品性狀、加工品質以及其他應用價值[1-2]。玉米是中國播種面積、總產量最高(國家統計局),玉米籽粒結構的研究在種子生產、收獲、飼用及其他工業用途中具有廣泛的應用空間。

玉米籽粒主要由種皮、胚、胚乳3部分結構組成,不同的結構在籽粒中發揮著不同的作用。種皮約占籽粒質量的6%~8%,主要由纖維素組成,保護籽粒免受非生物和生物脅迫,減少籽粒破損與蟲霉率[3]。胚占籽粒總質量的10%~15%,由胚芽、胚軸、胚根、子葉(盾片)所組成,是種子萌發所必需的組織,且含有籽粒中的大部分脂肪[4]。胚乳位于胚的周圍,含有豐富的營養物質,一般較胚發育早,供胚發育時所需要的養料。根據其中蛋白質和淀粉緊實程度,胚乳又分為硬質胚乳和粉質胚乳,其組織結構及理化特性的諸多差異影響籽粒的質地,對玉米機械粒收收獲質量和飼用玉米淀粉的消化率等有重要的影響[5-6]。在籽粒結構測定方面,傳統方法是將籽粒浸泡20~36 h,刀片分割出籽粒胚、硬質胚乳、粉質胚乳等結構,烘干稱干質量,人工手動分割不準確且測量特征少[7]。后期應用的機器視覺技術雖然解決了人為因素干擾,但均是在獲取籽粒2維圖像信息的基礎上分割胚部與非胚部的邊界[8-9]。X-rayCT掃描技術可在不改變籽粒形態的和內部結構的情況下,提取籽粒胚、胚乳、空腔、孔隙度、籽粒飽滿度等更精細特征的籽粒結構信息[10]。本團隊前期工作就發現,籽粒密度和皮下空腔體積等對玉米機械收獲時籽粒耐破碎性有顯著影響[11]。

因在果穗上的著生位置不同玉米籽粒大小和粒形存在較大差異[12]。相對果穗中下部,果穗上部籽粒灌漿充實度差,籽粒質量偏低[13]。張麗等[14]研究發現,不同粒位玉米籽粒容重也表現為下部籽粒>上部籽粒>中部籽粒。王曉燕等[15]發現,果穗不同粒位胚乳細胞數表現為中部>下部>上部。禾谷類作物籽粒在果穗不同部位存在差異的現象稱之為粒位效應,并且在大穗型作物中尤為突出[16-18]。目前,關于粒位效應的研究主要集中在籽粒表型和籽粒生理生化特征等方面,未見在玉米果穗不同部位籽粒內部結構上的關注。因此,本研究以不同籽粒類型的玉米品種為研究對象,利用X-rayCT掃描這一新興的技術手段,分析玉米果穗不同部位籽粒結構的變化規律,旨在探明果穗不同部位、不同類型籽粒內部結構的差異,為玉米果穗不同粒位籽粒發育、不同功用品種篩選以及玉米籽粒加工、貯藏等相關性狀評價提供幫助。

1 材料與方法

1.1 供試樣品

本研究以登海618(DH618)、KX3564、先玉335(XY335)3個不同籽粒類型的玉米品種為試驗材料(表1)。2018年于新疆奇臺(89°46′01″E,43°50′41″N)種植,種植密度和水肥管理均參照當地大田生產。每個品種選取生長正常均勻一致的3個果穗,每個果穗選取一行,從果穗基部到頂部每隔3粒選取一個籽粒(圖1a),由于果穗近基部和頂籽粒變異較大,在果穗兩端增加取樣量,每個果穗平均12個籽粒,3個品種共計104個樣本,用于X-rayCT掃描。玉米果穗手工脫粒,85℃烘干至恒定質量,根據籽粒鮮質量和干質量計算籽粒含水率:籽粒含水率=(鮮質量?干質量)/鮮質量×100%。籽粒含水率經國標130 ℃烘干方法校正[19]。

表1 玉米品種來源和特征特性

注:籽粒品質參數來自中國玉米品種系譜數據庫。

Note: The grain quality parameters were obtained from database of Chinese maize variety genealogy.

1.2 X-ray μCT掃描技術

X-rayCT掃描儀型號為SkyScan 1172(Bruker公司生產)(圖1b)。X-rayCT掃描后每個籽粒可獲取900多張不同灰度的籽粒2維掃描圖像(---),其與籽粒物理分割的籽粒結構相對應,X-rayCT掃描精度較高(圖2),X-rayCT掃描技術原理及具體操作見文獻[10-11]。

注:從果穗基部至頂部每隔3粒選取一個試驗樣本,果穗兩端增加取樣量。方框內籽粒為X-rayCT掃描樣本,數字為籽粒在果穗上所在粒位。

Note: A test sample is taken from the base to the top of the ear every 3 grains, increased the sample amount at both ends of ear. The grains in the box are the scanned samples by X-rayCT, and the numbers on the grains are their kernel positions on the ear.

圖1 試驗樣本與X-rayCT掃描系統

Fig.1 Test samples and X-ray computed tomography system

1.皮下空腔 2.胚空腔 3.胚 4.硬質胚乳 5.粉質胚乳 6.胚乳空腔

1.Subcutaneous cavity 2.Embryo cavity 3.Embryo 4.Hard endosperm 5.Soft endosperm 6.Endosperm cavity

注:籽粒發育過程中由于種皮的程序性死亡,種皮與胚乳難以分割,本研究中胚乳是胚乳和種皮的總和。

Note: The endosperm is the sum of the endosperm and the seed coat, which are difficult to separate due to the programmed death of the seed coat during graindevelopment.

圖2 籽粒物理切片和X-rayCT掃描圖像

Fig.2 Physical slice and the image of X-rayCT scan

由于籽粒內部結構密度和成分存在差異,表現對X射線的吸收率不同,因而可實現籽粒內部結構參數的獲取。根據籽粒的結構組成,將籽粒分為胚、胚乳、皮下空腔3大主要結構。根據籽粒內孔隙的分布位置,將籽粒內空腔定義為3類:存在于胚內的為胚空腔,存在于胚乳內的為胚乳空腔,皮下空腔是存在于胚乳外種皮內的一種孔隙。

1.3 圖像處理與數據分析

圖像預處理步驟包括濾波或平滑和光束硬化校正,使用交互式閾值分割算法將樣品信息、背景信息、樣品內部不同特征區域劃分出來,每一張2維切片由不同的體素數組成(灰度值0~256)。然后通過圖像處理軟件(CT-Analyser和CT Scan NRecon)對籽粒大量的2維圖像重構、分割與渲染(圖3),不同內部結構渲成不同的顏色,把籽粒內部結構剝離出來,從而實現籽粒內部結構的可視化,并重建三維籽粒和內部空腔等結構(圖4)。

采用Microsoft Excel 2010進行數據整理;SPSS 19.0進行方差分析;GraphPad Prism 5作圖。由于果穗兩端籽粒結構變異較大,線性擬合時果穗兩端籽粒未計算在內。

注:編號所指結構與圖2一致。

Note: The structure referred to by the number is the same as Fig. 2.

圖3 籽粒內部結構的分割

Fig.3 Segmentation of the internal structure of the grain

注:編號所指結構與圖2一致。

Note: The structure referred to by the number is the same as Fig. 2.

圖4 籽粒三維重建

Fig.4 Three-dimensional reconstruction of grain

2 結果與分析

2.1 胚與胚空腔體積

玉米果穗兩端粒位籽粒變異較大,若不考慮果穗兩端1~5個籽粒(下同),從果穗基部至頂部,隨著粒位的增加,胚體積逐漸減小,果穗頂端籽粒胚體積最小,3個品種規律一致。3個品種果穗不同粒位籽粒胚體積范圍為15.82~33.36 mm3,其中,DH618籽粒胚體積較大,果穗不同部位籽粒胚體積均大于其他2個品種,平均較KX3564和XY335分別大23.40%、25.13%(圖5a)。從圖5b可以看出,胚中胚空腔的比例較小且穩定,比較不同類型玉米的均值,胚空腔的比例在品種間存在差異,由大到小依次為KX3564、XY335和DH618,3個品種平均胚空腔在胚中的比例分別為6.49%、5.52%、4.07%。

2.2 胚乳與胚乳空腔體積

從果穗基部到頂部,胚乳、硬質胚乳體積逐漸減小(圖6a, 6b),3個品種表現一致。在不考慮果穗兩端的極端籽粒時,不同品種果穗中部胚乳體積的變化范圍為180.15~296.50 mm3,其中DH618果穗不同部位胚乳體積均大于其他2個品種。不同品種果穗不同部位籽粒硬質胚乳體積差異較小,硬質胚乳胚乳體積的變化范圍為87.13~166.00 mm3。粉質胚乳體積在3個品種的果穗基部差異較小(圖6c),隨著粒位的增加,品種間差異增大,粉質胚乳體積范圍為80.64~130.50 mm3,且不同品種硬質胚乳大于粉質胚乳體積。胚乳中胚乳空腔的比例在果穗中部較小且不同粒位間較穩定(圖6d),但品種間存在明顯的差異,XY335胚乳空腔的比例較大,平均為2.87%,DH618和KX3564胚乳空腔的比例無差異,均為1.89%。

注:胚乳體積為硬質胚乳和粉質胚乳體積總和。

Note: Endosperm volume is the sum of hard endosperm and soft endosperm volume.

圖6 玉米果穗不同粒位籽粒胚乳、硬質胚乳、粉質胚乳體積和胚乳空腔在胚乳中的比例

Fig.6 The endosperm volume, hard endosperm volume and soft endosperm volume and the proportion of endosperm cavities in the endosperm in different positions of ear

2.3 籽粒的皮下空腔體積與皮下空腔在籽粒中的比例

玉米基部籽粒皮下空腔較大(圖7a),3個品種存在較大差異。KX3564基部籽粒皮下空腔體積最大值可達6.97 mm3,頂部最小值也為2.28 mm3。不考慮果穗兩端籽粒,KX3564皮下空腔體積變化范圍為2.28~4.52 mm3,而XY335、DH618的籽粒中皮下空腔范圍分別是0.89~2.06、0.69~1.80 mm3。約從果穗基部第10粒開始,皮下空腔體積基本保持穩定,KX3564皮下空腔體積平均為2.92 mm3,相比于DH618和XY335分別大66.58%、52.08%。而從籽粒中皮下空腔的比例看(圖7b),果穗兩端籽粒中皮下空腔的比例大于果穗中部籽粒。KX3564籽粒中皮下空腔的比例在3個品種中最大。

2.4 品種間結構差異比較

不同玉米品種胚、胚乳及皮下空腔在籽粒中體積占比存在一定的差異(圖8)。DH618、KX3564和XY3353個品種果穗不同部位胚在籽粒中的比例分別為9.11%~11.39%、8.01%~9.37%、8.12%~9.83%,胚乳占比分別為88.16%~90.19%、88.54%~90.50%、89.41%~91.32%,皮下空腔占比分別為0.22%~0.96%、0.87%~2.82%、0.38%~1.46%。3個品種平均胚、胚乳、皮下空腔在籽粒中的比例分別為9.27%、89.87%、0.86%。其中,DH618籽粒中胚的比例顯著大于KX3564和XY335(<0.05),約占籽粒體積的10.42%,而其胚乳在籽粒中的比例在3個品種中最小。從圖9a可以看出,DH618籽粒胚與胚乳比值在果穗不同部位大于KX3564和XY335,不同粒位籽粒胚與胚乳的比值平均為0.12,而KX3564和XY335的比值基本相同,約為0.10。同時胚與胚乳的比值在果穗基部與頂部籽粒中差異較小,基本不受粒位的影響。籽粒硬質胚乳和粉質胚乳的比值在果穗不同部位和品種間均存在明顯差異(圖9b),靠近果穗基部不同品種籽粒硬質胚乳與粉質胚乳的比值差異較小,隨著粒位的增加,品種間差異增大;比較不同品種籽粒硬質與粉質胚乳的比值的均值,XY335平均為1.34,大于DH618和KX3564。

注:不同字母表示同一結構指標品種間在<0.05水平差異顯著。

Note: Different letters represent significant differences among varieties of the same structural indicators at<0.05 level.

圖8 果穗不同粒位胚、胚乳、皮下空腔在籽粒中的比例

Fig.8 Proportion of embryo, endosperm and subcutaneous cavity of grain in different positions of ear

3 討 論

相較于以往手工測量、機器視覺等籽粒結構特征參數的常規獲取方式,本試驗利用X-rayCT技術,高分辨率且無損狀態下掃描玉米果穗不同部位的籽粒,具有可視化并定量分析的特點,獲取了籽粒胚、胚乳、皮下空腔、胚空腔、硬質胚乳、粉質胚乳、胚乳空腔等結構指標,特別是籽粒空腔結構,解決了傳統方法無法對籽粒內部結構精確測定的問題。

本研究結果表明,果穗不同部位籽粒結構存在差異:在不考慮果穗兩端的極端籽粒時,籽粒各結構指標在果穗上均呈一定的規律性變化:胚、胚乳及硬質胚乳體積線性下降;皮下空腔、胚空腔及胚乳空腔在果穗中部保持穩定,且明顯低于果穗兩端籽粒,3個品種表現一致;粉質胚乳體積、胚與胚乳比值、硬質胚乳與粉質胚乳比值在果穗上的變化規律存在品種間差異。前人對果穗粒位間差異的研究主要集中在籽粒表型與理化指標等方面[12-14],發現果穗基部與頂部的籽粒往往表現出籽粒質量、形態、體積、密度、內部淀粉粒體積分布的差異[20],但胚、胚乳、空腔等籽粒結構特征在果穗上的分布規律未見報道。關于粒位間差異的原因,前人認為可能是由于籽粒在果穗上位置不同,導致不同籽粒發育順序、物質積累量及同化物運輸差異[21]:玉米雌穗小花受精完成后,果穗中下部籽粒最先發育,光合產物轉化量多,籽粒灌漿更充實,而頂部籽粒發育較晚[18],因而,果穗中下部籽粒的胚、胚乳體積較大,空腔體積較小。趙波等[22]研究表明,相較于果穗頂端,果穗基部籽粒更耐機械損傷。籽粒結構在一定程度上反映了籽粒的灌漿充實狀況,玉米果穗不同部位籽粒結構差異為果穗發育研究、科學試驗中的合理取樣及玉米的生產應用奠定基礎。

本試驗中,XY335和DH618均為半馬齒型籽粒,KX3564為馬齒型籽粒。本研究結果表明,DH618胚與胚乳的比值在3個品種中最大,XY335硬質胚乳與粉質胚乳的比值顯著大于DH618和KX3564。可能是由于不同品種遺傳物質的差異,籽粒發育過程中各結構參數的相關基因表達活性不同[23]。玉米籽粒的形成過程分為胚胎發生、物質積累和成熟脫水3個階段,胚和胚乳中儲存物質的積累主要發生在籽粒灌漿期[24]。因淀粉體與蛋白體的發育與充實狀況不同,不同品種角質胚乳與粉質胚乳比例存在差異。一般來說,半馬齒型籽粒角質胚乳較多,馬齒型籽粒的中央和頂部均為粉質淀粉,且該比例隨著蛋白含量的不同而有較大差異[25]。分析不同品種的品質成分,DH618和XY335籽粒蛋白質含量較高,KX3564籽粒淀粉含量較高(表1)。籽粒結構影響籽粒質地,Guelpa等[26]研究表明,籽粒硬質胚乳與粉質胚乳的細胞結構和淀粉顆粒不同,從而導致籽粒不同的硬度,硬質胚乳與粉質胚乳的比值可作為評價品種硬度的指標。Wang等[27]研究表明,玉米籽粒硬質胚乳較粉質胚乳具有顯著的力學強度優勢,硬質胚乳比例高的玉米品種更耐破碎。

由于籽粒內孔隙空間測量難度大,有關籽粒空腔的研究非常有限。本研究表明,胚空腔在果穗不同部位籽粒中的分布及形態變化較小;胚乳空腔主要分布在胚的外圍和籽粒頂端,集中在粉質胚乳中;皮下空腔主要分布在籽粒尖端,少量分布在籽粒四周。果穗不同粒位籽粒總空腔約占籽粒體積的3.72%,其中,胚乳空腔>皮下空腔>胚空腔。KX3564皮下空腔體積明顯高于其他兩個品種,而皮下空腔體積與籽粒破碎率有顯著的關系[11],與張萬旭等[28]劃分KX3564為易破碎品種,DH618和XY335為耐破碎性品種結果一致。XY335胚乳空腔體積較大,多位學者研究表明,XY335籽粒脫水速率較快,含水率穩定時其籽粒含水率較低[29-30],后續可進一步探究胚乳空腔與籽粒脫水之間的關系。

4 結 論

果穗上著生位置不同,籽粒內部結構存在較大差異,不同結構指標在果穗上的變化規律不同。

果穗兩端結構變異較大,不考慮果穗兩端極端籽粒,從果穗基部至頂部,胚體積、胚乳體積及硬質胚乳體積線性減小,各指標變化范圍分別為15.82~33.36mm3、180.15~296.50 mm3、87.13~166.00 mm3;胚乳空腔>皮下空腔>胚空腔,果穗中部籽粒的空腔較小且穩定;胚與胚乳比值粒位間基本穩定,粉質胚乳體積、硬質胚乳與粉質胚乳比值從基部至頂部逐漸減小,隨著粒位的增加,品種間差異增大。品種間籽粒結構存在較大差異:DH618不同粒位胚與胚乳的比值較大,XY335胚乳空腔體積及硬質胚乳與粉質胚乳的比值較大,KX3564皮下空腔體積較大。

[1] 黃熊娟,梁和,吳子愷. 高油玉米含油率、籽粒結構與氮鉀施用量的通徑分析[J]. 中國農學通報,2006,22(8):268-271.

Huang Xiongjuan, Liang He, Wu Zikai. Correlation and path analysis among grain oil rate and grain structure anddifferent levels of nitrogen and potassium of high oil corn. Chinese Agricultural Science Bulletin, 2006, 22(8): 268-271. (in Chinese with English abstract)

[2] 馬秀鳳,郭強,藺崇明,等. 不同胚乳類型玉米籽粒超微結構及其營養品質的動態變化[J]. 西北農林科技大學學報:自然科學版,2016,44(1):53-60.

Ma Xiufeng, Guo Qiang, Lin Chongming, et al. Dynamiac changes of ultra-structure and nutritional quality in maize kernels with different endosperm types[J]. Journal of Northwest A&F University: Nat. Sci. Ed., 2016, 44(1): 53-60. (in Chinese with English abstract)

[3] Jaime H, Calderini D F. Pericarp growth dynamics associate with final grain weight in wheat under contrasting plant densities and increased night temperature[J]. Annals of Botany. 2020, 126(6): 1063-1076.

[4] 孫源澤. 玉米種胚不同發育時期生理生化指標及甲基化水平的變化[D]. 長春:吉林農業大學,2016.

Sun Zeyuan. Changes of Maize Germ Physiological and Biochemical Indexes and Methylation Levels During Developmental Stages[D]. Changchun: Jilin Agricultural University, 2016. (in Chinese with English abstract)

[5] Waelti H. Physical Properties and Morphological Characteristics of Maize and Their Influence on Threshing Injury of Kernels[D]. Iowa, America: PhD Dissertation of Iowa State University, 1967.

[6] 杜雙奎. 玉米品種籽粒品質與擠壓膨化特性研究[D]. 楊凌:西北農林科技大學,2006.

Du Shuangkui. Kernel Quality Properties and Extrusion Characteristics of Maize Varieties[D]. Yangling: Northwest A&F University, 2006. (in Chinese with English abstract)

[7] 郭禎祥,趙仁勇. 玉米硬度測定方法研究[J]. 糧食與飼料工業,2002(12):44-46.

Guo Zhenxiang, Zhao Renyong. Corn hardness determination[J]. Cereal&Feed Industry, 2002(12): 44-46. (in Chinese with English abstract)

[8] 韓仲志,趙友剛,楊錦忠. 基于籽粒RGB圖像獨立分量的玉米胚部特征檢測[J]. 農業工程學報,2010,26(3):222-226.

Han Zhongzhi, Zhao Yougang, Yang Jinzhong. Detection of embryo based on independent components for kernel RGB images in maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(3): 222-226. (in Chinese with English abstract)

[9] 寧紀鋒,何東健,楊蜀秦. 玉米籽粒的尖端和胚部的計算機視覺識別[J]. 農業工程學報,2004,20(3):117-119.

Ning Jifeng, He Dongjian, Yang Shuqin. Identification of tip cap and germ surface of corn kernel using com putervision[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3):117-119. (in Chinese with English abstract)

[10] Schoeman L, Williams P, Plessis A D, et al. X-ray micro-computed tomography (CT) for non-destructive characterisation of food microstructure[J]. Trends in Food Science & Technology, 2016, 47: 10-24.

[11] Hou J F, Zhang Y, Jin X L, et al. Structural parameters for X-ray micro-computed tomography (CT) and their relationship with the breakage rate of maize varieties[J]. Plant Methods, 2019, 15(1): 915-920.

[12] Yin X B, Hou J F, Ming B. Kernel position effects of grain morphological characteristics by X-ray micro-computed tomography (CT)[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(2):159-166.

[13] 徐云姬,顧道健,秦昊,等. 玉米灌漿期果穗不同部位籽粒碳水化合物積累與淀粉合成相關酶活性變化[J]. 作物學報,2015,41(2):297-307.

Xu Yunji, Gu Daojian, Qing Hao, et al. Changes in carbohydrate accumulation and activities of enzymes involved in starch synthesis in maize kernels at different positions on an ear during grain filling[J]. Acta Agoronmica Sinica, 2015, 41(2): 297-307. (in Chinese with English abstract)

[14] 張麗,張吉旺,周偉,等. 玉米不同粒位子粒容重與子粒物理性狀的相關分析[J]. 玉米科學,2015,23(2):64-68.

Zhang Li, Zhang Jiwang, Zhou Wei, et al. Correlation analysis on test weight of maize grains at different grain positions with grain physical characters[J]. Journal of Maize Sciences, 2015, 23(2): 64-68. (in Chinese with English abstract)

[15] 王曉燕,董樹亭,高榮岐,等. 不同類型玉米胚乳細胞增殖動態及其與粒重的關系[J]. 華北農學報,2006(2):23-26.

Wang Xiaoyan, Dong Shuting, Gao Rongqi, et al. Endosperm cell proliferating and its relation to grain weight indifferent types of maize[J]. Acta Agriculturae Boreali-Sinica, 2006(2): 23-26. (in Chinese with English abstract)

[16] 楊建昌. 水稻弱勢粒灌漿機理與調控途徑[J]. 作物學報,2010,36(12):2011-2019.

Yang Jianchang. Mechanism and regulation in the filling of inferior spikelets of rice[J]. Acta Agoronmica Sinica, 2010, 36(12): 2011-2019. (in Chinese with English abstract)

[17] Nagato K. Differences in grain weight of spikelets located at different positions within a rice panicle[J]. Japanese Journal of Crop Science, 1941, 13: 154-169. (In Japanese)

[18] 楊同文,李潮海. 玉米籽粒發育的粒位效應機理研究[J].種子,2012,31(3):54-58.

Yang Tongwen, Li Chaohai. Study on mechanisms of kernel position effects in maize kernel developing[J]. Seed, 2012, 31(3): 54-58. (in Chinese with English abstract)

[19] Gao S, Ming B, Li L L, et al. Maize grain moisture content correction: From nonstandard to standard system[J]. Biosystems Engineering, 2021, 204(5): 212-222.

[20] Zhao F C, Jing L Q, Wang D C, et al. Grain and starchgranule morphology in superior and inferior kernels of maizein response to nitrogen[J]. Scientific Reports, 2018, 8(1): 6343.

[21] 徐云姬. 3種禾谷類作物強、弱勢粒灌漿差異機理及其調控技術[D]. 揚州:揚州大學,2016.

Xu Yunji. Mechanism in the Filling Difference Between Superior and Inferior Caryopses of Three Cereal Crops and Its Regulation Techniques[D]. Yangzhou: Agricultural College Yangzhou University, 2016. (in Chinese with English abstract)

[22] 趙波,吳雅薇,李小龍,等. 玉米強弱勢粒間機械脫粒破碎率的差異[J]. 中國生態農業學報,2020,28(6):843-851.

Zhao Bo, Wu Yawei, Li Xiaolong, et al. Differences in mechanical threshing broken rate between superior and inferior maize grains[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 843-851. (in Chinese with English abstract)

[23] 于濤,李耕,劉鵬,等. 玉米早期發育階段粒位效應的蛋白質組學分析[J]. 中國農業科學,2016,49(1):54-68.

Yu Tao, Li Geng, Liu Peng, et al. Proteomics analysis of rain position effects during early developmental stages of maize[J]. Scientia Agricultura Sinica, 2016, 49(1): 54-68. (in Chinese with English abstract)

[24] Sreenivasulu N, Wobus U. Seed-development programs: A systems biology-based comparison between dicots and monocots[J]. Annual Review of Plant Biology. 2013, 64: 189-217.

[25] Eckhoff S R, Watson S A. Corn and Sorghum Starches: Production. In: BeMiller J, Whistler R. Starch: Chemistry and Technology (3rded.)[M]. Burlington, MA, USA: Academic Press, 2009: 373-440.

[26] Guelpa A, Plessis A D, Kidd M, et al. Non-destructive estimation of maize (L.) kernel hardness by means of an X-ray micro-computed tomography (CT) density calibration[J]. Food and Bioprocess Technology, 2015, 8: 1419-1429.

[27] Wang B, Wang J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ[J]. International Journal of Food Properties, 2019, 22(1): 863-877.

[28] 張萬旭,王克如,謝瑞芝,等.玉米機械收獲子粒破碎率與含水率關系的品種間差異[J]. 玉米科學,2018,26(4):74-78.

Zhang Wanxu, Wang Keru, Xie Ruizhi, et al. Relationship between maize grain broken rate and moisture content as well as the differences among cultivars[J]. Journal of Maize Sciences, 2018, 26(4): 74-78. (in Chinese with English abstract)

[29] 李璐璐,謝瑞芝,范盼盼,等. 鄭單958與先玉335子粒脫水特征研究[J]. 玉米科學,2016,24(2):57-61,71.

Li Lulu, Xie Ruizhi, Fan Panpan, et al. Study on dehydration in kernel between zhengdan958 and xianyu335[J]. Journal of Maize Sciences, 2016, 24(2): 57-61, 71. (in Chinese with English abstract)

[30] 朱亞利,王晨光,楊梅,等. 不同熟期玉米不同粒位籽粒灌漿和脫水特性對密度的響應[J]. 作物學報,2021,47(3):507-519.

Zhu Yali, Wang Chenguang, Yang Mei, Response of grain filling and dehydration characteristics of kernels located in different ear positions in the different maturity maize hybrids to plant density[J]. ActaAgoronmicaSinica, 2021, 47(3): 507-519. (in Chinese with English abstract)

Effects of various grain positions of ear on the internal structural parameters of maize grain using X-rayCT

Yin Xuebo1,Ming Bo1, HouJunfeng2, Wang Keru1, Li Shaokun1, XieRuizhi1※

(1/,,100081,; 2322100,)

Grain structure is an important characteristic of maize varieties, particularly in representing the grain filling and texture in some cases. But the effect of kernel positions on grain structures in maize still remained unclear. Clarifying the kernel position effects of grain structure is beneficial to comprehensively grasp the grain characteristics of maize ears, and provides a reference for the production, processing and variety improvement of maize. In this study, three grain types of maize cultivars were taken to clarify the kernel position effects, including Denghai 618 (DH618), KX3564, and Xianyu 335 (XY335), from Qitai, Xinjiang of Western China in 2018. Samples were selected at regular kernel intervals, where each ear was in an average of 12 grains. A total of 104 samples were scanned from the three varieties. The grain three-dimensional structures were reconstructed by imaging processing, such as segmentation, thresholding, and reconstruction, where more than 900 2D images were obtained in the different sections (--, and-) of grains using an X-ray micro-computed tomography (X-rayCT). In addition to visualization, the grain structural parameters were also extracted, including the embryo, endosperm, subcutaneous cavity, embryo cavity, hard endosperm, soft endosperm, and endosperm cavity. The internal structure of grain was more accurately determined, especially on the cavity structure of grain, compared with the traditional manual and machine vision. The results showed thatthe effect of kernel position grain structure indicators on ear was different. Specifically, the volume of embryo, endosperm, and hard endosperm showed a linear downward trend from the base to the top of the ear, without considering the extreme grains at both sides of the ear. The range of each indicator on ear was 15.82-33.36, 180.15-296.50 and 87.13-166.00 mm3, respectively. The cavity volume of subcutaneous, embryo, and endosperm remained stable in the middle of the ear, significantly lower than those in the upper and lower parts, in the sequence endosperm cavity> subcutaneous cavity> the embryo cavity. The ratio of embryo to endosperm was basically stable among grains. The volume of soft endosperm and the ratio of hard endosperm to soft endosperm decreased gradually from the base to the top, but the slope was different. There was the same tendency of parameters at different kernel positions in three varieties, but there were differences in absolute value:the ratio of grain embryo to endosperm at different positions of the ear in DH618 was significantly higher than those in KX3564 and XY335. The ratio of hard to soft endosperm in XY335 was significantly larger than those in DH618 and KX3564. In terms of grain cavities, KX3564 had a higher proportion of subcutaneous cavities and XY335 had a higher proportion of endosperm cavities. The volume proportion of embryo, endosperm and subcutaneous cavity in maize grains of the three varieties was 9.27%, 89.87% and 0.86%, respectively. X-rayCT technology provides a new method and idea for the study of maize grain characters. Kernel position has also played a significant role in the grain structure among different positions of the maize ear. The findings suggest that the sampling position should be considered when conducting kernel research, due mainly to the differences of grain structure in positions of the maize ear.

crops; maize; kernel position effects; grain structure; X-rayCT

2020-09-03

2021-02-26

國家重點研發計劃項目(2018YFD0300405);國家玉米產業技術體系項目(CARS-02-25);國家自然科學基金(31971849);中國農業科學院科技創新工程項目

銀學波,研究方向為玉米籽粒機械收獲。Email:3023937790@qq.com

謝瑞芝,博士,研究員,研究方向為玉米生理與生態學。Email:xieruizhi@caas.cn

10.11975/j.issn.1002-6819.2021.07.002

S513.210.70

A

1002-6819(2021)-07-0008-07

銀學波,明博,侯俊峰,等. 基于X-rayCT技術的玉米籽粒結構特征的粒位效應分析[J]. 農業工程學報,2021,37(7):8-14. doi:10.11975/j.issn.1002-6819.2021.07.002 http://www.tcsae.org

Yin Xuebo, Ming Bo, Hou Junfeng, et al. Effects of various grain positions of ear on the internal structural parameters of maize grain using X-rayCT[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 8-14. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.002 http://www.tcsae.org

主站蜘蛛池模板: 无码精品一区二区久久久| 国产午夜精品一区二区三| 久久综合五月| 国产婬乱a一级毛片多女| 亚洲综合第一区| 五月婷婷精品| 亚洲美女一区| 欧美一级99在线观看国产| 国内精品九九久久久精品| 成年午夜精品久久精品| a色毛片免费视频| 直接黄91麻豆网站| 亚洲最新在线| 精品综合久久久久久97超人该| 色噜噜综合网| 四虎精品国产AV二区| 制服丝袜亚洲| 日本午夜三级| 亚洲午夜福利精品无码不卡 | 国产av剧情无码精品色午夜| 亚洲婷婷六月| 2021天堂在线亚洲精品专区| 日韩无码真实干出血视频| 欧美中文字幕在线二区| 精品国产91爱| 国产精品尹人在线观看| 91久久夜色精品| 无码丝袜人妻| 国产全黄a一级毛片| 亚洲IV视频免费在线光看| 亚国产欧美在线人成| 久久久久88色偷偷| 欧美精品高清| 国产乱子伦精品视频| 国产精品一区在线麻豆| 国产一级毛片高清完整视频版| 国产手机在线ΑⅤ片无码观看| 国产成人a毛片在线| 夜夜拍夜夜爽| 国产在线观看人成激情视频| 欧美无专区| 波多野衣结在线精品二区| 人妻91无码色偷偷色噜噜噜| 欧美午夜视频在线| 乱人伦99久久| 婷婷亚洲视频| 日韩无码黄色网站| 亚洲天堂精品在线观看| 久久中文字幕2021精品| 亚洲第一视频区| 国产麻豆91网在线看| 在线免费看片a| 精品无码一区二区在线观看| 992tv国产人成在线观看| 色婷婷狠狠干| 欧洲成人在线观看| 亚洲无线视频| 亚洲区视频在线观看| 国产成人亚洲日韩欧美电影| 亚洲人成网站日本片| 国产高潮流白浆视频| 免费激情网址| 色妞永久免费视频| 97成人在线视频| 精品少妇人妻av无码久久| 亚洲美女久久| 国产地址二永久伊甸园| 久久精品最新免费国产成人| 中文字幕资源站| 亚洲第一网站男人都懂| 午夜免费小视频| 亚洲人成在线免费观看| 国产精品美女网站| 国产福利免费在线观看| 人妻丰满熟妇啪啪| 波多野结衣亚洲一区| 亚洲综合狠狠| 人妻丰满熟妇啪啪| 无码一区中文字幕| 亚洲视频在线网| 亚洲中文字幕无码爆乳| 亚洲中文制服丝袜欧美精品|