林承達(dá),韓 晶,謝良毅,胡方正
田間作物群體三維點(diǎn)云柱體空間分割方法
林承達(dá),韓 晶,謝良毅,胡方正
(華中農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院,武漢 430070)
農(nóng)田作物群體表型信息對(duì)于研究作物內(nèi)部基因改變和培育優(yōu)良品種具有重要意義。為實(shí)現(xiàn)田間作物群體點(diǎn)云數(shù)據(jù)中單個(gè)植株對(duì)象的完整提取與分割,以便于更高效地完成作物個(gè)體表型參數(shù)的自動(dòng)測(cè)量,該研究提出一種田間作物柱體空間聚類分割方法。利用三維激光掃描儀獲取田間油菜、玉米和棉花的三維點(diǎn)云數(shù)據(jù),基于HSI(Hue-Saturation-Intensity,色調(diào)、飽和度、亮度)顏色模型進(jìn)行作物群體目標(biāo)提取,采用直通濾波方法獲取作物莖稈點(diǎn)云,基于莖稈點(diǎn)云數(shù)據(jù)使用歐氏距離聚類分割算法提取每個(gè)植株的聚類中心點(diǎn),并以聚類中心點(diǎn)建立柱體空間模型,使用該模型分割得到田間作物每個(gè)單體植株的點(diǎn)云數(shù)據(jù)。試驗(yàn)結(jié)果表明,該研究的方法對(duì)油菜、玉米和棉花3種作物的分割準(zhǔn)確率分別為90.12%、96.63%和100%,與歐氏距離聚類分割結(jié)果相比,準(zhǔn)確率分別提高了36.42,61.80和82.69個(gè)百分點(diǎn),算法耗時(shí)分別縮短為后者的9.98%,16.40%和9.04%,與區(qū)域增長(zhǎng)算法分割結(jié)果相比,該研究的方法可用于不同類型農(nóng)作物,適用性更強(qiáng),能夠?qū)崿F(xiàn)農(nóng)田中較稠密作物植株的分割。該研究的方法能夠?qū)崿F(xiàn)農(nóng)田尺度下單個(gè)植株的完整提取與分割,具有較高的適用性,可為精確測(cè)量作物個(gè)體表型信息提供參考。
作物;激光;三維點(diǎn)云;柱體空間模型;分割
隨著人口數(shù)量的不斷增加,人類對(duì)糧食和油料作物的需求急劇上升,但其產(chǎn)量卻受到可利用耕地減少、土地荒漠化和自然災(zāi)害等的影響而難以提升。解決這一問(wèn)題的主要手段是選育優(yōu)良作物品種[1],由于作物內(nèi)在基因改變和作物群體生長(zhǎng)參數(shù)密切相關(guān),充分理解作物基因型和生長(zhǎng)參數(shù)之間的關(guān)系是提高作物產(chǎn)量的關(guān)鍵[2-5],這離不開(kāi)對(duì)作物表型參數(shù)的大量分析。田間高通量表型獲取技術(shù)是限制作物改良和精準(zhǔn)農(nóng)業(yè)發(fā)展的主要瓶頸,能夠?qū)崿F(xiàn)整個(gè)生長(zhǎng)周期表型性狀的自動(dòng)測(cè)量,為獲取高精度目標(biāo)參數(shù)信息提供了條件[6-9]。
傳統(tǒng)農(nóng)作物表型參數(shù)獲取存在耗時(shí)長(zhǎng)、具有破壞性等問(wèn)題,難以滿足現(xiàn)代農(nóng)業(yè)科學(xué)研究需要。三維激光掃描技術(shù)克服了作物參數(shù)傳統(tǒng)測(cè)量的局限性,使得無(wú)損、高效、高精度參數(shù)測(cè)量成為了可能,是目前作物群體生長(zhǎng)參數(shù)測(cè)量的研究熱點(diǎn)[10-12]。通過(guò)對(duì)獲取的三維點(diǎn)云數(shù)據(jù)進(jìn)行處理,可以實(shí)現(xiàn)作物不同器官生長(zhǎng)參數(shù)的測(cè)量[13-16]。Paulus等[17]通過(guò)激光掃描儀采集麥子點(diǎn)云數(shù)據(jù),重建麥子的植株架構(gòu),實(shí)現(xiàn)了單葉和單莖器官的特異性生長(zhǎng)監(jiān)測(cè)。郭新年等[18]針對(duì)作物株高測(cè)量中頂點(diǎn)與基點(diǎn)確定困難的問(wèn)題,設(shè)計(jì)基于激光視覺(jué)的作物株高測(cè)量系統(tǒng),相對(duì)誤差在2.17%以內(nèi)。作物生長(zhǎng)參數(shù)的自動(dòng)化測(cè)量是數(shù)字農(nóng)業(yè)全面推廣的前提,而農(nóng)作物不同器官、個(gè)體的分割與作物參數(shù)自動(dòng)測(cè)量密切相關(guān)[19],作物具有復(fù)雜且隨機(jī)的形態(tài)結(jié)構(gòu),分割難度較大,目前已有不少學(xué)者對(duì)作物點(diǎn)云分割進(jìn)行了深入研究[20-23]。Gélard等[24]利用向日葵RGB圖像重建了向日葵三維模型,并基于模型分割出向日葵的莖,葉柄和葉片。溫維亮等[25]利用歐氏距離聚類方法實(shí)現(xiàn)了果穗籽粒的分割,籽粒分割率可達(dá)90%以上。Wu等[26]利用深度相機(jī)對(duì)水蜜桃三維重建,基于顏色信息和果實(shí)輪廓特征實(shí)現(xiàn)了果實(shí)的分割。Sun等[27]通過(guò)獲取田間棉花點(diǎn)云數(shù)據(jù),基于點(diǎn)云密度聚類方法實(shí)現(xiàn)棉鈴數(shù)統(tǒng)計(jì)。Zermas[28]等提出RAIN(Randomly Intercepted Nodes,隨機(jī)截取節(jié)點(diǎn))算法,研究隨機(jī)放置的某個(gè)點(diǎn)云在整個(gè)點(diǎn)云表面滑動(dòng)的行為,依據(jù)葉莖的不同表現(xiàn)實(shí)現(xiàn)葉莖分離。Jin[29]等使用快速R-CNN(Region-Convolutional Neural Networks,區(qū)域卷積神經(jīng)網(wǎng)絡(luò))訓(xùn)練樣本識(shí)別莖稈,結(jié)合區(qū)域生長(zhǎng)法分割出玉米個(gè)體。目前國(guó)內(nèi)外對(duì)點(diǎn)云分割算法研究較多,但針對(duì)農(nóng)田尺度下非結(jié)構(gòu)體對(duì)象玉米、油菜及棉花等作物群體的點(diǎn)云數(shù)據(jù)分割方法較少,作物群體點(diǎn)云數(shù)據(jù)中單個(gè)植株的提取與分割是作物表型參數(shù)高效精確測(cè)量的前提,是研究作物基因型和生長(zhǎng)參數(shù)關(guān)系的基礎(chǔ),因此提出能夠滿足田間作物群體點(diǎn)云數(shù)據(jù)中單體植株分割的方法有十分重要的意義。
本文以田間種植的玉米、油菜和棉花作為研究對(duì)象,針對(duì)傳統(tǒng)歐氏聚類點(diǎn)云分割算法存在的過(guò)分割和欠分割等導(dǎo)致分割精度低的問(wèn)題,以及田間點(diǎn)云數(shù)據(jù)采集過(guò)程中遮擋等導(dǎo)致的數(shù)據(jù)斷裂、缺失現(xiàn)象,提出了一種適應(yīng)農(nóng)作物群體點(diǎn)云分割的柱體空間聚類分割方法,通過(guò)三維點(diǎn)云數(shù)據(jù)提取每個(gè)植株的聚類中心建立柱體空間,實(shí)現(xiàn)田間作物個(gè)體植株之間的分割,為解決農(nóng)田尺度下復(fù)雜作物群體分割難的問(wèn)題提供一種新的方法,為后續(xù)作物表型參數(shù)的精確測(cè)量奠定基礎(chǔ)。
田間試驗(yàn)于2019年3月和7月在湖北省華中農(nóng)業(yè)大學(xué)實(shí)驗(yàn)基地進(jìn)行,選取田間花期油菜、苗期玉米以及花期棉花為對(duì)象,分別選取162、89和52株,使用FARO FocusS SeriesS 70三維激光掃描儀進(jìn)行點(diǎn)云數(shù)據(jù)掃描,3種作物信息與試驗(yàn)設(shè)置如表1所示。為了驗(yàn)證本文方法的適用性,選取3種作物不同生長(zhǎng)時(shí)期的點(diǎn)云數(shù)據(jù)進(jìn)行數(shù)據(jù)處理和結(jié)果評(píng)價(jià),其他生長(zhǎng)期的作物數(shù)據(jù)也適用于本文方法。

表1 作物信息與點(diǎn)云采集參數(shù)
FARO FocusS SeriesS 70是一種基于相位測(cè)量的三維激光掃描儀,主要規(guī)格參數(shù)如表2所示。田間作物群體點(diǎn)云數(shù)據(jù)采集方案如圖1所示。圖中和分別為高站點(diǎn)和低站點(diǎn),高站點(diǎn)在植株頂端上部30cm附近,低站點(diǎn)在植株頂端位置附近,球1、2、3為標(biāo)靶球。

表2 FocusS SeriesS 70規(guī)格參數(shù)
注:1、2、3、4分別為測(cè)站點(diǎn)1、2、3、4處的高站點(diǎn);1、2、3、4分別為測(cè)站點(diǎn)1、2、3、4處的低站點(diǎn)。
Note:1,2,3and4are the high stations of the test site 1, 2, 3 and 4 respectively;1,2,3and4are the low stations of the test site 1, 2, 3 and 4 respectively.
圖1 作物群體點(diǎn)云數(shù)據(jù)采集方案
Fig.1 Crop population point cloud acquisition scheme
以苗期玉米為例,首先將儀器架設(shè)在圖1中的1站點(diǎn),該站掃描結(jié)束后調(diào)整至1,該位置的高低站點(diǎn)掃描結(jié)束后移動(dòng)至2高站點(diǎn),掃描結(jié)束后調(diào)整至2,以此類推移動(dòng)至3、4位置執(zhí)行上述操作。由于農(nóng)田作物種植密集,相互遮擋,單一站點(diǎn)無(wú)法獲取目標(biāo)的完整信息,因此在選取樣地的四周布設(shè)測(cè)站點(diǎn),采集目標(biāo)不同部位的三維點(diǎn)云數(shù)據(jù)。油菜田測(cè)站點(diǎn)布設(shè)在樣地四角和長(zhǎng)邊的中間,避免田塊長(zhǎng)邊的中間數(shù)據(jù)缺失,玉米田和棉花田測(cè)站點(diǎn)布設(shè)在樣地的四角,并通過(guò)調(diào)整儀器高度,在同一測(cè)站點(diǎn)采集2組點(diǎn)云數(shù)據(jù),確保采集的田間點(diǎn)云數(shù)據(jù)具有完整的莖稈信息,每個(gè)測(cè)站點(diǎn)掃描1次,每次掃描10 min。在三維激光掃描試驗(yàn)開(kāi)始之間,需要在試驗(yàn)區(qū)域周圍擺放至少3個(gè)標(biāo)靶球作為配準(zhǔn)基礎(chǔ),標(biāo)靶球?yàn)橹睆?50 mm的白色空心球體,通過(guò)在不同站點(diǎn)獲取的數(shù)據(jù)擬合球體球心和半徑,為后續(xù)各個(gè)測(cè)站采集到的點(diǎn)云數(shù)據(jù)配準(zhǔn)做準(zhǔn)備。
田間作物點(diǎn)云數(shù)據(jù)預(yù)處理包括點(diǎn)云配準(zhǔn)、點(diǎn)云去噪、目標(biāo)點(diǎn)云數(shù)據(jù)提取和點(diǎn)云精簡(jiǎn),具體步驟如下:
1)點(diǎn)云配準(zhǔn)。本文基于標(biāo)靶球進(jìn)行不同測(cè)站數(shù)據(jù)的配準(zhǔn),使用FARO三維激光掃描儀配套的軟件SCENE 2019將其配準(zhǔn)到同一坐標(biāo)系下,圖2a為作物群體配準(zhǔn)效果圖。
2)點(diǎn)云去噪。采用深色掃描點(diǎn)過(guò)濾器、離群點(diǎn)過(guò)濾器和邊緣偽像過(guò)濾器實(shí)現(xiàn)噪聲點(diǎn)的剔除。
3)目標(biāo)點(diǎn)云數(shù)據(jù)提取。為了將目標(biāo)點(diǎn)云從原始點(diǎn)云中提取出來(lái),需要對(duì)配準(zhǔn)好的點(diǎn)云數(shù)據(jù)進(jìn)行處理,目標(biāo)點(diǎn)云提取主要分為2部分:第一部分是使用SCENE 2019對(duì)原始點(diǎn)云進(jìn)行裁剪,保留作物研究區(qū)范圍,第二部分是基于HSI顏色模型利用作物植株和土壤顏色的差異,實(shí)現(xiàn)作物群體目標(biāo)提取,由于點(diǎn)云數(shù)據(jù)RGB彩色信息可能會(huì)受到不同天氣光照和環(huán)境因素的影響,試驗(yàn)將RGB空間轉(zhuǎn)換到HSI空間下,采用HSI空間下H分量用于分析顏色的差異。然而由于光照原因,作物根部顏色被映射到表層土壤,與作物植株顏色相近的土壤表層點(diǎn)云數(shù)據(jù)被保留,因此需要再利用條件濾波設(shè)置閾值實(shí)現(xiàn)這部分土壤和作物植株的分割,進(jìn)而得到最終的作物群體點(diǎn)云數(shù)據(jù),圖2b為作物群體點(diǎn)云提取結(jié)果圖。
4)點(diǎn)云精簡(jiǎn)。為了提高工作效率,降低后續(xù)處理復(fù)雜程度,通過(guò)曲率采樣對(duì)點(diǎn)云數(shù)據(jù)進(jìn)行簡(jiǎn)化處理。
傳統(tǒng)點(diǎn)云數(shù)據(jù)分割常采用歐氏距離聚類方法[30],由于目標(biāo)對(duì)象之間通常具有一定的距離,同一對(duì)象的點(diǎn)云往往距離更近,利用這種距離差異可以實(shí)現(xiàn)作物對(duì)象的分割,其主要過(guò)程是:首先對(duì)作物群體點(diǎn)云利用KD-tree(K-Dimensional tree)建立點(diǎn)云拓?fù)浣Y(jié)構(gòu),查找點(diǎn)云的臨近點(diǎn),然后計(jì)算每個(gè)點(diǎn)與臨近點(diǎn)的歐氏距離,將距離最小的歸為一類,再對(duì)新生成的若干類別之間進(jìn)行歐氏距離計(jì)算和迭代,直到劃分的類別中任意2類間距離都大于設(shè)定閾值或滿足分割后類的點(diǎn)云數(shù)量,完成點(diǎn)云分割。該算法的核心是點(diǎn)云之間的歐氏距離計(jì)算,設(shè)點(diǎn)云數(shù)據(jù)集合為,點(diǎn)云數(shù)據(jù)三維坐標(biāo)表示為(,,),則中任意2點(diǎn)間的歐氏距離dist的計(jì)算公式如下:
由于農(nóng)作物在田間的生長(zhǎng)狀態(tài)復(fù)雜及非結(jié)構(gòu)性特點(diǎn),傳統(tǒng)點(diǎn)云聚類算法不能滿足農(nóng)田尺度下作物群體點(diǎn)云數(shù)據(jù)的分割要求,存在過(guò)分割和欠分割問(wèn)題。過(guò)分割是將背景誤分割為前景目標(biāo),植株分割結(jié)果中包含了其他植株的數(shù)據(jù);欠分割是將前景目標(biāo)誤分割為背景,植株分割結(jié)果中缺失了自身數(shù)據(jù)。本文提出一種適用于農(nóng)田尺度下作物群體點(diǎn)云分割的柱體空間聚類分割方法。該方法的主要思想是通過(guò)直通濾波在作物群體點(diǎn)云數(shù)據(jù)軸方向上提取一定高度的植株莖稈,為保證提取莖稈的有效性,對(duì)帶有葉片的莖稈數(shù)據(jù)通過(guò)法向量差異去除葉片。然后采用歐氏距離聚類方法對(duì)作物群體莖稈點(diǎn)云聚類,提取植株聚類中心;最后建立以聚類中心點(diǎn)為底面圓心的柱體空間,柱體半徑和高度參數(shù)根據(jù)不同作物田間種植行間距和生長(zhǎng)特點(diǎn)設(shè)置,以建立的柱體空間進(jìn)行作物植株群體的分割。該算法的具體實(shí)現(xiàn)步驟如下:

2)計(jì)算點(diǎn)云數(shù)據(jù)集中各點(diǎn)的法向量=(,,),通過(guò)設(shè)置角度閾值,剔除中的葉片點(diǎn)云數(shù)據(jù),提取作物群體點(diǎn)云莖稈數(shù)據(jù)集,因?yàn)樘崛〉那o稈點(diǎn)云數(shù)據(jù)周圍會(huì)存在一些噪點(diǎn),可以利用包圍盒去除噪聲點(diǎn),包圍盒是一種離散點(diǎn)集最優(yōu)包圍空間的算法,使用聚類和最小包圍盒方法去除包圍盒內(nèi)點(diǎn)數(shù)少于某個(gè)閾值的類別,最終得到只有莖稈的點(diǎn)云數(shù)據(jù)。角度閾值的計(jì)算公式如下:

4)根據(jù)聚類結(jié)果計(jì)算不同類別的聚類中心,聚類中心點(diǎn)集C(x,y,z)計(jì)算公式如下:

其中為聚類中心序號(hào),為某個(gè)聚類類別中點(diǎn)云序號(hào),為某個(gè)聚類類別中點(diǎn)的總個(gè)數(shù),X、Y和Z分別為某個(gè)聚類類別中點(diǎn)云序號(hào)為時(shí)的、、坐標(biāo)。

試驗(yàn)硬件處理平臺(tái):Windows 10 企業(yè)版 64-bit系統(tǒng),1T固態(tài)存儲(chǔ),處理器Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz,16 G內(nèi)存,顯卡NVIDIA Quadro M2000。
本文首先采用歐氏距離聚類算法對(duì)油菜冠層、玉米和棉花群體點(diǎn)云進(jìn)行分割,該算法的閾值設(shè)置會(huì)影響作物點(diǎn)云的分割效果。3種作物不同距離閾值下的分割植株數(shù)量和準(zhǔn)確率見(jiàn)表3。

表3 不同距離閾值下的作物點(diǎn)云分割結(jié)果
歐氏距離聚類分割結(jié)果主要取決于距離閾值。表3中,準(zhǔn)確率為正確分割株數(shù)與田間實(shí)際植株個(gè)數(shù)的百分比,從表3可以看出,隨著距離閾值的增大,過(guò)分割株數(shù)逐漸增多,分割株數(shù)和欠分割株數(shù)逐漸變少,油菜正確分割株數(shù)先增加后減少,在距離閾值為0.06時(shí)準(zhǔn)確率最高,為53.70%,玉米正確分割株數(shù)先增加后不變,在距離閾值為0.018和0.023時(shí)準(zhǔn)確率最高,為34.83%,區(qū)別是閾值為0.018時(shí)比閾值為0.023時(shí)過(guò)分割株數(shù)減少,欠分割株數(shù)增多。綜合分析可知,當(dāng)距離閾值設(shè)置較小時(shí),出現(xiàn)了一個(gè)植株被分割為不同類別的現(xiàn)象,為欠分割現(xiàn)象,當(dāng)距離閾值設(shè)置較大時(shí),相鄰植株被分成同一類別,為過(guò)分割現(xiàn)象,經(jīng)過(guò)參數(shù)優(yōu)化和調(diào)整,由于農(nóng)作物點(diǎn)云數(shù)據(jù)的復(fù)雜性以及部分植株點(diǎn)云之間存在粘連、斷裂現(xiàn)象,均不能得到準(zhǔn)確的分割結(jié)果。棉花分割結(jié)果正確率較低,完整正確的分割株數(shù)較少,由于棉花點(diǎn)云數(shù)據(jù)葉片較多,相鄰植株葉片距離比較近,分割結(jié)果較為破碎,無(wú)法得到完整的個(gè)體植株,不能得到較好的分割結(jié)果。
綜上所述,基于歐氏距離的聚類方法不能對(duì)油菜、玉米和棉花群體點(diǎn)云數(shù)據(jù)實(shí)現(xiàn)有效分割,在作物群體植株分割方面表現(xiàn)出一定的局限性,不能直接用于作物群體點(diǎn)云的分割實(shí)驗(yàn)。同時(shí),田間作物點(diǎn)云數(shù)據(jù)量比較龐大、植株個(gè)數(shù)多,發(fā)生斷裂的地方具有隨機(jī)性,點(diǎn)云數(shù)據(jù)補(bǔ)全需要耗費(fèi)大量的時(shí)間。本文針對(duì)采集數(shù)據(jù)中存在的點(diǎn)云粘連、斷裂問(wèn)題,在結(jié)合作物生長(zhǎng)特點(diǎn)和農(nóng)田種植特點(diǎn)的基礎(chǔ)上,利用基于柱體空間模型的聚類分割方法進(jìn)行農(nóng)田作物點(diǎn)云分割。
2.2.1 作物植株聚類中心提取
針對(duì)歐氏距離分割結(jié)果中出現(xiàn)的過(guò)分割和欠分割問(wèn)題,本文提出基于柱體空間的聚類分割方法對(duì)作物點(diǎn)云進(jìn)行分割,利用植株聚類中心建立柱體空間實(shí)現(xiàn)各個(gè)植株之間的分離。植株聚類中心的計(jì)算過(guò)程見(jiàn)圖3。首先運(yùn)用直通濾波沿著作物生長(zhǎng)方向(軸方向)截取一定長(zhǎng)度的作物莖稈,根據(jù)作物群體結(jié)構(gòu)的復(fù)雜程度以及雜草遮擋的現(xiàn)象,濾波范圍的設(shè)置原則為提取作物群體軸方向最小值,并在最小值基礎(chǔ)上提取0.1~0.5 m范圍內(nèi)的點(diǎn)云數(shù)據(jù),然后利用主成分分析(Principal Component Analysis,PCA)算法計(jì)算點(diǎn)云數(shù)據(jù)法向量,調(diào)整法向量數(shù)據(jù)一致性,該算法實(shí)現(xiàn)過(guò)程是為每個(gè)點(diǎn)構(gòu)建局部鄰域,擬合局部鄰域的最小二乘平面,將擬合平面的法向量作為該點(diǎn)的法向量,根據(jù)作物莖稈與葉片生長(zhǎng)特點(diǎn),將法向量與水平方向夾角大于閾值的葉片點(diǎn)剔除,得到作物群體莖稈點(diǎn)云數(shù)據(jù)。試驗(yàn)得到作物群體莖稈點(diǎn)云的聚類中心點(diǎn)集C,將三維點(diǎn)集C降維投影得到植株聚類中心。
2.2.2 閾值對(duì)聚類中心提取結(jié)果的影響
因?yàn)椴杉瘮?shù)據(jù)過(guò)程中,部分植株點(diǎn)云數(shù)據(jù)會(huì)出現(xiàn)莖稈斷裂、缺失等現(xiàn)象,所以在計(jì)算聚類中心時(shí),出現(xiàn)了一個(gè)植株具有多個(gè)聚類中心點(diǎn)的現(xiàn)象。為解決這一問(wèn)題,對(duì)初步計(jì)算得到的聚類中心點(diǎn)進(jìn)行重復(fù)點(diǎn)剔除,對(duì)于和坐標(biāo)值之間差值小于0.1的點(diǎn)做取舍處理,只保留其中一個(gè)。歐氏距離聚類的參數(shù)設(shè)置會(huì)影響作物個(gè)體植株聚類中心的提取結(jié)果,分析發(fā)現(xiàn)分割結(jié)果主要取決于最大迭代次數(shù)(Maximum Iteration Number,MIN),其他參數(shù)只要設(shè)置在合適的范圍即可。作物提取中心點(diǎn)數(shù)量和準(zhǔn)確率見(jiàn)表4,最優(yōu)聚類中心提取結(jié)果見(jiàn)圖4。

表4 不同參數(shù)下的植株聚類中心提取結(jié)果
從表4可以看出,隨著最大迭代次數(shù)的增加,分割得到的中心點(diǎn)數(shù)量逐漸增加,本試驗(yàn)采集的棉花點(diǎn)云數(shù)據(jù)共有52個(gè)植株,在MIN為90時(shí),剔除重復(fù)點(diǎn)后的聚類中心點(diǎn)數(shù)量與作物實(shí)際植株數(shù)量相等,且準(zhǔn)確率為100%,油菜和玉米則分別在MIN為235和160時(shí)達(dá)到最大值。迭代次數(shù)增加能夠提高中心點(diǎn)提取的準(zhǔn)確性,因此MIN設(shè)置要大于實(shí)際植株個(gè)體數(shù),且通過(guò)調(diào)整盡可能使得最終的聚類中心數(shù)量與實(shí)際植株個(gè)體數(shù)相等,本文設(shè)置初始迭代次數(shù)為植株個(gè)數(shù),根據(jù)剔除重復(fù)點(diǎn)后的聚類中心點(diǎn)數(shù)量增加迭代次數(shù),直到結(jié)果與實(shí)際植株個(gè)數(shù)相近且不再發(fā)生變化。
注:MIN為最大迭代次數(shù)。
Note: MIN is the maximum number of iterations.
圖4 聚類中心提取結(jié)果
Fig.4 Clustering center extraction results
2.3.1 柱體空間聚類分割結(jié)果
在提取植株聚類中心后,建立柱體模型空間,對(duì)提取的作物群體點(diǎn)云進(jìn)行分割。根據(jù)作物種植特點(diǎn),本文分別設(shè)置油菜、玉米和棉花柱體空間半徑閾值為0.11、0.16和0.22,結(jié)果以不同假彩色顯示來(lái)區(qū)分不同植株的分割效果,圖5為基于本文方法的油菜、玉米和棉花分割結(jié)果圖。
由圖5a可看出油菜冠層點(diǎn)云數(shù)據(jù)分割效果較好,沒(méi)有出現(xiàn)多個(gè)植株聚類為同一類別的現(xiàn)象,這也是本方法結(jié)合作物生長(zhǎng)特性的優(yōu)點(diǎn),通過(guò)設(shè)置合適的閾值,完整地將油菜冠層植株點(diǎn)云分割出來(lái)。由圖5b可看出玉米作物群體的分割效果較好,但出現(xiàn)部分相鄰玉米植株下層葉片誤分割的現(xiàn)象,原因?yàn)橛衩兹~片生長(zhǎng)特點(diǎn)是自上而下葉片與莖稈夾角逐漸增大,因此下層葉片伸展較大,部分下層葉片超出柱體空間分割閾值而出現(xiàn)少量誤分割,但作物植株的高度信息主要由靠近玉米中心的上層葉片決定,對(duì)作物群體參數(shù)測(cè)量結(jié)果沒(méi)有影響。圖5c棉花植株群體的分割效果最好,實(shí)現(xiàn)了不同植株個(gè)體之間的分割。
2.3.2 分割結(jié)果評(píng)價(jià)
不同分割方法的結(jié)果如表5所示,其中柱體空間聚類分割方法的準(zhǔn)確率遠(yuǎn)高于歐氏距離聚類分割方法,油菜、玉米和棉花的分割準(zhǔn)確率分別提高了36.42,61.80和82.69個(gè)百分點(diǎn)。對(duì)比算法耗時(shí)可以看出,柱體空間聚類分割方法相比歐氏距離聚類方法耗時(shí)較少,算法耗時(shí)分別縮短為后者的9.98%,16.40%和9.04%,這與前者通過(guò)植株聚類中心有序?qū)崿F(xiàn)植株個(gè)體分割有關(guān)。歐氏距離聚類分割結(jié)果通常存在過(guò)分割和欠分割的現(xiàn)象,不能達(dá)到預(yù)期效果,柱體空間聚類分割結(jié)果基本不存在上述現(xiàn)象,能夠完全實(shí)現(xiàn)植株間的分離,從分割準(zhǔn)確率和算法耗時(shí)2個(gè)方面來(lái)看,柱體空間聚類分割方法都優(yōu)于歐氏距離聚類分割。
對(duì)比表5可知棉花群體植株均實(shí)現(xiàn)了正確分割,玉米和油菜分別有3和16株未被正確分割,本文方法對(duì)油菜、玉米和棉花3種作物的分割準(zhǔn)確率分別為90.12%,96.63%和100%。玉米有3株未被正確分割的原因?yàn)椴糠职∮衩字仓挈c(diǎn)云數(shù)據(jù)信息不全或點(diǎn)云數(shù)過(guò)少,不能作為有效植株,在使用歐氏聚類分割計(jì)算聚類中心時(shí)被剔除。油菜群體點(diǎn)云分割準(zhǔn)確率相對(duì)較低,這是由于花期油菜群體結(jié)構(gòu)復(fù)雜,油菜根部有過(guò)多雜草和植株間的相互遮擋,造成內(nèi)部油菜植株的莖稈點(diǎn)云缺損,在進(jìn)行作物莖稈點(diǎn)云的歐氏聚類時(shí),僅聚類了有效點(diǎn)云數(shù)量的莖稈點(diǎn)云數(shù)據(jù),無(wú)法得到莖稈數(shù)據(jù)缺損植株的植株聚類中心。

表5 不同作物群體點(diǎn)云分割方法的結(jié)果對(duì)比
本研究的目的是探討田間作物群體中單個(gè)植株的分割提取方法。單個(gè)植株的提取與植株表型生長(zhǎng)參數(shù)的測(cè)量密不可分,本文提出了一種適于農(nóng)作物群體點(diǎn)云分割的柱體空間聚類分割方法,能夠?qū)崿F(xiàn)田間作物個(gè)體植株之間的分割,大幅提高了作物群體點(diǎn)云分割的精度。
本文方法適用于間隔播種且具有莖稈信息的農(nóng)作物植株分割,目前田間作物大多采用間隔播種的方式,植株間有一定的間距可以充分利用光能,提高光能利用率,如油菜、玉米和棉花等作物。作物種植密度對(duì)分割結(jié)果有一定的影響,當(dāng)種植密度較大時(shí),存在植株交叉現(xiàn)象,仍舊可以通過(guò)莖稈中心點(diǎn)分割出不同的植株個(gè)體,但是邊緣葉片數(shù)據(jù)會(huì)逐漸損失。如果目標(biāo)植物不是單主莖作物,但只要莖稈信息完整,多個(gè)莖稈分支之間無(wú)嚴(yán)重?cái)嗔熏F(xiàn)象,仍舊可以聚類得到植株中心點(diǎn),繼而分割得到單個(gè)植株;若多個(gè)莖稈分支之間出現(xiàn)斷裂現(xiàn)象,則會(huì)聚類得到多個(gè)中心點(diǎn),可以通過(guò)設(shè)置閾值對(duì)多個(gè)中心點(diǎn)進(jìn)行合并,并求取其平均值得到植株聚類中心點(diǎn)進(jìn)行植株個(gè)體分割。
Jin等[29]基于區(qū)域生長(zhǎng)算法從激光點(diǎn)云數(shù)據(jù)中分割出玉米個(gè)體,在稀疏、中等和稠密3種密度下的玉米個(gè)體分割結(jié)果召回率分別為0.95、0.93和0.92,通過(guò)對(duì)比試驗(yàn)田面積和玉米株數(shù)可以發(fā)現(xiàn),本研究玉米種植密度介于上述中等和稠密密度之間,植株高度高于前者20~30 cm左右,玉米個(gè)體分割結(jié)果準(zhǔn)確率為96.63%,除此之外,本研究方法應(yīng)用于油菜、棉花等更多類型的農(nóng)作物,均能得到良好的分割結(jié)果,具有較好的適用性。
該方法可基本實(shí)現(xiàn)植株個(gè)體之間的分割,但仍然存在一定的局限性,對(duì)于非間隔種植的田間作物,由于存在大量的葉片交叉,可能會(huì)導(dǎo)致分割精度降低,對(duì)于莖稈數(shù)據(jù)缺失的作物點(diǎn)云數(shù)據(jù),無(wú)法提取植株聚類中心,也限制了該方法的使用。
1)針對(duì)傳統(tǒng)點(diǎn)云數(shù)據(jù)聚類方法不能滿足作物群體點(diǎn)云數(shù)據(jù)分割要求的情況,本文提出一種適用于田間作物群體點(diǎn)云數(shù)據(jù)分割的柱體空間聚類分割方法,實(shí)現(xiàn)了玉米、油菜和棉花3種作物個(gè)體植株之間的分割,證明柱體空間聚類分割方法具有一定的通用性,適用于具有一定種植間隔且含有莖稈器官的農(nóng)作物。
2)與歐氏距離聚類分割的分割結(jié)果相比,柱體空間聚類分割方法能夠解決過(guò)分割和欠分割問(wèn)題,實(shí)現(xiàn)作物群體植株之間的分割,通過(guò)對(duì)比分割結(jié)果和人工統(tǒng)計(jì)株數(shù),本文方法對(duì)油菜、玉米和棉花3種作物的分割準(zhǔn)確率分別為90.12%,96.63%和100%,相對(duì)歐氏距離聚類方法準(zhǔn)確率分別提高了36.42,61.80和82.69個(gè)百分點(diǎn),且算法耗時(shí)縮短為歐氏距離聚類方法的9.98%,16.40%和9.04%。與區(qū)域生長(zhǎng)算法的單體分割結(jié)果相比,本研究可應(yīng)用于多種不同的農(nóng)作物類型,適用性更強(qiáng),不需要大量數(shù)據(jù)訓(xùn)練,耗時(shí)短。
本文基于植株聚類中心點(diǎn)建立柱體空間實(shí)現(xiàn)作物植株個(gè)體的準(zhǔn)確分割,能夠大大減少工作量,為作物群體表型信息研究提供了方法,可為農(nóng)作物無(wú)損測(cè)量提供參考。
[1] 蘇偉,蔣坤萍,郭浩,等. 地基激光雷達(dá)提取大田玉米植株表型信息[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(10):125-130.
Su Wei, Jiang Kunping, Guo Hao, et al. Extraction of phenotypic information of maize plants in field by terrestrial laser scanning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(10): 125-130. (in Chinese with English abstract)
[2] Sun S P, Li C Y, Paterson A H, et al. In-field high throughput phenotyping and cotton plant growth analysis using LiDAR[J]. Frontiers in Plant Science, 2018, 9: 16.
[3] Goggin F L, Lorence A, Topp C N. Applying high-throughput phenotyping to plant–insect interactions: picturing more resistant crops[J]. Current Opinion in Insect Science, 2015, 9: 69-76.
[4] Grosskinsky D K, Pieruschka R, Svensgaard J, et al. Phenotyping in the fields: Dissecting the genetics of quantitative traits and digital farming[J]. New Phytologist, 2015, 207(4): 950-952.
[5] Rahaman M, Chen D, Gillani Z, et al. Advanced phenotyping and phenotype data analysis for the study of plant growth and development[J]. Frontiers in Plant Science, 2015, 6: 619.
[6] Cobb J N, DeClerck G, Greenberg A, et al. Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement[J]. Theoretical and Applied Genetics, 2013, 126(4): 867-887.
[7] Guo Q H, Wu F F, Pang S X, et al. Crop 3D-a LiDAR based platform for 3D high-throughput crop phenotyping[J]. Science China Life Sciences, 2018, 61(3): 328-339.
[8] 趙春江. 植物表型組學(xué)大數(shù)據(jù)及其研究進(jìn)展[J]. 農(nóng)業(yè)大數(shù)據(jù)學(xué)報(bào),2019,1(2):5-18.
Zhao Chunjiang. Big data of plant phenomics and its research progress[J]. Journal of Agricultural Big Data, 2019, 1(2): 5-18. (in Chinese with English abstract)
[9] 邊黎明,張慧春. 表型技術(shù)在林木育種和精確林業(yè)上的應(yīng)用[J]. 林業(yè)科學(xué),2020,56(6):113-126.
Bian Liming, Zhang Huichun. Application of phenotyping techniques in forest tree breeding and precision forestry[J]. Scientia Silvae Sinicae, 2020, 56(6): 113-126. (in Chinese with English abstract)
[10] 劉建剛,趙春江,楊貴軍,等. 無(wú)人機(jī)遙感解析田間作物表型信息研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(24):98-106.
Liu Jiangang, Zhao Chunjiang, Yang Guijun, et al. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(24): 98-106. (in Chinese with English abstract)
[11] 張慧春,周宏平,鄭加強(qiáng),等. 植物表型平臺(tái)與圖像分析技術(shù)研究進(jìn)展與展望[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(3):1-17.
Zhang Huichun, Zhou Hongping, Zheng Jiaqiang, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 1-17. (in Chinese with English abstract)
[12] 李鵬,勞彩蓮,楊瀚,等. 基于移動(dòng)機(jī)器人平臺(tái)的玉米植株三維信息采集系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(S1):15-21.
Li Peng, Lao Cailian, Yang Han, et al. Maize plant 3D information acquisition system based on mobile robot platform[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 15-21. (in Chinese with English abstract)
[13] 郭彩玲,宗澤,張雪,等. 基于三維點(diǎn)云數(shù)據(jù)的蘋(píng)果樹(shù)冠層幾何參數(shù)獲取[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(3):175-181.
Guo Cailing, Zong Ze, Zhang Xue, et al. Apple tree canopy geometric parameters acquirement based on 3D point clouds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(3): 175-181. (in Chinese with English abstract)
[14] 張漫,苗艷龍,仇瑞承,等. 基于車載三維激光雷達(dá)的玉米葉面積指數(shù)測(cè)量[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(6):12-21.
Zhang Man, Miao Yanlong, Chou Ruicheng, et al. Maize leaf area index measurement based on vehicle 3D LiDAR[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(6): 12-21. (in Chinese with English abstract)
[15] 楊斯,高萬(wàn)林,米家奇,等. 基于RGB-D相機(jī)的蔬菜苗群體株高測(cè)量方法[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2019,50(S1):128-135.
Yang Si, Gao Wanlin, Mi Jiaqi, et al. Method for measurement of vegetable seedlings height based on RGB-D camera[J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 128-135. (in Chinese with English abstract)
[16] Crommelinck S, Hofle B. Simulating an autonomously operating low-cost static terrestrial LiDAR for multitemporal maize crop height measurements[J]. Remote Sensing, 2016, 8(3): 205.
[17] Paulus S, Schumann H, Kuhlmann H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth of cereal plants[J]. Biosystems Engineering, 2014, 121: 1-11.
[18] 郭新年,周恒瑞,張國(guó)良,等. 基于激光視覺(jué)的農(nóng)作物株高測(cè)量系統(tǒng)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2018,49(2):22-27.
Guo Xinnian, Zhou Hengrui, Zhang Guoliang, et al. Crop height measurement system based on laser vision[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(2): 22-27. (in Chinese with English abstract)
[19] Mesas-Carrascosa F J, de Castro A I, Torres-Sanchez J, et al. Classification of 3D point clouds using color vegetation indices for precision viticulture and digitizing applications[J]. Remote Sensing, 2020, 12(2): 317.
[20] Wang Y W, Chen Y F. Non-destructive measurement of three-dimensional plants based on point cloud[J]. Plants-Basel, 2020, 9(5): 571.
[21] 喻垚慎,云挺,楊緒兵. 基于激光點(diǎn)云數(shù)據(jù)的植物器官多維特征分割方法[J]. 數(shù)據(jù)采集與處理,2015,30(5):1054-1061.
Yu Yaoshen, Yun Ting, Yang Xubing. Multi-dimension feature segmentation method of foliage organs based on laser point cloud data[J]. Journal of Data Acquisition and Processing, 2015, 30(5): 1054-1061. (in Chinese with English abstract)
[22] 邢萬(wàn)里,邢艷秋,黃楊,等. 基于體元逐層聚類的TLS點(diǎn)云數(shù)據(jù)單木分割算法[J]. 中南林業(yè)科技大學(xué)學(xué)報(bào),2017,37(12):58-64,71.
Xing Wanli, Xing Yanqiu, Huang Yang, et al. Individual tree segmentation of TLS point cloud data based on clustering of voxels layer by layer[J]. Journal of Central South University of Forestry & Technology, 2017, 37(12): 58-64, 71. (in Chinese with English abstract)
[23] Xia C L, Wang L T, Chung B K, et al. In situ 3D segmentation of individual plant leaves using a RGB-D camera for agricultural automation[J]. Sensors, 2015, 15(8): 20463-20479.
[24] Gélard W, Devy M, Herbulot A, et al. Model-based segmentation of 3D point clouds for phenotyping sunflower plants[C]//12. International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, 2017: 459-467.
[25] 溫維亮,郭新宇,楊濤,等. 玉米果穗點(diǎn)云分割方法研究[J]. 系統(tǒng)仿真學(xué)報(bào),2017,29(12):3030-3034,3041.
Wen Weiliang, Guo Xinyu, Yang Tao, et al. Point cloud segmentation method of maize ear[J]. Journal of System Simulation, 2017, 29(12): 3030-3034, 3041. (in Chinese with English abstract)
[26] Wu G, Zhu Q B, Huang M, et al. Automatic recognition of juicy peaches on trees based on 3D contour features and colour data[J]. Biosystems Engineering, 2019, 188: 1-13.
[27] Sun S P, Li C Y, Chee P W, et al. Three-dimensional photogrammetric mapping of cotton bolls in situ based on point cloud segmentation and clustering[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 160: 195-207.
[28] Zermas D, Morellas V, Mulla D, et al. 3D model processing for high throughput phenotype extraction-the case of corn[J]. Computers and Electronics in Agriculture, 2020, 172: 105047.
[29] Jin S C, Su Y J, Gao S, et al. Deep learning: Individual maize segmentation from terrestrial lidar data using faster R-CNN and regional growth algorithms[J]. Frontiers in Plant Science, 2018, 9: 866.
[30] 陳向陽(yáng),楊洋,向云飛. 歐氏聚類算法支持下的點(diǎn)云數(shù)據(jù)分割[J]. 測(cè)繪通報(bào),2017(11):27-31,36.
Chen Xiangyang, Yang Yang, Xiang Yunfei. Measurement of point cloud data segmentation based on Euclidean clustering algorithm[J]. Bulletin of Surveying and Mapping, 2017(11): 27-31, 36. (in Chinese with English abstract)
Cylinder space segmentation method for field crop population using 3D point cloud
Lin Chengda, Han Jing, Xie Liangyi, Hu Fangzheng
(,430070,)
A new phenotype of crop population depends mainly on the internal genetic change of plants with environment, thereby determining new varieties of crops in farmland. A three-dimensional (3D) laser scanning technology can provide a rapid acquisition for the accurate phenotypic data of crops, compared with some traditional time-consuming and destructive measurements. However, field high-throughput phenotypic acquisition is still a major bottleneck limiting crop improvement and precision agriculture. It is also necessary to automatically acquire phenotypic traits throughout the growth cycle of crops and further to obtain target parameters with high accuracy. In this study, a cylinder space clustering segmentation was proposed for a highly efficient extraction on complete phenotypic parameters of a single plant in field crop population using a 3D point cloud. Field experiments were carried out at the Huazhong Agricultural University in Wuhan City, Hubei Province of China in 2019. Flowering rapeseed, seedling corn, and flowering cotton were selected as the research objects. The experimental procedure was: 1)A 3D laser scanner(FARO FocusS SeriesS 70) was used to collect high-precision point cloud data of field corn, rapeseed and cotton. Multiple sites were set around the experimental field for high accuracy information about the target. The measuring sites of rapeseed field were laid in the four corners and the middle of the long side of a sample plot. Four corners of a sample plot were selected to measure in corn and cotton field. Two groups of point cloud data were collected at different heights in the same measuring site. Each position was scanned once, and each scanning took 10 min. At least 3 target balls were placed in the test area as the registration basis, thereby preparing for the registration of point cloud data collected by subsequent test stations.2) The crop target was then extracted from the massive point cloud, including registration, denoising, data extraction, and simplification. The point cloud registration was completed using a target ball. The noise points were eliminated using dark scan point, outlier, and edge artifact filter. A Hue Saturation Intensity(HSI) color model was utilized to extract crop group target, according to the difference between crop and soil color. Curvature sampling was selected to realize point cloud simplification. 3)A pass-through filter was used to extract the stem point clouds at a certain height, whereas, the leaf point clouds were removed according to the difference of normal vectors. Conditional Euclidian distance was selected to extract the cluster center point of each plant using stem point cloud. A cylinder spatial model with the center point was also established to segment the point cloud of each plant. The column radius and height were set according to the row spacing and growth of specific crops in farmland. The segmentation accuracies of corn, rapeseed, and cotton were 90.12%, 96.63%, and 100%, respectively. The accuracy increased by 36.42, 61.80 and 82.69 percentage points, respectively, while the running time shortened to to 9.98%, 16.40% and 9.04%, compared with the conventional clustering segmentation. As such, better applicability, feasibility, and universality were achieved to effectively segment and extract all three types of individual plants from crops in dense fields, compared with previous region growth. Therefore, the segmentation and recognition of a single plant in crop population can provide a promising technical approach for the accurate, rapid, and non-destructive measurement of phenotypic information of individual crop in the field.
crops; laser; three dimensional point cloud; cylinder space model; segmentation
2020-12-10
2021-02-20
國(guó)家自然科學(xué)基金項(xiàng)目(41301522);中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)(2662018JC054);湖北省自然科學(xué)基金項(xiàng)目(2014CFB940)
林承達(dá),博士,副教授,研究方向?yàn)閿?shù)字農(nóng)業(yè)三維重建。Email:linchengda@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2021.07.021
TP391
A
1002-6819(2021)-07-0175-08
林承達(dá),韓晶,謝良毅,等. 田間作物群體三維點(diǎn)云柱體空間分割方法[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):175-182. doi:10.11975/j.issn.1002-6819.2021.07.021 http://www.tcsae.org
Lin Chengda, Han Jing, Xie Liangyi, et al. Cylinder space segmentation method for field crop population using 3D point cloud[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(7): 175-182. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.07.021 http://www.tcsae.org