盛 豐,文 鼎,熊祎瑋,王 康
基于電阻率層析成像技術(shù)的農(nóng)田土壤優(yōu)先流原位動(dòng)態(tài)監(jiān)測(cè)
盛 豐1,2,3,文 鼎1,2,熊祎瑋1,3,王 康4
(1. 長(zhǎng)沙理工大學(xué)水利工程學(xué)院,長(zhǎng)沙 410114;2. 水沙科學(xué)與水災(zāi)害防治湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410114;3. 洞庭湖水環(huán)境治理與生態(tài)修復(fù)湖南省重點(diǎn)實(shí)驗(yàn)室,長(zhǎng)沙 410114;4. 武漢大學(xué)水利水電學(xué)院,武漢 430072)
針對(duì)現(xiàn)有觀測(cè)技術(shù)無(wú)法原位監(jiān)測(cè)和判別農(nóng)田土壤優(yōu)先流類型、發(fā)育位置和演化過(guò)程的問(wèn)題,該研究采用電阻率層析成像技術(shù)對(duì)野外大尺度條件下的NaCl溶液入滲過(guò)程進(jìn)行原位監(jiān)測(cè),根據(jù)不同時(shí)刻監(jiān)測(cè)的剖面視電阻率分布對(duì)試驗(yàn)區(qū)域的土壤結(jié)構(gòu)分布特征進(jìn)行分析,對(duì)優(yōu)先流通道發(fā)育位置、優(yōu)先流類型和演化過(guò)程進(jìn)行識(shí)別,同時(shí)對(duì)電阻率層析成像技術(shù)識(shí)別優(yōu)先流的精度進(jìn)行研究。結(jié)果表明,試驗(yàn)區(qū)域的土壤結(jié)構(gòu)性質(zhì)不均勻,水平方向5.0~10.0 m范圍內(nèi)的土壤較水平方向0~5.0 m范圍內(nèi)的土壤更為密實(shí);入滲過(guò)程中在試驗(yàn)區(qū)域土壤疏松區(qū)水平方向4.0~5.0 m區(qū)間中有非均質(zhì)指流形成;該指流通道在灌入NaCl溶液9~14 min完全形成,在灌入NaCl溶液60 min時(shí)完全退化成基質(zhì)流;冪函數(shù)模型可用來(lái)建立剖面視電阻率與Cl-濃度之間的關(guān)系。研究成果對(duì)農(nóng)田土壤優(yōu)先流發(fā)育位置與演化過(guò)程的原位監(jiān)測(cè)與識(shí)別以及防治因水和溶質(zhì)優(yōu)勢(shì)入滲而引起的資源浪費(fèi)、環(huán)境污染和工程地質(zhì)災(zāi)害等具有參考價(jià)值。
入滲;土壤;農(nóng)田;電阻率層析成像;視電阻;優(yōu)先流;指流;原位監(jiān)測(cè)
優(yōu)先流又稱優(yōu)勢(shì)流、非均勻流,是指“水和溶質(zhì)沿某些特定的路徑(優(yōu)勢(shì)路徑)運(yùn)動(dòng)而繞過(guò)部分多孔介質(zhì)的現(xiàn)象”[1],是土壤中常見(jiàn)的水流運(yùn)動(dòng)和溶質(zhì)運(yùn)移形式。優(yōu)先流增大了溶質(zhì)在土壤中的運(yùn)移速度、縮短了溶質(zhì)在土壤中停留降解的時(shí)間、減少了土壤顆粒對(duì)溶質(zhì)的吸附和截留[2],是造成農(nóng)田施肥[3-4]、重金屬[5-6]、垃圾填埋場(chǎng)滲濾液[7-9]等污染地下水系統(tǒng)的重要因素。此外,降雨沿優(yōu)先流通道快速到達(dá)深層土壤甚至地下水的非平衡水分運(yùn)動(dòng),影響了地表和地下徑流過(guò)程,是誘發(fā)地面沉降與塌陷、滑坡、泥石流和山體崩塌等工程地質(zhì)災(zāi)害的重要因素之一[10]。因此,準(zhǔn)確識(shí)別和掌握土壤優(yōu)先流的時(shí)空分布特征和演化規(guī)律對(duì)于農(nóng)業(yè)資源高效利用、污染控制和地質(zhì)災(zāi)害防治等都有重要意義。目前,優(yōu)先流的觀測(cè)技術(shù)主要有示蹤成像技術(shù)、微張力測(cè)量技術(shù)、非侵入影像獲得技術(shù)和電阻率層析成像技術(shù)(Electrical Resistivity Tomography,ERT)等[11]。示蹤成像技術(shù)操作簡(jiǎn)單、試驗(yàn)成本低、成像效果直接,是目前最常用的優(yōu)先流觀測(cè)技術(shù)[12];但該技術(shù)需要開(kāi)挖土壤剖面來(lái)獲得優(yōu)先流路徑,破壞土體結(jié)構(gòu),因此不能進(jìn)行原位長(zhǎng)期監(jiān)測(cè),也限制了其在大尺度研究中的應(yīng)用[13]。微張力測(cè)量技術(shù)對(duì)土壤結(jié)構(gòu)擾動(dòng)少、效率和精度高、勞動(dòng)力消耗低、操作簡(jiǎn)易、可進(jìn)行長(zhǎng)期的原位監(jiān)測(cè)[14];但微張力探頭的探測(cè)范圍有限,探頭布設(shè)太少則可能探測(cè)不到優(yōu)先流路徑,而布設(shè)太多則會(huì)破壞土壤的原狀結(jié)構(gòu)[15]。非侵入影像獲得技術(shù)可直接顯示水流運(yùn)動(dòng)過(guò)程且掃描快速方便、不破壞土壤內(nèi)部結(jié)構(gòu),但目前還沒(méi)有針對(duì)土壤優(yōu)先流研究的專用掃描儀,試驗(yàn)樣品通常需要外送到醫(yī)院進(jìn)行掃描,試驗(yàn)分析費(fèi)用高且檢測(cè)分析過(guò)程繁瑣[16]。ERT技術(shù)通過(guò)向地下供電,形成以供電電極為源的等效點(diǎn)電源激發(fā)的電場(chǎng),再由在不同方向觀測(cè)的電位或電位差來(lái)研究探測(cè)區(qū)的電阻率分布,在此基礎(chǔ)上進(jìn)一步研究土壤物理參數(shù)及入滲水分和溶質(zhì)的空間分布和變化過(guò)程[17]。ERT技術(shù)具有設(shè)備輕便、試驗(yàn)成本低、探測(cè)深度大、探測(cè)范圍廣、成像分辨率高等優(yōu)點(diǎn),且ERT技術(shù)不需破壞原狀土壤就可以動(dòng)態(tài)監(jiān)測(cè),因此被廣泛運(yùn)用于工程地質(zhì)勘察、水文地質(zhì)和環(huán)境地質(zhì)調(diào)查及資源勘探之中[18]。然而,優(yōu)先流是一種高度不均勻和不穩(wěn)定的瞬變流,持續(xù)時(shí)間短、響應(yīng)速度快,其動(dòng)態(tài)過(guò)程很難捕捉,目前仍然是各種觀測(cè)技術(shù)所面臨的一項(xiàng)重要挑戰(zhàn)[19]。此外,如何在不破壞土壤結(jié)構(gòu)條件下對(duì)農(nóng)田大尺度的優(yōu)先流類型、發(fā)育位置和演化過(guò)程進(jìn)行識(shí)別與判斷,目前仍然是工程學(xué)界和科學(xué)界的熱點(diǎn)和難點(diǎn)問(wèn)題[20-21]。針對(duì)以上難題,本文擬利用ERT技術(shù)原位無(wú)損動(dòng)態(tài)監(jiān)測(cè)優(yōu)點(diǎn),對(duì)野外大尺度條件下的入滲過(guò)程進(jìn)行連續(xù)監(jiān)測(cè),建立由ERT監(jiān)測(cè)土壤視電阻率分布和演化數(shù)據(jù)判別試驗(yàn)區(qū)域的土壤結(jié)構(gòu)性質(zhì)空間分布特征和反演農(nóng)田土壤優(yōu)先流發(fā)生、發(fā)展和消亡全演化過(guò)程的技術(shù)與方法,為防治因水和溶質(zhì)優(yōu)勢(shì)入滲而引起資源浪費(fèi)、環(huán)境污染和工程地質(zhì)災(zāi)害提供理論參考和技術(shù)支持。
ERT試驗(yàn)在武漢大學(xué)南望山進(jìn)行(114°24'05" E,30°31'52"N),試驗(yàn)區(qū)域土壤為黏土,具體結(jié)構(gòu)性質(zhì)與水動(dòng)力參數(shù)如表1所示。電阻率層析成像試驗(yàn)示意圖如圖1所示。

表1 土壤物理及水動(dòng)力參數(shù)
試驗(yàn)前將選定的試驗(yàn)區(qū)域進(jìn)行平整,并小心地除去地表的雜草。試驗(yàn)區(qū)域平整后,人工開(kāi)挖出長(zhǎng)度為10.0 m、寬度為0.2 m、深度為0.2 m的矩形試驗(yàn)區(qū)域。目前,應(yīng)用ERT監(jiān)測(cè)土壤水分與溶質(zhì)分布研究中的測(cè)量電極間距多在0.1~10 m量級(jí)之間(如,Zieher等[22]、Oberd?rster等[23]和Vogelgesang等[24]的研究中,ERT測(cè)量電極間距分別為0.75、2.0和2.0~6.0 m);考慮到土壤優(yōu)先流的不均勻性和瞬變性,參考石素梅[25]和de Carlo等[26]的研究(測(cè)量電極間距分別為0.3 m和0.15 m),采用沿試驗(yàn)區(qū)域中心線按0.25 m等間距的布設(shè)40根ERT測(cè)量電極的布置方案,以有效和精確地捕捉農(nóng)田大尺度條件下土壤優(yōu)先流的分布特征和演化過(guò)程。ERT測(cè)量電極布置完成后,開(kāi)機(jī)掃描試驗(yàn)區(qū)域的初始視電阻分布。掃描完成后,將配置好的體積為120 L(折合入滲水深60 mm)、濃度為2.5 g/L的NaCl溶液(NaCl是一種常用的示蹤劑,其輸移運(yùn)動(dòng)與入滲水流運(yùn)動(dòng)具有極好的一致性;且NaCl作為一種強(qiáng)電解質(zhì),其分布可以明顯地改變土壤電阻率和電導(dǎo)率分布,從而易于被ERT監(jiān)測(cè)和捕捉)灌入試驗(yàn)區(qū)域。由于試驗(yàn)區(qū)域較大,灌入前先將配置好的氯化鈉溶液均分成10等份承裝在干凈的塑料小桶中,并在試驗(yàn)區(qū)域0.5~9.5 m范圍按1.0 m的間距放置10把小平鏟,將小桶承裝的NaCl溶液貼近試驗(yàn)區(qū)土壤,然后同時(shí)快速地注入到小平鏟上,通過(guò)小平鏟的緩沖作用來(lái)防止灌入的NaCl溶液沖刷試驗(yàn)區(qū)域表層土壤,避免因直接灌水造成試驗(yàn)區(qū)域土壤形成沖刷坑從而導(dǎo)致灌水集中入滲并影響試驗(yàn)精度。NaCl溶液灌入后迅速取出小平鏟并記錄試驗(yàn)開(kāi)始的時(shí)間。
由于入滲過(guò)程中NaCl溶液改變了其流經(jīng)區(qū)域土壤介質(zhì)的導(dǎo)電性(即改變了介質(zhì)的視電阻),利用通過(guò)地表布設(shè)的高密度ERT電極進(jìn)行實(shí)時(shí)掃描監(jiān)測(cè),即可獲得入滲過(guò)程中試驗(yàn)區(qū)域土壤剖面不同深度處的視電阻率變化,在此基礎(chǔ)上即可研究入滲過(guò)程中土壤優(yōu)先流的演化過(guò)程和溶質(zhì)的輸移過(guò)程。試驗(yàn)以重慶奔騰數(shù)控技術(shù)研究所研制的WDJD-3多功能數(shù)字直流激電儀為測(cè)控主機(jī),配以WDZJ-3多路轉(zhuǎn)換器構(gòu)成ERT測(cè)量系統(tǒng)。ERT野外測(cè)量試驗(yàn)及圖像處理步驟主要包括:電極布設(shè)與接線、參數(shù)設(shè)置、掃描測(cè)量、圖像處理等步驟。
1)電極布設(shè)與接線。測(cè)量開(kāi)始前,首先根據(jù)試驗(yàn)?zāi)康募皩?shí)際情況進(jìn)行電極的布設(shè)。確定好電極布設(shè)方案后,使用多芯電纜線將等間距布設(shè)的各電極與WDJD-3高密度電阻率測(cè)量系統(tǒng)試驗(yàn)主機(jī)相連并進(jìn)行調(diào)試。電極布設(shè)完成后,確定電極裝置類型及測(cè)量布置方案。本次試驗(yàn)采用溫納(Wenner)裝置[27]進(jìn)行測(cè)量。
2)參數(shù)設(shè)置。在WDJD-3主機(jī)上進(jìn)行工作參數(shù)的設(shè)定,包括測(cè)量裝置、滾動(dòng)總數(shù)、使用電極數(shù)、點(diǎn)距、間距數(shù)、剖面數(shù)。其中滾動(dòng)數(shù)需根據(jù)剖面數(shù)、間距數(shù)和使用電極數(shù)等提前計(jì)算。本次試驗(yàn)區(qū)域長(zhǎng)度10 m,共使用40根電極,電極間距為0.25 m。
3)掃描測(cè)量。使用所選擇的測(cè)量裝置自上而下分層掃描測(cè)量土壤視電阻率,其中第1層為0.125 m,相鄰兩層間距為0.125 m,最大測(cè)量深度為1.625 m(第13層),共進(jìn)行21次掃描測(cè)量。由于每次掃描測(cè)量需要一定的時(shí)間(掃描全部13層需耗時(shí)約6 min),且測(cè)量深度越大、層數(shù)越多,所耗時(shí)間也越長(zhǎng),為有效捕捉NaCl溶液的入滲過(guò)程,=0和2 min時(shí)僅掃描第1層,=5 min時(shí)掃描最上2層,=9和14 min時(shí)掃描最上4層,=20、25和30 min時(shí)掃描最上5層,=40 min時(shí)掃描最上7層,從=50 min開(kāi)始(=50、60、70、80、90、100、110、120、135、150、165、175 min)掃描全部13層,最后一次掃描測(cè)量時(shí)間為175 min。
4)ERT圖像處理。將ERT所測(cè)量的各個(gè)時(shí)刻的視電阻率數(shù)據(jù)通過(guò)BTRC2004軟件(重慶奔騰數(shù)控技術(shù)研究所)轉(zhuǎn)換為Surfer網(wǎng)格格式并導(dǎo)入Surfer 8.0程序中,按照橫縱比5∶1的克里格法,經(jīng)過(guò)白化處理后繪制視電阻率等值線圖[28]。
ERT試驗(yàn)結(jié)束后,立即在試驗(yàn)區(qū)內(nèi)按1.0 m間距用土鉆鉆取土柱,取樣深度為1.0 m。土柱取得后,沿深度方向按間距10.0 cm采集土樣。土樣采集后,用蒸餾水浸提土壤中的氯離子,然后在中性至弱堿性范圍內(nèi)(pH=6.5~10.5),以鉻酸鉀為指示劑,用硝酸銀標(biāo)準(zhǔn)滴定溶液滴定浸提液中的氯離子[29]。由所消耗的硝酸銀標(biāo)準(zhǔn)溶液的量,求得土壤中氯離子的含量。
根據(jù)ERT試驗(yàn)各監(jiān)測(cè)點(diǎn)位不同時(shí)刻的視電阻率數(shù)據(jù),繪制出試驗(yàn)區(qū)域的初始視電阻率分布(即入滲前的視電阻率分布)等值線圖及入滲過(guò)程中不同時(shí)刻剖面的視電阻率分布等值線圖分別如圖2a~k所示。
圖2a顯示,試驗(yàn)區(qū)域土壤初始視電阻率大約在23~82 Ω·m之間,且視電阻率隨著深度增加逐漸減小。這主要是因?yàn)楸韺油寥酪驗(yàn)檎舭l(fā)作用含水率較低,因而電導(dǎo)率較小、電阻率較大。圖2a同時(shí)顯示,試驗(yàn)區(qū)域=5.0~10.0 m范圍存在一個(gè)厚度自左向右逐漸增加的高視電阻率區(qū)。圖2b~k顯示,在NaCl溶液入滲過(guò)程中,試驗(yàn)區(qū)域的深層土壤視電阻率反而較其初始視電阻率小幅升高。這主要是因?yàn)樯蠈油寥辣还嗳氲腘aCl溶液濕潤(rùn)甚至是飽和,其導(dǎo)電性顯著增強(qiáng)、視電阻率劇烈下降;而深層土壤或因入滲NaCl溶液尚未被傳導(dǎo)至本層而保持原來(lái)的導(dǎo)電性,或因入滲的NaCl溶液量較少而使得導(dǎo)電性增幅較小;由于供電電流優(yōu)先選擇從電阻率低、導(dǎo)電性強(qiáng)的上層土壤直接流過(guò),導(dǎo)致深部土壤中的電流降低,因而視電阻率反而小幅度升高(這也是ERT測(cè)量的是土壤視電阻率而不是真實(shí)電阻率的原因)。
對(duì)比圖2a和圖2b~k可知,試驗(yàn)區(qū)域=5.0~10.0 m范圍土層中的視電阻率在灌入NaCl溶液后明顯降低(相對(duì)于其初始視電阻率),但仍明顯高于=0~5.0 m范圍相同深度處土層的視電阻率,尤其是在灌入NaCl溶液后的20 min內(nèi)。該結(jié)果表明ERT監(jiān)測(cè)土壤剖面的結(jié)構(gòu)性質(zhì)不均勻,其中=5.0~10.0 m范圍土層較=0~5.0 m范圍土層更為密實(shí),使得入滲的NaCl溶液并未向=5.0~10.0 m范圍的深層土壤迅速運(yùn)動(dòng),從而導(dǎo)致入滲過(guò)程中該范圍的土壤視電阻率均高于=0~5.0 m范圍相同深度處的土壤視電阻率。由于土壤電阻率隨著土壤孔隙比的減?。赐寥涝矫軐?shí))而增大[30],因此,試驗(yàn)區(qū)域=5.0~10.0 m范圍的土壤初始視電阻率高于=0~5.0 m范圍的土壤初始視電阻率(如圖2a所示)。
圖2a顯示,雖然試驗(yàn)區(qū)域=5.0~10.0 m范圍的土壤初始視電阻率自左向右增大,但試驗(yàn)區(qū)域的土壤初始視電阻率分布在水平方向上總體變化不大但沿深度方向則明顯降低。圖2b~k顯示,入滲過(guò)程中視電阻率小于20 Ω·m的土壤低視電阻率區(qū)始終出現(xiàn)在試驗(yàn)區(qū)域表層,而不存在自試驗(yàn)區(qū)域表層向下延伸至試驗(yàn)區(qū)域深層或貫穿整個(gè)試驗(yàn)區(qū)域的視電阻率小于20 Ω·m的低視電阻率區(qū)(路徑或通道)。以上結(jié)果表明ERT監(jiān)測(cè)試驗(yàn)剖面中不存在明顯的大孔隙流通道。因?yàn)椋寥来罂紫妒撬骱腿苜|(zhì)天然的優(yōu)勢(shì)輸移路徑,入滲水和溶質(zhì)在通過(guò)土壤大孔隙進(jìn)行集中輸移時(shí),將引起優(yōu)先流通道范圍內(nèi)的土壤視電阻率明顯降低,而這一現(xiàn)象并未在試驗(yàn)過(guò)程中觀測(cè)到,即便是在ERT所監(jiān)測(cè)的入滲開(kāi)始前期的2、5、9、14和20 min的土壤視電阻率分布圖中也未能觀測(cè)到(如圖 2b~f所示)。這可能是因?yàn)樵囼?yàn)場(chǎng)地平整時(shí)清除了表層40~60 cm的土壤和植物根系,從而消除了土壤干縮裂縫和大孔隙。李萼等[31-34]在本試驗(yàn)區(qū)域附近所開(kāi)展的示蹤試驗(yàn)也清除了試驗(yàn)區(qū)域表層20~40 cm的土壤和作物根系,這些研究成果也均顯示其所在試驗(yàn)區(qū)域的土壤在清除表層土壤后均不存在明顯的土壤大孔隙。
圖2a同時(shí)顯示,盡管試驗(yàn)區(qū)域的土壤初始視電阻率分布不均勻(尤其是表層土壤中的初始視電阻率),但除=6.0~10.0 m范圍表層0.5 m厚度的局部區(qū)域外,整個(gè)剖面其他區(qū)域的視電阻率等值線均連續(xù)分布且不封閉。而圖2b~f卻顯示,灌入NaCl溶液后的前20 min內(nèi),=0~5.0 m范圍的低視電阻率區(qū)隨著入滲時(shí)間的延長(zhǎng)向深層土壤迅速拓展,而=5.0~10.0 m范圍的低視電阻率區(qū)雖也向下發(fā)展變厚但總體厚度仍相對(duì)較小,由此導(dǎo)致原來(lái)連續(xù)且沿方向波動(dòng)變化不大的初始視電阻率等值線波動(dòng)幅度變大并在=4.0~5.0 m區(qū)間(也即剖面初始視電阻率分布圖(圖2a)中的高視電阻率區(qū)域外圍邊緣附近)向下明顯突出(如圖2d~f所示)。隨著流動(dòng)的進(jìn)一步發(fā)展,原來(lái)連續(xù)分布的視電阻率等值線在=4.0~5.0 m區(qū)間最終被分割開(kāi)來(lái)(如圖2g~k所示)。以上結(jié)果表明在試驗(yàn)區(qū)域=4.0~5.0 m區(qū)間的土壤中形成了明顯的優(yōu)先流通道。造成這一現(xiàn)象的主要原因是試驗(yàn)區(qū)域=5.0~10.0 m范圍的土壤比=0~5.0 m范圍的土壤更為密實(shí)。由于密實(shí)區(qū)的土壤導(dǎo)水性能較弱,施加于其上的NaCl溶液入滲困難,從而導(dǎo)致灌入的NaCl溶液沿著其與疏松區(qū)(=0~5.0 m范圍)的邊緣并在疏松區(qū)(=4.0~5.0 m區(qū)間)土壤中進(jìn)行優(yōu)勢(shì)運(yùn)移(即導(dǎo)致土壤優(yōu)先流的形成)。根據(jù)優(yōu)先流表現(xiàn)形式分類,該種優(yōu)先流形態(tài)為非均質(zhì)指流。
指流是由于入滲濕潤(rùn)鋒在發(fā)展過(guò)程中不穩(wěn)定,原來(lái)均勻的濕潤(rùn)鋒受擾動(dòng)被“撕裂”成一個(gè)個(gè)柱狀流動(dòng)路徑,從而形成優(yōu)先流運(yùn)動(dòng)形式[35],在非均質(zhì)土壤和均質(zhì)土壤中都可形成。由于入滲土壤的非均質(zhì)性,原本均勻施加于土表的NaCl溶液在試驗(yàn)區(qū)域的=5.0~10.0 m范圍無(wú)法被迅速傳到至深層土壤,在其緩慢下滲的同時(shí)向左側(cè)(=0~5.0 m范圍)流動(dòng);當(dāng)側(cè)向水流運(yùn)動(dòng)到臨近的土壤疏松區(qū)時(shí)(即=4.0~5.0 m區(qū)間),對(duì)該區(qū)域的入滲濕潤(rùn)鋒產(chǎn)生擾動(dòng)從而導(dǎo)致入滲濕潤(rùn)鋒不穩(wěn)定并進(jìn)而發(fā)展形成指狀優(yōu)先流(指流)??紫檠訹36]也指出,土壤作為一種多孔介質(zhì)是不可能完全均質(zhì)的,當(dāng)土壤介質(zhì)中某一點(diǎn)鄰域的滲透性比周圍區(qū)域高時(shí),會(huì)在該點(diǎn)處的入滲濕潤(rùn)鋒產(chǎn)生一個(gè)“突點(diǎn)”(即產(chǎn)生一個(gè)微小的擾動(dòng),使入滲濕潤(rùn)鋒向前略微“突出”);若此微小擾動(dòng)能隨時(shí)間增大而衰減(水量補(bǔ)充不足),則入滲濕潤(rùn)鋒是穩(wěn)定的(即不會(huì)產(chǎn)生指流);若此微小擾動(dòng)能隨時(shí)間增大而增強(qiáng)(水量補(bǔ)充充足),這種微小的擾動(dòng)將迅速增長(zhǎng),從而使得“突點(diǎn)”以“手指狀”迅速向前延伸,即產(chǎn)生指流現(xiàn)象。本研究中試驗(yàn)區(qū)域右側(cè)(=5.0~10.0 m范圍)的土壤密實(shí)、滲透性差,該區(qū)域上所施加的NaCl溶液側(cè)向補(bǔ)充“突點(diǎn)”,使得擾動(dòng)放大并最終導(dǎo)致了優(yōu)先流通道(指流)的形成。由于灌入的NaCl溶液集中在優(yōu)先流通道中快速輸移,優(yōu)先流通道中的土壤含水率和溶質(zhì)濃度明顯高于通道兩側(cè)的基質(zhì)區(qū)土壤中的含水率和溶質(zhì)濃度,從而顯著降低了優(yōu)先流通道區(qū)域的土壤視電阻率并將原來(lái)連續(xù)的視電阻率等值線分割開(kāi)來(lái)。
圖2b~h顯示,試驗(yàn)區(qū)域=0~5.0 m范圍的低電阻率土層厚度在灌入NaCl溶液后的9 min內(nèi)迅速增大,而在灌入NaCl溶液9 min后又迅速減小,并在灌入NaCl溶液后30 min時(shí)其厚度下降到與=5.0~10.0 m范圍的低視電阻率土層厚度近乎相等(但仍略大)。以上結(jié)果表明,監(jiān)測(cè)土壤剖面中的優(yōu)勢(shì)入滲通道在灌入NaCl溶液9 min后開(kāi)始形成,并迅速將入滲的NaCl溶液迅速傳導(dǎo)至深層土壤,從而導(dǎo)致=0~5.0 m范圍上層土壤的視電阻率升高、低視電阻率土層厚度減小。進(jìn)一步對(duì)比=9、14、20和40 min的剖面視電阻率分布圖(如圖2d~h所示)可知,入滲的NaCl溶液在試驗(yàn)區(qū)域=2.0~3.0 m和=4.0~5.0 m兩個(gè)區(qū)間各產(chǎn)生了一個(gè)入滲濕潤(rùn)鋒“突點(diǎn)”;其中,=2.0~3.0 m區(qū)間的入滲濕潤(rùn)鋒“突點(diǎn)”在入滲前期發(fā)育相對(duì)更為明顯(如圖2d所示)。然而,由于試驗(yàn)區(qū)域=5.0~10.0 m范圍土壤密實(shí)、滲透性差,施加于該區(qū)域的NaCl溶液側(cè)向流向疏松區(qū)并補(bǔ)充“突點(diǎn)”,使得與其臨近的=4.0~5.0 m區(qū)間的入滲濕潤(rùn)鋒“突點(diǎn)”擾動(dòng)放大并最終導(dǎo)致了優(yōu)先流通道(指流)在該區(qū)間(=4.0~5.0 m)形成。由于優(yōu)先流通道最終在=4.0~5.0 m區(qū)間發(fā)育形成,=2.0~3.0 m區(qū)間的入滲濕潤(rùn)鋒“突點(diǎn)”因水量補(bǔ)充不足(入滲NaCl溶液側(cè)向補(bǔ)充在=4.0~5.0 m區(qū)間形成的優(yōu)先流通道)而衰減退化成基質(zhì)流。因此,隨著NaCl溶液入滲的進(jìn)一步發(fā)展,=2.0~3.0 m區(qū)間的入滲濕潤(rùn)鋒“突點(diǎn)”逐漸消退而=4.0~5.0 m區(qū)間的入滲濕潤(rùn)鋒“突點(diǎn)”則始終較為明顯(如圖2e~h所示)。該結(jié)果進(jìn)一步表明監(jiān)測(cè)土壤剖面中的優(yōu)先流通道在灌入NaCl溶液9~14 min已完全形成。
圖2i~k顯示,試驗(yàn)區(qū)域上層土壤中原來(lái)被優(yōu)先流通道割裂的視電阻率等值線在灌入NaCl溶液60 min后重新恢復(fù)成連續(xù)分布狀態(tài),且整個(gè)剖面的視電阻率分布(=60 min)與之后=100和175 min的視電阻率分布無(wú)明顯差異。該結(jié)果表明=4.0~5.0 m區(qū)間的土壤優(yōu)先流通道在灌入NaCl溶液60 min時(shí)已完全消退,優(yōu)先流完全退化成基質(zhì)流。而深部土壤(=0.8~1.4 m、=3.3~5.1 m)中長(zhǎng)時(shí)間存在一個(gè)塊狀的低視電阻率區(qū)(如圖2i~k中呈環(huán)狀分布的視電阻率為30 Ω·m的等值線)也表明優(yōu)先流通道此時(shí)已經(jīng)消退,正是由于基質(zhì)流較低的導(dǎo)水能力才使得這一低視電阻率區(qū)能夠長(zhǎng)時(shí)間的維持。同時(shí),這也從另一個(gè)方面證明了該監(jiān)測(cè)土壤剖面中的優(yōu)先流類型為指流而非大孔隙流,因?yàn)橥寥来罂紫秾?duì)入滲水和溶質(zhì)具有極高的傳導(dǎo)能力并對(duì)在其中輸移的水和溶質(zhì)產(chǎn)生屏蔽作用[37],且大孔隙不會(huì)在水流傳導(dǎo)完畢后消失,因此不會(huì)在大孔隙發(fā)育位置滯蓄入滲的NaCl溶液并形成低電阻率區(qū)。
根據(jù)實(shí)驗(yàn)室實(shí)測(cè)的土壤Cl-濃度及其對(duì)應(yīng)位置上的視電阻率,繪制土壤視電阻率和Cl-濃度關(guān)系箱型圖如圖3所示(以Cl-濃度增量50 mg/L為一區(qū)間)。
由圖3可知,整體上土壤視電阻率隨Cl-濃度的增加呈下降趨勢(shì),且區(qū)間統(tǒng)計(jì)的視電阻率平均值、中位數(shù)、上下邊緣點(diǎn)等統(tǒng)計(jì)量均隨著Cl-濃度增加而下降。這是因?yàn)橥寥离妼?dǎo)主要來(lái)自于其中的土壤水及其所溶解的溶質(zhì)(即土壤溶液);土壤含水率越高、土壤水中帶電離子濃度越大,其導(dǎo)電效率越強(qiáng)、視電阻率越低;其中,土壤溶液中的強(qiáng)電解質(zhì)(NaCl)對(duì)土壤電導(dǎo)率的影響更為顯著。此外,隨著Cl-濃度的增加,各區(qū)間視電阻率的變化幅度減?。划?dāng)Cl-濃度大于150 mg/L時(shí),視電阻率集中分布在16~17 Ω·m之間。以上結(jié)果表明,當(dāng)Cl-濃度較低的時(shí)候,視電阻率的變化對(duì)Cl-濃度的變化敏感;而隨著Cl-濃度的增大,視電阻率不斷減小并趨于一定值,對(duì)Cl-濃度的變化不敏感。一些研究成果[38-39]也表明溶液的電導(dǎo)率與溶液離子濃度成正比(即離子濃度與電阻率成反比);且當(dāng)離子濃度較小時(shí),電阻率隨著離子濃度的變化而迅速變化;而當(dāng)離子濃度足夠大時(shí),電阻率則逐漸趨近于定值。
根據(jù)圖3中視電阻率與土壤水Cl-濃度的關(guān)系,分別采用冪函數(shù)和指數(shù)函數(shù)擬合出采樣位置的土壤Cl-濃度與對(duì)應(yīng)點(diǎn)位的視電阻率之間的相關(guān)關(guān)系成果如表2所示。表2顯示,按冪函數(shù)關(guān)系來(lái)建立起來(lái)的土壤視電阻率和Cl-濃度相關(guān)關(guān)系具有更高的精度(2=0.690、NSE= 0.883)。采用擬合的土壤Cl-濃度與視電阻率之間的冪函數(shù)關(guān)系,由最末監(jiān)測(cè)時(shí)刻(=175 min)的剖面土壤視電阻率分布反演出該時(shí)刻的剖面土壤Cl-濃度分布如圖 4所示。

表2 視電阻率和Cl-濃度關(guān)系擬合結(jié)果
注:為視電阻率,Ω·m;為Cl-濃度,mg·L-1;**表示顯著性水平<0.01。
Note:is apparent electrical resistivity, Ω·m;is concentration of Cl-, mg·L-1; ** represents significance at 0.01 level.
對(duì)比圖4a(剖面視電阻率分布圖)和圖4b(按冪函數(shù)相關(guān)關(guān)系反演出的Cl-濃度分布圖)可知,按冪函數(shù)關(guān)系反演出的最末監(jiān)測(cè)時(shí)刻(=175 min)的剖面土壤Cl-濃度分布與該時(shí)刻的剖面土壤視電阻率分布較為一致。如,圖 4b中的Cl-濃度等值線走勢(shì)和低Cl-濃度區(qū)域分布分別與圖 4a中的視電阻等值線走勢(shì)和高視電阻率區(qū)域分布較為一致;在圖4a深部(=0.8~1.4 m、=3.3~5.1 m)土壤中存在一個(gè)塊狀的低視電阻率區(qū),而圖4b的該區(qū)域也存在一個(gè)形狀相似、范圍大小接近的高Cl-濃度區(qū)。此外,圖4b也表明在NaCl溶液的入滲過(guò)程中,在試驗(yàn)區(qū)域=4.0~5.0 m區(qū)間的土壤中形成了明顯的優(yōu)先流通道,從而使得該范圍內(nèi)土壤中的Cl-濃度相對(duì)于相同深度上其他區(qū)域土壤中的Cl-濃度明顯偏高,與前文分析一致。
土壤視電阻率影響因素眾多,包括土壤類型、物質(zhì)組成、孔隙率與孔隙結(jié)構(gòu)、含水率和溶質(zhì)濃度等內(nèi)在因素和季節(jié)(溫度、濕度)、自然電場(chǎng)、測(cè)量?jī)x器與測(cè)量方法(電極布置位置、間距和深度)等外在因素[40]。其中,土壤含水率和溶質(zhì)濃度是最重要的影響因素[41]。但視電阻與土壤含水率之間的關(guān)系非常復(fù)雜,目前常用Archie公式[42]來(lái)擬合視電阻率與土壤含水率之間的函數(shù)關(guān)系。然而,Archie公式不僅涉及的參數(shù)眾多,而且部分參數(shù)測(cè)定極為困難(如黏土體積百分比),因此,自Archie公式提出以來(lái)人們都在不斷的研究和改進(jìn)該公式。此外,由于土壤的非均質(zhì)性,Archie公式所需的參數(shù)(黏土體積百分比)需要在試驗(yàn)區(qū)域上布設(shè)較多的采樣點(diǎn),不僅勞動(dòng)強(qiáng)度大而且破壞了監(jiān)測(cè)土壤剖面的原狀結(jié)構(gòu)。而由圖3和圖4可知,土壤視電阻率與溶質(zhì)(Cl-)濃度之間的關(guān)系好、形式簡(jiǎn)單,(按冪函數(shù)關(guān)系)反演出來(lái)的Cl-濃度分布與土壤視電阻分布具有較好的一致性且符合實(shí)際情況。由于土壤優(yōu)先流一旦形成,土壤滯后作用(指流)、大孔隙(大孔隙流)、土壤管道(管道流)或土壤中的粗土斜夾層(漏斗流)將引起入滲水流沿著相同路徑(優(yōu)先流通道)重復(fù)發(fā)生[43],因此,ERT監(jiān)測(cè)強(qiáng)電解質(zhì)溶液(如NaCl溶液)入滲過(guò)程的土壤視電阻率變化可有效用于土壤優(yōu)先流(位置和過(guò)程)識(shí)別。
1)土壤介質(zhì)特性影響入滲溶液的流動(dòng)與分布,而入滲溶液的流動(dòng)與分布又反過(guò)來(lái)影響土壤介質(zhì)的電導(dǎo)率和電阻率。因此,通過(guò)對(duì)比分析入滲前后電阻率層析成像技術(shù)(Electrical Resistivity Tomography,ERT)監(jiān)測(cè)土壤剖面的視電阻率分布,可對(duì)試驗(yàn)區(qū)域的土壤結(jié)構(gòu)性質(zhì)分布特征進(jìn)行分析研究。本文試驗(yàn)所監(jiān)測(cè)的土壤剖面結(jié)構(gòu)性質(zhì)不均勻,其中,水平方向0~5.0 m范圍為剖面土壤疏松區(qū),水平方向5.0~10.0 m范圍為剖面土壤密實(shí)區(qū)。
2)入滲溶液沿優(yōu)勢(shì)入滲通道運(yùn)動(dòng),顯著地改變了剖面土壤的電導(dǎo)率和視電阻率分布;且隨著優(yōu)先流的發(fā)展,剖面土壤電導(dǎo)率和視電阻率分布也隨之進(jìn)行演變。因此,通過(guò)對(duì)比分析ERT監(jiān)測(cè)土壤剖面不同時(shí)刻的視電阻率分布,可對(duì)入滲過(guò)程中試驗(yàn)區(qū)域的優(yōu)先流類型、發(fā)育位置和演變過(guò)程進(jìn)行識(shí)別和研究。本文所開(kāi)展的ERT監(jiān)測(cè)NaCl溶液入滲過(guò)程試驗(yàn)中,灌入的NaCl溶液在土壤密實(shí)區(qū)外緣水平方向4.0~5.0 m區(qū)間的土壤疏松區(qū)中以非均質(zhì)指流形式進(jìn)行優(yōu)勢(shì)輸移,指流通道在灌入NaCl溶液9~14 min內(nèi)完全形成,在灌入NaCl溶液60 min時(shí)完全退化成土壤基質(zhì)流。
3)采用冪函數(shù)關(guān)系建立的視電阻率和Cl-濃度之間的相關(guān)方程具有較好的精度(2=0.690),按冪函數(shù)關(guān)系反演出來(lái)的剖面土壤Cl-濃度分布與實(shí)測(cè)剖面土壤視電阻率分布較為一致,表明冪函數(shù)可用于建立土壤視電阻率和Cl-濃度之間的關(guān)系。由于土壤視電阻率與土壤溶質(zhì)濃度之間較好的冪函數(shù)關(guān)系,采用ERT監(jiān)測(cè)強(qiáng)電解質(zhì)溶液的入滲過(guò)程可有效用于土壤優(yōu)先流位置與過(guò)程的識(shí)別。
[1] ?im?nek J, Jarvis N J, van Genuchten M T, et al. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone[J]. Journal of Hydrology, 2003, 272(1/2/3/4): 14-35.
[2] Zhu X A, Chen C F, Wu J E, et al. Can intercrops improve soil water infiltrability and preferential flow in rubber-based agroforestry system?[J]. Soil and Tillage Research, 2019, 191: 327-339.
[3] 盛豐,張敏,薛如霞,等. 灌溉水中鹽分對(duì)土壤結(jié)構(gòu)性質(zhì)及水流運(yùn)動(dòng)特征的影響[J]. 水利學(xué)報(bào),2019,50(3):346-355.
Sheng Feng, Zhang Min, Xue Ruxia, et al. Effects of salt in irrigation water on soil structural properties and water flow characteristics[J]. Journal of Hydraulic Engineering, 2019, 50(3): 346-355. (in Chinese with English abstract)
[4] 孫虹蕾. 三峽庫(kù)區(qū)消落帶土壤鎘污染特性及其遷移行為研究[D]. 成都:西南交通大學(xué),2018.
Sun Honglei. Study on Cd Pollution Property and Migratory Behavior in the Soil of Water Level Fluctuating Zone of the Three Gorges Reservoir[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese with English abstract)
[5] 張文杰,李俊濤. 優(yōu)先流作用下的膠體-重金屬共遷移試驗(yàn)研究[J]. 巖土工程學(xué)報(bào),2020,42(1):46-52.
Zhang Wenjie, Li Juntao. Investigation of co-migration of heavy metal with colloid under preferential flow[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 46-52. (in Chinese with English abstract)
[6] Quinn R, Dussaillant A. The impact of macropores on heavy metal retention in sustainable drainage systems[J]. Hydrology Research, 2018, 49(2): 517-527.
[7] 吳楠楠,郭楚文,夏爽. 垃圾填埋場(chǎng)滲濾液運(yùn)移規(guī)律分析與模擬[J]. 環(huán)境工程學(xué)報(bào),2009,3(9):1602-1606.
Wu Nannan, Guo Chuwen, Xia Shuang. Analysis and numerical simulation on leachate transport in municipal solid waste landfill[J]. Chinese Journal of Environmental Engineering, 2009, 3(9): 1602-1606. (in Chinese with English abstract)
[8] 柯瀚,胡杰,吳小雯,等. 豎井抽水下垃圾填埋場(chǎng)滲濾液運(yùn)移規(guī)律研究[J]. 巖土工程學(xué)報(bào),2018,40(5):786-793.
Ke Han, Hu Jie, Wu Xiaowen, et al. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. (in Chinese with English abstract)
[9] 柯瀚,吳小雯,張俊,等. 基于優(yōu)勢(shì)流及各向異性隨上覆壓力變化的填埋體飽和滲流模型[J]. 巖土工程學(xué)報(bào),2016,38(11):1957-1964.
Ke Han, Wu Xiaowen, Zhang Jun, et al. Modeling saturated permeability of municipal solid waste based on compression change of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese with English abstract)
[10] 牛健植,余新曉,張志強(qiáng). 優(yōu)先流研究現(xiàn)狀及發(fā)展趨勢(shì)[J]. 生態(tài)學(xué)報(bào),2006,26(1):231-243.
Niu Jianzhi, Yu Xinxiao, Zhang Zhiqiang. The present and future research on preferential flow[J]. Acta Ecologica Sinica, 2006, 26(1): 231-243. (in Chinese with English abstract)
[11] 盛豐,張利勇,吳丹. 土壤優(yōu)先流模型理論與觀測(cè)技術(shù)的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(6):1-10.
Sheng Feng, Zhang Liyong, Wu Dan. Review on research theories and observation techniques for preferential flow in unsaturated soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(6): 1-10. (in Chinese with English abstract)
[12] Morris C, Mooney S. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers[J]. Geoderma, 2004, 118(1/2): 133-143.
[13] Weiler M, Flühler H. Inferring flow types from dye patterns in macroporous soils[J]. Geoderma, 2004, 120(1/2): 137-153.
[14] 徐宗恒,徐則民,曹軍尉,等. 土壤優(yōu)先流研究現(xiàn)狀與發(fā)展趨勢(shì)[J]. 土壤,2012,44(6):905-916.
Xu Zongheng, Xu Zemin, Cao Junwei, et al. Present and future research of preferential flow in soil[J]. Soils, 2012, 44(6): 905-916. (in Chinese with English abstract)
[15] Germann P F, Di Pietro L. Scales and dimensions of momentum dissipation during preferential flow in soils[J]. Water Resources Research, 1999, 35(5): 1443-1454.
[16] Mooney S J, Morris C. A morphological approach to understanding preferential flow using image analysis with dye tracers and X-ray computed tomography[J]. Catena, 2008, 73(2): 204-211.
[17] 馮銳,李智明,李志武,等. 電阻率層析成像技術(shù)[J]. 中國(guó)地震,2004,20(1):13-30.
Feng Rui, Li Zhiming, Li Zhiwu, et al. Electrical resistivity tomography[J]. Earthquake Research in China, 2004, 20(1): 13-30. (in Chinese with English abstract)
[18] 張剛. 電阻率法層析成像研究及其應(yīng)用[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京),2015.
Zhang Gang. Research and Application of Electrical Resistivity Tomography[D]. Beijing: China University of Geosciences (Beijing), 2015. (in Chinese with English abstract)
[19] 李鑫,盧玉東,范文,等. 黃土斜坡優(yōu)先流促滑機(jī)理研究現(xiàn)狀及展望[J]. 水土保持通報(bào),2019,39(1):294-301.
Li Xin, Lu Yudong, Fan Wen, et al. Current status and prospects of research on mechanism of preferential flow-induced sliding in loess slope[J]. Bulletin of Soil and Water Conservation, 2019, 39(1): 294-301. (in Chinese with English abstract)
[20] Dehkordy F M, Briggs M A, Day-Lewis F D, et al. Multi-scale preferential flow processes in an urban streambed under variable hydraulic conditions[J]. Journal of Hydrology, 2019, 573: 168-179.
[21] Allaire S E, Roulier S, Cessna A J. Quantifying preferential flow in soils: A review of different techniques[J]. Journal of Hydrology, 2009, 378(1/2): 179-204.
[22] Zieher T, Markart G, Ottowitz D, et al. Water content dynamics at plot scale-comparison of time-lapse electrical resistivity tomography monitoring and pore pressure modelling[J]. Journal of Hydrology, 2017, 544: 195-209.
[23] Oberd?rster C, Vanderborght J, Kemna A, et al. Investigating preferential flow processes in a forest soil using time domain reflectometry and electrical resistivity tomography[J]. Vadose Zone Journal, 2010, 9(2): 350-361
[24] Vogelgesang J A, Holt N, Schilling K E, et al. Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers[J/OL]. Journal of Hydrology, 2020, 580. 2020-01-01, https: //doi. org/10. 1016/j. jhydrol. 2019. 123992.
[25] 石素梅. ERT 與染色示蹤方法在土壤入滲監(jiān)測(cè)中的應(yīng)用[D]. 青島:青島大學(xué),2017.
Shi Sumei. Application of ERT and Dye Tracing Method in Monitoring Soil Water Infiltration[D]. Qingdao: Qingdao University, 2017. (in Chinese with English abstract)
[26] de Carlo L, Battilani A, Solimando D, et al. Application of time-lapse ERT to determine the impact of using brackish wastewater for maize irrigation[J/OL]. Journal of Hydrology, 2020, 582, 2020-05-01, https: //doi. org/10. 1016/j. jhydrol. 2019. 124465.
[27] Edwards L. A modified pseudosection for resistivity and IP[J]. Geophysics, 1977, 42(5): 1020-1036.
[28] Schwartz B F, Schreiber M E, Yan T. Quantifying field-scale soil moisture using electrical resistivity imaging[J]. Journal of Hydrology, 2008, 362(3/4): 234-246.
[29] 中華人民共和國(guó)農(nóng)業(yè)部. NY/T 1378-2007土壤氯離子含量的測(cè)定[S]. 北京:中國(guó)農(nóng)業(yè)出版社,2007.
[30] 郭秀軍,劉濤,賈永剛,等. 土的工程力學(xué)性質(zhì)與其電阻率關(guān)系實(shí)驗(yàn)研究[J]. 地球物理學(xué)進(jìn)展,2003,18(1):151-155.
Guo Xiujun, Liu Tao, Jia Yonggang, et al. The study of the relationship between engineering mechanical properties and resistivity of soils[J]. Progress in Geophysics, 2003, 18(1): 151-155. (in Chinese with English abstract)
[31] 李萼,王康,張仁鐸,等. 非均勻流動(dòng)示蹤試驗(yàn)及活動(dòng)性流場(chǎng)模型的應(yīng)用[J]. 土壤學(xué)報(bào),2009,46(1):39-47.
Li E, Wang Kang, Zhang Renduo, et al. Tracer experiment and application of active region model for heterogeneous soil water flow[J]. Acta Pedologica Sinica, 2009, 46(1): 37-45. (in Chinese with English abstract)
[32] 盛豐,王康,張仁鐸,等. 田間尺度下土壤水流非均勻運(yùn)動(dòng)特征的染色示蹤研究[J]. 水利學(xué)報(bào),2009,40(1):101-108.
Sheng Feng, Wang Kang, Zhang Renduo, et al. Study on heterogeneous characteristics of soil water flow in field by dye tracing method[J]. Journal of Hydraulic Engineering, 2009, 40(1): 101-108. (in Chinese with English abstract)
[33] 盛豐,王康,張仁鐸,等. 土壤非均勻水流運(yùn)動(dòng)與溶質(zhì)運(yùn)移的兩區(qū)-兩階段模型[J]. 水利學(xué)報(bào),2015,46(4): 59-68, 77.
Sheng Feng, Wang Kang, Zhang Renduo, et al. Modeling the heterogeneous soil water flow and solute transport by two-region-two-stage model[J]. Journal of Hydraulic Engineering, 2015, 46(4): 59-68, 77. (in Chinese with English abstract)
[34] Sheng F, Kang W, Zhang R, et al. Characterizing soil preferential flow using iodine-starch staining experiments and the active region model[J]. Journal of Hydrology, 2009, 367(1/2): 115-124.
[35] Glass R, Steenhuis T, Parlange J Y. Wetting front instability as a rapid and far-reaching hydrologic process in the vadose zone[J]. Journal of Contaminant Hydrology, 1988, 3(2/3/4): 207-226.
[36] 孔祥言. 高等滲流力學(xué)[M]. 北京:中國(guó)科學(xué)技術(shù)大學(xué)出版社,2000.
[37] Alaoui A, Goetz B. Dye tracer and infiltration experiments to investigate macropore flow[J]. Geoderma, 2008, 144(1/2): 279-286.
[38] 陶燕雨. 不同電極電滲過(guò)程比較及基于電導(dǎo)率電滲排水量計(jì)算方法[D]. 杭州:浙江大學(xué),2015.
Tao Yanyu. Electro-osmotic Process under Different Electrode Materials and a Novel Method for Discharge Calculation Based on Electrical Conductivity[D]. Hangzhou: Zhejiang University, 2015. (in Chinese with English abstract)
[39] 劉廣明,楊勁松. 土壤含鹽量與土壤電導(dǎo)率及水分含量關(guān)系的試驗(yàn)研究[J]. 土壤通報(bào),2001,32(增刊1):85-87.
Liu Guangming, Yang Jinsong. Study on the correlation of soil salt content with electric conductivity and soil water content[J]. Chinese Journal of Soil Science, 2001, 32(S1): 85-87. (in Chinese with English abstract)
[40] 梁小龍. 應(yīng)用電阻率層析成像和探地雷達(dá)技術(shù)探測(cè)樹(shù)木根系分布[D]. 合肥:中國(guó)科學(xué)技術(shù)大學(xué),2016.
Liang Xiaolong. Application of Electrical Resistivity Tomography and Ground Penetrating Radar to Detect Root Distribution of Trees[D]. Hefei: University of Science and Technology of China, 2016. (in Chinese with English abstract)
[41] Calamita G, Brocca L, Perrone A, et al. Electrical resistivity and TDR methods for soil moisture estimation in central Italy test-sites[J]. Journal of Hydrology, 2012, 454/455: 101-112.
[42] Archie G. The electrical resistivity log as an aid in determining some reservoir characteristics[J]. Transactions of the AIME, 1942, 146(1): 54-62.
[43] Ritsema C J, Dekker L W, Nieber J L, et al. Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil[J]. Water Resources Research, 1998, 34(4): 555-567.
In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology
Sheng Feng1,2,3, Wen Ding1,2, Xiong Yiwei1,3, Wang Kang4
(1.,&,410114,; 2.,410114,; 3.,410114,; 4.,430072,)
Preferential flow, which contributes to the rapid water flow and solute transport in unsaturated soils, is common in the natural unsaturated soils. Preferential flow allows irrigated water and applied agriculture chemicals to move through unsaturated zone to groundwater table quickly with limited degradation and filtration, increasing the losses of applied resources and energy, and making the groundwater under high contamination risks. The non-equilibrium water movement, via preferential flow channel, to deep soil or even groundwater is one of the important factors inducing engineering and geological disasters such as land subsidence and collapse, landslide, debris flow and mountain collapse. However, the capturing of its dynamic process, especially the identification and judgment on the type, position and evolution of preferential flow without destroying soil structure, is still the hot topic and hard nut to crack in both science and technology all over the world. In this research, Electrical Resistivity Tomography (ERT) was applied to monitor the filed infiltration process of NaCl solution in situ. The distribution and change of apparent electrical resistivity of the monitored soil profile was measured at different time during infiltration. And the distribution of Cl-concentration of the monitored soil profile was analyzed in laboratory by soil sampling after infiltration. Based on these measured data, the heterogeneous distribution characteristics of soil structure, and the position, type and evolution of preferential flow in the monitored soil profile were analyzed and identified. Besides, the relationship between apparent electrical resistivity and Cl-concentration of the monitored soil profile was analyzed to evaluate the precision of applying ERT to identify preferential infiltration. The results showed that soil structure and properties affected the movement and distribution of applied NaCl solution, on the contrary, the movement and distribution of applied NaCl solution also affected the soil electrical conductivity and resistivity. Thus, the distribution characteristics of soil structure and properties were able to be detected by comparing the ERT monitored distribution of soil electrical resistivity before and after infiltration. The structure of the soil profile monitored by ERT was not uniform, with the soil within the horizontal direction of 5.0-10.0 m being much denser than that within the horizontal direction of 0-5.0 m. The preferential flow channel that constrained the applied NaCl solution with a greater concentration obviously changed the distributions of soil electrical conductivity and resistivity. And the distributions of soil electrical conductivity and resistivity changed as the preferential flow developed. Thus, the kind, generation position and evolution process of preferential flow were able to be detected by comparing the ERT monitored distribution of soil electrical resistivity at different time during the preferential flow process. During the infiltration process, a heterogeneous fingering flow was developed in the loose soil area within the horizontal direction of 4.0-5.0 m. The fingering channel was completely formed during 9-14 minutes after the application of NaCl solution to the monitored soil surface, and the preferential flow completely degraded to matrix flow no late than 60 minutes after the application of NaCl solution to the monitored soil surface. Power function was capable of establishing relationship equation between apparent electrical resistivity monitored by ERT and the measured Cl-concentration of the monitored soil profile (the coefficient of determination of 0.690). As the preferential flow repeated along the same path once the preferential flow was formed, the ERT monitoring the infiltration process of NaCl solution was of good efficiency in identifying the position and evolution of preferential flow in engineering and geology survey. This results provide valuable information for the prevention and control of losses of applied resources and energy, groundwater contamination and engineering and geological disasters caused by preferential soil water flow.
infiltration; soils; farmland; electrical resistivity tomography; apparent electrical resistivity; preferential flow; fingering flow; in-situ monitoring
盛豐,文鼎,熊祎瑋,等. 基于電阻率層析成像技術(shù)的農(nóng)田土壤優(yōu)先流原位動(dòng)態(tài)監(jiān)測(cè)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2021,37(8):117-124.doi:10.11975/j.issn.1002-6819.2021.08.013 http://www.tcsae.org
Sheng Feng, Wen Ding, Xiong Yiwei, et al. In-situ monitoring of preferential soil water flow with electrical resistivity tomography technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(8): 117-124. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.08.013 http://www.tcsae.org
2020-10-16
2021-03-10
國(guó)家自然科學(xué)基金項(xiàng)目(51579020);湖南省教育廳科學(xué)研究項(xiàng)目(17A009)
盛豐,博士,副教授,研究方向?yàn)榉秋柡蛶寥浪畡?dòng)力學(xué)與水土環(huán)境。Email:fsaint8586@163.com
10.11975/j.issn.1002-6819.2021.08.013
S152
A
1002-6819(2021)-08-0117-08