
[摘要]目的 探討血管緊張素Ⅱ(AngⅡ)對大鼠血管平滑肌細胞(VSMCs)鈣激活氯通道ANO1蛋白表達的影響及其受體機制。方法 用不同濃度(1、10、100、500、1 000 nmol/L)AngⅡ處理VSMCs 24 h或用100 nmol/L AngⅡ處理VSMCs不同時間(1、6、12、24、48 h),觀察AngⅡ對ANO1表達的影響。AngⅡ處理(100 nmol/L,24 h)前分別加入血管緊張素Ⅰ型受體(AT1R)阻斷劑氯沙坦鉀(LP)和血管緊張素Ⅱ型受體(AT2R)阻斷劑PD123319(PD),進一步探討AngⅡ作用的受體機制。以組織貼塊法進行大鼠VSMCs的原代培養,采用Western blot法檢測ANO1蛋白表達水平。結果 與對照組相比,以10~1 000 nmol/L AngⅡ處理24 h可明顯提高細胞中ANO1蛋白表達水平,其中以100 nmol/L AngⅡ的作用最為顯著(F=18.56,P<0.01);與對照組相比較,以100 nmol/L AngⅡ處理12~48 h可顯著上調細胞中ANO1蛋白的表達(F=10.84,P<0.01)。AT1R阻斷劑LP可完全阻斷AngⅡ誘導的ANO1表達(F=9.68,P<0.05),而AT2R阻斷劑PD無此作用。結論 AngⅡ以濃度和時間依賴性的方式顯著上調VSMCs中ANO1蛋白的表達,該作用是通過AngⅡ與AT1R結合而實現的。
[關鍵詞]血管緊張素Ⅱ;肌細胞,平滑肌;氯化物通道;ANO1;受體,血管緊張素;大鼠
[中圖分類號]R329.25;R544
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0214-04
[ABSTRACT]Objective To investigate the effect of angiotensin Ⅱ (AngⅡ) on the expression of anoctamin 1 (ANO1) in rat vascular smooth muscle cells (VSMCs) and its receptor mechanism."Methods VSMCs were treated with different concentrations of AngⅡ (1, 10, 100, 500, and 1 000 nmol/L) for 24 h or were treated with 100 nmol/L AngⅡ for different durations (1, 6, 12, 24, and 48 h), and the effect of AngⅡ on the expression of ANO1 was observed. The angiotensin Ⅱ type 1 receptor (AT1R) antagonist losartan potassium (LP) or the angiotensin Ⅱ type 2 receptor (AT2R) antagonist PD123319 (PD) was added before the treatment with 100 nmol/L AngⅡ for 24 h to further explore the receptor mechanism of AngⅡ. The tissue patch me-thod was used for the primary culture of rat VSMCs, and Western blot was used to measure the protein expression level of ANO1.Results Compared with the control group, the cells treated with 10-1 000 nmol/L AngⅡ for 24 h showed a significant increase in the protein expression level of ANO1, and 100 nmol/L AngⅡ showed the most significant effect (F=18.56,Plt;0.01). Compared with the control group, the cells treated with 100 nmol/L AngⅡ for 12-48 h had a significant increase in the protein expression of ANO1 (F=10.84,Plt;0.01). The AT1R antagonist LP completely blocked the expression of ANO1 induced by AngⅡ (F=9.68,Plt;0.05), while the AT2R antagonist PD had no such effect."Conclusion AngⅡ significantly upregulates the protein expression of ANO1 in VSMCs in a concentration- and time-dependent manner, possibly by binding to AT1R.
[KEY WORDS]angiotensin Ⅱ; myocytes, smooth muscle; chloride channels; ANO1; receptors, angiotensin; rats
高血壓是一種以血壓持續升高為主要臨床表現的心血管疾病,具有很高的發病率和致殘率[1-3]。長期的高血壓會導致血管結構和功能的改變,即血管重構[4],而后者是導致高血壓重要靶器官(如心、腦、腎等)損傷的關鍵病理生理學基礎[5]。腎素-血管緊張素系統(RAS)對心血管功能具有重要的調節作用[6]。血管緊張素Ⅱ(AngⅡ)是RAS的主要活性成分,可以通過誘導血管收縮和外周血管阻力增加
升高血壓;此外,AngⅡ對血管平滑肌細胞(VSMCs)具有重要的調節作用,可通過促進VSMCs的增殖、遷移和血管外基質分泌等作用,促進血管重構的發生[7-8]。在自發性高血壓大鼠(SHR)血漿和心血管組織中AngⅡ水平明顯升高,提示AngⅡ可能是促進高血壓形成和發展的重要因素[9]。
ANO1是2008年發現的鈣激活氯通道,在心血管系統中有廣泛的表達[10-11]。ANO1參與血管舒縮功能的調節已有較多報道[12-14],這可能是由于ANO1激活導致VSMCs內Cl-外流和膜除極,進而激活細胞膜電壓依從性鈣通道,觸發胞外鈣內流和血管收縮,但是ANO1和血管重構的關系報道較少。有研究發現,ANO1參與了腎型高血壓大鼠大腦中動脈血管重構的形成[15]; ANO1能通過血管重構促進肺動脈高壓(PH)的形成[16];在野百合堿和低氧誘導的大鼠PH模型中,ANO1被證實是肺動脈VSMCs的鈣激活氯通道,且高表達的ANO1通過促進血管收縮和血管重構參與PH的形成[14]。WANG等[17]的研究結果表明,ANO1在SHR的血管組織和VSMCs中均呈高表達,并參與了SHR高血壓的形成,但是誘導ANO1高表達的因素并未被闡明。根據前期研究,我們推測AngⅡ可能通過促進VSMCs的ANO1蛋白表達,參與對VSMCs功能調控。因此,本實驗利用原代培養的大鼠胸主動脈VSMCs,觀察AngⅡ上調ANO1表達的量-效和時-效關系,并進一步探討AngⅡ作用的受體機制。
1 材料與方法
1.1 試劑與儀器
AngⅡ、血管緊張素Ⅰ型受體(AT1R)阻斷劑氯沙坦鉀(LP)和血管緊張素Ⅱ型受體(AT2R)阻斷劑PD123319(PD)由ApexBio公司提供,ANO1抗體購自Abcam公司,β-actin抗體購自北京博奧森公司,DMEM高糖培養粉購自Gibco公司,胎牛血清購自美國BI公司,BCA蛋白檢測試劑盒購自Thermo公司,RIPA裂解液由碧云天生物科技研究所提供,其他試劑均為國產分析純。實驗儀器包括CO2培養箱、無菌超凈工作臺、Eppendorf高速離心機、SpectraMax M5多功能酶標儀、微量分析天平以及Western顯影儀等。
1.2 VSMCs的原代培養
實驗選用體質量80~100 g的Wistar大鼠,采用組織貼塊法進行VSMCs的原代培養[18-20]。大鼠以80 g/L水合氯醛(400 mg/kg)腹腔注射麻醉后,用體積分數0.75的乙醇消毒,迅速剝離胸主動脈,轉移到提前加入培養液的預冷玻璃皿中,清理血管內的血液及血管外筋膜,輕輕刮去內皮,將血管條剪成約1 mm3的小塊,鋪于培養瓶底部,加入含體積分數0.20胎牛血清的DMEM培養液4 mL,垂直放入CO2培養箱中,靜置4~5 h后翻瓶,培養約1周后VSMCs在血管塊周圍長出,選5~8代細胞進行后續實驗。
1.3 實驗分組
實驗1將VSMCs分為對照組(加入無血清培養液處理)和AngⅡ組(分別加入1、10、100、500、1 000 nmol/L AngⅡ),處理24 h后觀察AngⅡ對ANO1蛋白表達的影響。實驗2分為對照組(加無血清培養液)和AngⅡ組(加入100 nmol/L AngⅡ),觀察AngⅡ作用不同時間(1、6、12、24、48 h)對ANO1蛋白表達的影響。實驗3分為對照組(加無血清培養液)、AngⅡ組(加100 nmol/L AngⅡ作用24 h)、AngⅡ+LP組(AngⅡ處理前加入1 μmol/L LP)、AngⅡ+PD組(AngⅡ處理前加入1 μmol/L PD),觀察AngⅡ受體阻斷劑對ANO1蛋白表達的影響。
1.4 Western blot檢測
藥物處理結束后以RIPA裂解液提取蛋白,用BCA法檢測蛋白濃度。樣品均以20 μg蛋白上樣,經SDS-PAGE電泳后轉移至PVDF膜上,加100 g/L脫脂奶粉在室溫下搖床慢搖封閉60~120 min,分別加入ANO1(1∶1 000)和β-actin(1∶10 000)一抗,在4 ℃搖床上孵育過夜。用TBST洗膜3次后,加入二抗,在室溫下搖床慢搖孵育1 h,TBST再洗膜3次后,用ECL發光液顯影。用Image J軟件分析條帶的灰度值,結果以ANO1/β-actin比值表示。實驗重復3~4次,取平均值。
1.5 統計學分析
應用GraphPad Prism 5.0軟件進行統計學處理。結果以x2±s表示,多組均數比較采用單因素方差分析(one-way analysis of variance, ANOVA),繼以Tukey’s多重對比法進行兩兩比較。以P<0.05認為差異有統計學意義。
2 結 果
2.1 不同濃度AngⅡ對ANO1蛋白表達的影響
對照組ANO1蛋白表達水平為0.78±0.02,以1、10、100、500、1 000 nmol/L AngⅡ處理細胞24 h后,ANO1蛋白表達水平分別升高至0.85±0.05、0.92±0.03、1.14±0.10、0.95±0.02和0.91±0.02(n=3,F=18.56,P<0.01)。在各濃度組中,以10、100和500 nmol/L AngⅡ組的改變具有統計學意義(q=4.866~12.820,P<0.01),且以100 nmol/LAngⅡ作用最為顯著(圖1)。
2.2 AngⅡ作用不同時間對ANO1蛋白表達影響
對照組ANO1蛋白表達水平為1.00±0.09,以100 nmol/L AngⅡ處理1、6、12、24、48 h后,ANO1蛋白表達水平分別升高至1.05±0.17、1.28±0.30、1.65±0.28、1.82±0.14和1.58±0.12(n=4,F=10.84,P<0.01),其中AngⅡ作用12、24和48 h后,ANO1蛋白的表達顯著增加(q=5.661~8.053,P<0.01)。見圖2。后續實驗選用100 nmol/L的AngⅡ處理24 h進行觀察。
2.3 AngⅡ受體阻斷劑對AngⅡ誘導的ANO1蛋白表達的影響
對照組、AngⅡ組、AngⅡ+LP組和AngⅡ+PD組細胞蛋白表達水平分別為1.00±0.19、1.45±0.14、0.95±0.16和1.41±0.06(n=3,F=9.68,P<0.05)。與對照組相比,AngⅡ組ANO1蛋白表達水平升高(q=5.313,P<0.05);與AngⅡ組相比,AngⅡ+LP組ANO1蛋白表達降低至對照組水平(q=5.872,P<0.05),而AngⅡ+PD組ANO1蛋白的表達水平無明顯改變(q=0.452,P>0.05)。結果提示AT1R阻斷劑LP能夠完全阻斷AngⅡ誘導的ANO1蛋白表達,而AT2R阻斷劑PD則無此作用。見圖3。
3 討 論
AngⅡ是RAS的主要活性物質[21],也是公認的誘導高血壓發生發展的關鍵致病因素。系統或血管局部生成的AngⅡ,不僅可以通過誘導血管平滑肌收縮和外周阻力增加升高血壓,還可以通過刺激VSMCs異常增殖、遷移和細胞外基質形成,促進高血壓血管重構的發生發展[8,22]。AngⅡ主要通過結合AT1R或AT2R發揮作用[23]。AngⅡ與AT1R結合后,可激活磷脂酶C(PLC)/三磷酸肌醇(IP3)信號通路,通過肌質網內鈣釋放,導致胞內鈣水平升高,AngⅡ也可以激活AKT、ERK、RhoA/ROCK信號途徑以及升高胞內活性氧(ROS)等多條途徑,參與對VSMCs的功能調控[24]。AngⅡ對AT2R的親和力較低,一般認為AngⅡ與AT2R結合可拮抗其與AT1R結合所產生的效應[25]。
ANO1是血管平滑肌上的鈣激活氯通道[26],可參與血管功能和血壓的調節,并且和高血壓的血管重構密切相關。一項針對SHR的研究表明,ANO1在血管組織和原代培養的VSMCs中均高表達,并且參與了SHR高血壓的形成[17]。由于SHR血循環和血管組織局部RAS過度激活已有報道[9],且WSTEN-VAN ASPEREN等[27]研究發現,AngⅡ能夠增強ANO1依賴性鈣激活氯電流,因此我們推測AngⅡ很可能促進了VSMCs中的ANO1蛋白表達,進而參與AngⅡ對VSMCs的功能調控。
本研究首先利用組織貼塊法進行VSMCs的原代培養,然后通過將不同濃度AngⅡ加入VSMCs作用不同時間,觀察AngⅡ對ANO1蛋白表達的影響。研究結果顯示,AngⅡ能夠明顯促進VSMCs的ANO1表達,并且呈明顯的劑量和時間依賴性。而通過利用特異性的血管緊張素受體阻斷劑,本研究進一步明確了AngⅡ上調ANO1的作用是通過與AT1R結合而實現的。鈣激活氯通道ANO1是心血管領域的一個新的研究熱點,本研究通過探討AngⅡ對VSMCs中ANO1表達的影響及受體機制,為進一步明確ANO1可能參與AngⅡ誘導的VSMCs功能異常提供了前期的實驗依據。目前,臨床上對高血壓血管重構的預防和治療效果并不理想,而對ANO1的深入研究,可能為高血壓血管重構的防治提供新的思路。
[參考文獻]
[1]ST PAUL A, CORBETT C B, OKUNE R, et al. Angiotensin Ⅱ, hypercholesterolemia, and vascular smooth muscle cells: a perfect trio for vascular pathology[J]. International Journal of Molecular Sciences, 2020,21(12):E4525.
[2]OPARIL S, ACELAJADO M C, BAKRIS G L, et al. Hypertension[J]. Nature Reviews Disease Primers, 2018,4:18014.
[3]VIERA A J. Hypertension update: current guidelines[J]. FP Essentials, 2018,469:11-15.
[4]ZHANG C J, SHI Y N, LIAO D F, et al. Molecular mechanism of vascular remodeling in hypertension and Chinese medicine intervention[J]. Acta Physiologica Sinica, 2019,71(2):235-247.
[5]GAO Y, CHEN G, TIAN H M, et al. Prevalence of hypertension in China: a cross-sectional study[J]. PLoS One, 2013,8(6):e65938.
[6]MCKINNEY C A, FATTAH C, LOUGHREY C M, et al. Angiotensin-(1-7) and angiotensin-(1-9): function in cardiac and vascular remodelling[J]. Clinical Science (London, England), 2014,126(12):815-827.
[7]BORGHI C, URSO R, CICERO A F. Renin-angiotensin system at the crossroad of hypertension and hypercholesterolemia[J]. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD, 2017,27(2):115-120.
[8]EGUCHI S, KAWAI T, SCALIA R, et al. Understanding angiotensin Ⅱ type 1 receptor signaling in vascular pathophysio-logy[J]. Hypertension (Dallas, Tex:1979), 2018,71(5):804-810.
[9]BATENBURG W W, DE BRUIN R J, VAN GOOL J M, et al. Aliskiren-binding increases the half life of renin and prorenin in rat aortic vascular smooth muscle cells[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2008,28(6):1151-1157.
[10]YANG Y D, CHO H, KOO J Y, et al. TMEM16A confers receptor-activated calcium-dependent chloride conductance[J]. Nature, 2008,455(7217):1210-1215.
[11]SCHROEDER B C, CHENG T, JAN Y N, et al. Expression cloning of TMEM16A as a calcium-activated chloride channel subunit[J]. Cell, 2008,134(6):1019-1029.
[12]HEINZE C, SENIUK A, SOKOLOV M V, et al. Disruption of vascular Ca2+-activated chloride currents lowers blood pressure[J]. The Journal of Clinical Investigation, 2014,124(2):675-686.
[13]DAM V S, BOEDTKJER D M, NYVAD J, et al. TMEM16A knockdown abrogates two different Ca(2+)-activated Cl(-) currents and contractility of smooth muscle in rat mesenteric small arteries[J]. Pflugers Archiv: European Journal of Phy-siology, 2014,466(7):1391-1409.
[14]LEBLANC N, FORREST A S, AYON R J, et al. Molecular and functional significance of Ca(2+)-activated Cl (-) channels in pulmonary arterial smooth muscle[J]. Pulmonary Circulation, 2015,5(2):244-268.
[15]WANG M, YANG H, ZHENG L Y, et al. Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation[J]. Circulation, 2012,125(5):697-707.
[16]FORREST A S, JOYCE T C, HUEBNER M L, et al. Increased TMEM16A-encoded calcium-activated chloride channel activity is associated with pulmonary hypertension[J]. American Journal of Physiology Cell Physiology, 2012,303(12):C1229-C1243.
[17]WANG B X, LI C L, HUAI R T, et al. Overexpression of ANO1/TMEM16A, an arterial Ca2+-activated Cl- channel, contributes to spontaneous hypertension[J]. Journal of Mole-cular and Cellular Cardiology, 2015,82:22-32.
[18]HAN Y, SUN H J, TONG Y, et al. Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFκB-mediated NLRP3 expression in spontaneously hypertensive rats[J]. The Journal of Nutritional Biochemistry, 2019,72:108212.
[19]WU N, YE C, ZHENG F, et al. MiR155-5p inhibits cell migration and oxidative stress in vascular smooth muscle cells of spontaneously hypertensive rats[J]. Antioxidants (Basel, Switzerland), 2020,9(3):E204.
[20]LIU H M, JIA Y, ZHANG Y X, et al. Dysregulation of miR-135a-5p promotes the development of rat pulmonary arterial hypertension in vivo and in vitro[J]. Acta Pharmacologica Sinica, 2019,40(4):477-485.
[21]JACKSON L, ELDAHSHAN W, FAGAN S C, et al. Within the brain: the renin angiotensin system[J]. International Journal of Molecular Sciences, 2018,19(3):E876.
[22]DE SOUZA-NETO F P, CARVALHO SANTUCHI M, DE MORAIS E SILVA M, et al. Angiotensin-(1-7) and alamandine on experimental models of hypertension and atherosclerosis[J]. Current Hypertension Reports, 2018,20(2):17.
[23]BALAKUMAR P, JAGADEESH G. A century old renin-angiotensin system still grows with endless possibilities: AT1 receptor signaling cascades in cardiovascular physiopathology[J]. Cellular Signalling, 2014,26(10):2147-2160.
[24]HIGUCHI S, OHTSU H, SUZUKI H, et al. Angiotensin Ⅱ signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology[J]. Clinical Science (London, England:1979), 2007,112(8):417-428.
[25]YANG J, CHEN C Y, REN H M, et al. Angiotensin Ⅱ AT(2) receptor decreases AT(1) receptor expression and function via nitric oxide/cGMP/Sp1 in renal proximal tubule cells from Wistar-Kyoto rats[J]. Journal of Hypertension, 2012,30(6):1176-1184.
[26]OH U, JUNG J. Cellular functions of TMEM16/anoctamin[J]. Pflügers Archiv-European Journal of Physiology, 2016,468(3):443-453.
[27]WSTEN-VAN ASPEREN R M, LUTTER R, SPECHT P A, et al.Acute respiratory distress syndrome leads to reduced ra-tio of ACE/ACE2 activities and is prevented by angiotensin-(1-7) or an angiotensin Ⅱ receptor antagonist[J]. The Journal of Pathology, 2011,225(4):618-627.
(本文編輯 馬偉平)