
[摘要]目的 探討脂多糖(LPS)激活的中腦膠質細胞條件性培養液對神經元的損傷作用,以及淫羊藿素(ICT)是否能夠通過雌激素膜受體(GPER)和胰島素樣生長因子1受體(IGF-1R)發揮其神經保護作用。方法 在體外原代培養SD大鼠中腦膠質細胞和神經元,分為對照組、LPS組、ICT+LPS組、G15+ICT+LPS組和JB-1+ICT+LPS組?;旌吓囵B中腦原代膠質細胞,對照組給予二甲基亞砜(DMSO)處理;LPS組給予LPS(0.5 mg/L)作用24 h;ICT+LPS組在加入LPS前先用ICT(10 μmol/L)預保護1 h;G15+ICT+LPS組和JB-1+ICT+LPS組分別先加入GPER特異性阻斷劑G15(1 μmol/L)和IGF-1R特異性阻斷劑JB-1(1 mg/L)作用1 h,然后加入ICT預保護1 h,再加入LPS共同作用24 h。應用膠質細胞上層條件性培養液孵育原代中腦神經元24 h,采用四甲基偶氮唑藍(MTT)法檢測神經元活力。結果 與對照組比較,LPS組神經元細胞活力明顯下降(F=15.88,q=10.040,P<0.01)。ICT預保護能明顯抑制LPS誘導的神經元損傷(q=7.457,P<0.01),此作用可以被JB-1所阻斷(q=5.098,P<0.05);G15預處理對ICT的神經保護作用有阻斷趨勢,但差異無統計學意義(P>0.05)。結論 ICT能夠通過抑制LPS誘導的中腦膠質細胞炎癥反應保護神經元,其機制可能與IGF-1R信號途徑有關。
[關鍵詞]淫羊藿素;神經元;脂多糖類;神經膠質;炎癥;受體,IGF1型
[中圖分類號]R338.2
[文獻標志碼]A
[文章編號]2096-5532(2021)02-0182-04
[ABSTRACT]Objective To investigate the neuronal damage caused by lipopolysaccharide (LPS)-activated mesencephalon glial cell-conditioned medium and whether icaritin (ICT) can exert a neuroprotective effect via G protein-coupled estrogen receptor (GPER) and insulin-like growth factor-1 receptor (IGF-1R)."Methods Primary mesencephalon glial cells and neurons of Sprague-Dawley rats were cultured in vitro and then divided into control group, LPS group, ICT+LPS group, G15+ICT+LPS group, and JB-1+ICT+LPS group. After the mixed culture of primary mesencephalon glial cells, the control group was treated with DMSO; the LPS group was treated with LPS (0.5 mg/L) for 24 h; the ICT+LPS group was pre-protected with ICT (10 μmol/L) for 1 h before LPS was added; the G15+ICT+LPS group and the JB-1+ICT+LPS group were pretreated with the GPER-specific antagonist G15 (1 μmol/L) and the IGF-1R-specific antagonist JB-1 (1 mg/L), respectively, for 1 h and then pre-protected with ICT for 1 h, followed by LPS treatment for another 24 h. Primary mesencephalon neurons were incubated with the glial cell-conditioned medium for 24 h, and MTT assay was used to measure the viability of neurons."Results Compared with the control group, the LPS group had a significant reduction in the viability of neurons (F=15.88,q=10.040,Plt;0.01). ICT pre-protection significantly inhibited LPS-induced neuronal damage (q=7.457,Plt;0.01), and this effect was blocked by JB-1 (q=5.098,Plt;0.05). G15 pretreatment slightly but not significantly blocked the neuroprotective effect of ICT (Pgt;0.05).Conclusion ICT can protect neurons by inhibiting LPS-induced inflammatory response of mesencephalon glial cells, which may be associated with the IGF-1R signaling pathway.
[KEY WORDS]icaritin; neurons; lipopolysaccharides; neuroglia; inflammation; receptor, IGF type 1
帕金森?。≒D)的發病機制與神經炎癥密切相關[1-2]。在微環境發生變化或病理損傷以后,小膠質細胞迅速活化,而活化的小膠質細胞分泌的白細胞介素1α(IL-1α)、腫瘤壞死因子α(TNF-α)以及補體1q(C1q)等能進一步誘導星形膠質細胞釋放炎性因子,造成神經元的損傷[3-4]。而受損的神經元通過釋放神經毒性因子與死亡相關的分子,例如神經黑色素、β肽和細胞碎片,進一步引起膠質細胞活化,從而在膠質細胞的炎癥反應以及神經元的損傷之間形成惡性循環[5-7]。因此,有效抑制膠質細胞的過度活化是PD防治的有效策略。研究表明,雌激素可通過雌激素核受體(ER)、雌激素膜受體(GPER)及其與胰島素樣生長因子1受體(IGF-1R)信號途徑的交互作用發揮神經保護作用[8-10]。淫羊藿素(ICT)是提取自小檗科植物淫羊藿的一種植物雌激素,能夠與雌激素受體結合,具有抗炎、骨保護、抗癌等多種功效[11-13]。本課題組前期實驗表明,10 μmol/L ICT能夠通過ER信號途徑,抑制星形膠質細胞的炎癥反應[14],但其抗炎神經保護作用是否與GPER和IGF-1R介導的信號途徑有關尚不清楚。本研究在前期工作的基礎上,觀察脂多糖(LPS)激活的中腦膠質細胞條件性培養液對神經元的損傷作用,探討ICT抗炎神經保護作用是否與GPER和IGF-1R信號途徑有關。
1 材料與方法
1.1 實驗材料
ICT購自上海同田生物技術有限公司;LPS、GPER特異性阻斷劑G15以及IGF-1R特異性阻斷劑JB-1均購自美國Sigma公司;四甲基偶氮唑藍(MTT)購自Silarbio(北京)公司;新生SD大鼠購自青島即墨大任富城畜牧有限公司。
1.2 原代膠質細胞培養
取新生1 d的SD大鼠,用體積分數0.75的乙醇溶液消毒,在超凈工作臺中取出其中腦組織,置于DF12基礎培養液(冰浴)中,用槍頭將組織吹打為均勻分散的細胞。離心,棄去培養液,加入適量含有100 kU/L青霉素、100 mg/L鏈霉素和體積分數0.10胎牛血清(FBS)的DF12全培養液,置于用20 g/L多聚-D-賴氨酸(Poly D)預處理4 h以上的培養瓶中(培養瓶用高壓滅菌水清洗2~3次),在細胞培養箱中培養1周左右,每隔2~3 d換液。光鏡下觀察,星形膠質細胞緊密相連位于底層,體積較小、折光性強、呈圓形的小膠質細胞在其上層。
1.3 腹側中腦神經元培養
在取神經元的前1 d,用Poly D溶液鋪滿培養板底部,過夜,棄掉Poly D溶液,將培養板用無菌水洗3次,在超凈工作臺中晾干。選取妊娠14 d左右的大鼠,麻醉后進行全身消毒,腹側朝上擺放大鼠,用大剪刀剪開大鼠腹部皮膚及肌肉,用鑷子夾出胎鼠,用小剪刀剪斷與大鼠之間的連接,迅速放入培養皿中。剪開胎衣,將胎鼠放入新的培養皿中。剪開羊膜,去除胎盤,放入新的培養皿中。剪下頭顱,放入新的帶有DF12基礎培養液(冰?。┑呐囵B皿中,在體視顯微鏡下用眼科鑷將頭顱皮膚及頭蓋骨撕開剝離大腦,然后將中腦與其余部分分離,去除中腦腦膜,將中腦背側去除得到蝴蝶形的中腦腹側,將中腦腹側移入新的帶有DF12基礎培養液(冰?。┑呐囵B皿中,用微量移液槍輕輕吹打組織直至細胞均勻離散,移入離心管中,以1 000 r/min離心5 min。離心完成后,用吸管將上清吸除,向離心管中加入中腦腹側神經元培養液,用吸管輕輕吹勻并調節細胞密度至1×109/L,之后種板。放置于細胞培養箱中,2~3 d換1次液,培養7 d后用于下一步實驗。
1.4 實驗分組及處理
將小膠質細胞和星形膠質細胞混合接種于12孔板,置于含體積分數0.05 CO2的37 ℃無菌培養箱中,應用高糖DMEM培養液(含100 kU/L青霉素、100 mg/L鏈霉素和體積分數0.10 FBS)常規培養。光鏡下觀察當細胞融合度達到80%~90%時進行分組和加藥處理。將細胞分為對照組(A組)、LPS 組(B組)、ICT+LPS 組(C組)、G15+ICT+LPS組(D組)和JB-1+ICT+LPS組(E組)。對照組細胞給予1 μL二甲基亞砜(DMSO)處理;LPS 組細胞則加入LPS(0.5 mg/L)作用24 h;ICT+LPS 組細胞加LPS前先用ICT(10 μmol/L)預保護1 h;G15+ICT+LPS組和JB-1+ICT+LPS組細胞分別先加入G15(1 mmol/L)、JB-1(1 mg/L)作用1 h,然后加入 ICT預保護1 h,再加入 LPS 共同作用24 h。將12孔板中的條件性培養液(100 mL)轉移至培養神經元的96孔板中,作用24 h。
1.5 細胞活力檢測
采用MTT法檢測細胞活力。棄掉96孔板中的培養液,每孔加入5 g/L的MTT溶液20 μL,置細胞培養箱內孵育 4 h,棄掉MTT溶液,每孔加入 200 μL的DMSO,用鋁箔紙包好培養板避光,然后放在室溫搖床上約 10 min,用酶標儀檢測吸光度。實驗重復3次。
1.6 統計學分析
應用GraphPad Prism 5.0軟件進行統計學分析。計量數據以x2±s表示,多組比較首先進行單因素方差分析(One-Way ANOVA),再用Tukey法進行兩兩比較。P<0.05表示差異有統計學意義。
2 結 果
與對照組比較,LPS組神經元細胞活力明顯下降(F=15.88,q=10.040,P<0.01),表明中腦原代膠質細胞條件性培養液能夠明顯降低中腦原代神經元的活力。ICT(10 μmol/L)預處理能夠明顯抑制LPS誘導的膠質細胞炎癥反應進而保護中腦神經元(q=7.457,P<0.01),此作用可以被IGF-1R特異性阻斷劑JB-1所阻斷(q=5.098,P<0.05);而GPER特異性阻斷劑G15預處理對ICT的神經保護作用雖有阻斷趨勢,但差異無統計學意義(P>0.05)。見表1。
3 討 論
PD的病理特征主要表現為黑質致密帶多巴胺能神經元變性死亡[15]。神經炎癥一直被認為與神經退行性疾病的發生與發展密切相關[16]。小膠質細胞在中樞神經系統內充當免疫細胞的角色,是中樞神經系統的第一道防線,其過度激活是發生神經炎癥的主要原因[7,17]。小膠質細胞活化導致促炎細胞因子如白細胞介素1(IL-1)、白細胞介素6(IL-6)和TNF-α等大量釋放,進而損傷神經元[18]。星形膠質細胞是神經系統數量最多、分布最廣的神經膠質細胞,可調節突觸活動、神經元代謝和局部血液供應等,已有研究表明其功能失調在神經退行性疾病發生中發揮重要作用[19-21]。星形膠質細胞衍生的細胞外囊泡可通過傳播和放大神經炎癥反應,充當炎癥信號的胞間傳遞者,降低神經元的存活率[22]。
ICT是一種黃酮類化合物,主要來源于小檗科淫羊藿屬植物,具有抗炎、抗氧化以及骨保護等功效[23-24]。已有研究表明,ICT可以通過GPER介導的EGFR-MAPK信號通路調節刺激SKBr3細胞增殖[25]。本課題組在前期工作中已證實,IGF-1R參與了ICT在1-甲基-4-苯基-吡啶離子(MPP+)誘導的MES23.5細胞中的神經保護作用[26],單獨使用GPER阻斷劑G15和IGF-1R阻斷劑JB-1并不影響小膠質細胞和星形膠質細胞炎性因子的釋放,因此推測阻斷劑單用可能不影響神經元的細胞活力。為探討ICT的抗炎神經保護作用是否與GPER和IGF-1R有關,本研究利用LPS誘導混合培養的小膠質細胞和星形膠質細胞炎癥反應,觀察ICT是否能夠發揮抗炎作用進而保護神經元,以及GPER特異性阻斷劑G15和IGF-1R特異性阻斷劑JB-1的阻斷作用。結果顯示,LPS處理混合培養的小膠質細胞和星形膠質細胞24 h后,其條件性培養液能使神經元的細胞活力明顯下降,應用ICT預處理能明顯對抗LPS誘導的神經元損傷,此作用可以被JB-1所阻斷,雖然G15有一定的阻斷效果,但差異無統計學意義。文獻報道,IGF-1R與ER共表達并參與交聯,涉及多方面的協同作用,例如,IGF-1刺激髓核細胞,能通過IGF-1R與ERα之間的相互作用調節增殖和抗炎反應[27];淫羊藿苷刺激成骨細胞,能快速誘導IGF-1信號通路激活ERα和Akt,促進成骨作用[28]。在前期工作中,本課題組應用原代培養的中腦星形膠質細胞證明ICT能夠通過ER發揮其抗炎作用,應用中腦原代小膠質細胞證明ICT能夠通過IGF-1R和GPER發揮抗炎作用,結合本次研究的實驗結果,我們推測ICT的抗炎神經保護作用可能與ER、GPER和IGF-1R等3條信號通路有關,但具體機制還需進一步研究。
綜上所述,ICT能夠通過抑制LPS誘導的中腦膠質細胞炎癥反應保護神經元,此作用與IGF-1R介導的信號途徑有關。本研究結果為探究ICT抗PD的機制提供了實驗依據。
[參考文獻]
[1]GELDERS G, BAEKELANDT V, VAN DER PERREN A. Linking neuroinflammation and neurodegeneration in Parkinson’s disease[J]. Journal of Immunology Research, 2018, 2018:4784268.
[2]VIVEKANANTHAM S, SHAH S, DEWJI R, et al. Neuroinflammation in Parkinson’s disease: role in neurodegeneration and tissue repair[J]. The International Journal of Neuroscience, 2015,125(10):717-725.
[3]SUBHRAMANYAM C S, WANG C, HU Q D, et al. Microglia-mediated neuroinflammation in neurodegenerative diseases[J]. Seminars in Cell amp; Developmental Biology, 2019,94:112-120.
[4]LIDDELOW S A, GUTTENPLAN K A, CLARKE L E, et al. Neurotoxic reactive astrocytes are induced by activated microglia[J]. Nature, 2017,541(7638):481-487.
[5]LEE Y, LEE S, CHANG S C, et al. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention[J]. Archives of Pharmacal Research, 2019,42(5):416-425.
[6]JHA M K, JO M, KIM J H, et al. Microglia-astrocyte crosstalk: an intimate molecular conversation[J]. Neuroscientist, 2019,25(3):227-240.
[7]KAUSHIK D K, BASU A. A friend in need may not be a friend indeed: role of microglia in neurodegenerative diseases[J]. CNS amp; Neurological Disorders Drug Targets, 2013,12(6):726-740.
[8]CHAKRABARTI M, DAS A, SAMANTARAY S, et al. Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury[J]. Rev Neurosci, 2016,27(3):271-281.
[9]TANG H X, LIAO Y D, CHEN G, et al. Estrogen upregulates the IGF-1 signaling pathway in lung cancer through estrogen receptor-Β[J]. Medical Oncology (Northwood, London, England), 2012,29(4):2640-2648.
[10]EMMERSON E, CAMPBELL L, DAVIES F C, et al. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERα cross talk[J]. J Invest Dermatol, 2012,132(12):2838-2848.
[11]YANG X J, XI Y M, LI Z J. Icaritin: a novel natural candidate for hematological malignancies therapy[J]. BioMed Research International, 2019, 2019:4860268.
[12]HUANG L, WANG X, CAO H, et al. A bone-targeting delivery system carrying osteogenic phytomolecule icaritin prevents osteoporosis in mice[J]. Biomaterials, 2018,182:58-71.
[13]HAO H, ZHANG Q, ZHU H, et al. Icaritin promotes tumor T-cell infiltration and induces antitumor immunity in mice[J]. Eur J Immunol, 2019,49(12):2235-2244.
[14]張文娣,張梅,白金月,等. 淫羊藿素對LPS誘導原代星形膠質細胞COX-2和iNOS基因表達影響[J]. 青島大學學報(醫學版), 2019,55(1):32-34,39.
[15]HOMAYOUN H. Parkinson disease[J]. Annals of Internal Medicine, 2018,169(5):ITC33-ITC48.
[16]KEMPURAJ D, THANGAVEL R, NATTERU P A, et al. Neuroinflammation induces neurodegeneration[J]. J Neurol Neurosurg Spine, 2016,1(1):1003.
[17]HICKMAN S, IZZY S, SEN P, et al. Microglia in neurodegeneration[J]. Nature Neuroscience, 2018,21(10):1359-1369.
[18]RAMIREZ A I, DE HOZ R, SALOBRAR-GARCIA E, et al. The role of microglia in retinal neurodegeneration: Alzhei-mer’s disease, Parkinson, and glaucoma[J]. Front Aging Neurosci, 2017,9:214.
[19]ACOSTA C, ANDERSON H D, ANDERSON C M. Astrocyte dysfunction in Alzheimer disease[J]. Journal of Neuroscience Research, 2017,95(12):2430-2447.
[20]COLOMBO E, FARINA C. Astrocytes: key regulators of neuroinflammation[J]. Trends in Immunology, 2016,37(9):608-620.
[21]BLANCO-SUREZ E, CALDWELL A L M, ALLEN N J. Role of astrocyte-synapse interactions in CNS disorders[J]. The Journal of Physiology, 2017,595(6):1903-1916.
[22]IBEZ F, MONTESINOS J, UREA-PERALTA J R, et al. TLR4 participates in the transmission of ethanol-induced neuroinflammation via astrocyte-derived extracellular vesicles[J]. Journal of Neuroinflammation, 2019,16(1):136.
[23]LIU L, ZHAO Z, LU L, et al. Icariin and icaritin ameliorated hippocampus neuroinflammation via inhibiting HMGB1-related pro-inflammatory signals in lipopolysaccharide-induced inflammation model in C57BL/6J mice[J]. Int Immuno-pharmacol, 2019,68:95-105.
[24]WU X, WU J, XIA S, et al. Icaritin opposes the development of social aversion after defeat stress via increases of GR mRNA and BDNF mRNA in mice [J]. Behav Brain Res, 2013,256:602-608.
[25]MA H R, WANG J, CHEN Y F, et al. Icariin and icaritin stimulate the proliferation of SKBr3 cells through the GPER1-mediated modulation of the EGFR-MAPK signaling pathway[J]. Int J Mol Med, 2014,33(6):1627-1634.
[26]JIANG M C, CHEN X H, ZHAO X, et al. Involvement of IGF-1 receptor signaling pathway in the neuroprotective effects of Icaritin against MPP(+)-induced toxicity in MES23.5 cells[J]. Eur J Pharmacol, 2016,786:53-59.
[27]CHEN R S, ZHANG X B, ZHU X T, et al. The crosstalk between IGF-1R and ER-α in the proliferation and anti-inflammation of nucleus pulposus cells[J]. Eur Rev Med Pharmacol Sci, 2020,24(11):5886-5894.
[28]ZHOU L, POON C C, WONG K Y, et al. Icariin ameliorates estrogen-deficiency induced bone loss by enhancing IGF-Ⅰ signaling via its crosstalk with non-genomic ERα signaling[J]. Phytomedicine, 2021,82:153413.
(本文編輯 馬偉平)