999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

GLEASON’S PROBLEM ON FOCK-SOBOLEV SPACES?

2021-04-08 12:52:42JinengDAI戴濟(jì)能JingyunZHOU周靜云

Jineng DAI(戴濟(jì)能)Jingyun ZHOU(周靜云)

Department of Mathematics,School of Science,Wuhan University of Technology,Wuhan 430070,China E-mail:jinengdai@whut.edu.cn;zhou19950614@163.com

Abstract In this article,we solve completely Gleason’s problem on Fock-Sobolev spaces Fp,mfor any non-negative integer m and 0

Key words Fock-Sobolev space;Gleason’s problem

1 Introduction

where dv is the normalized Lebesgue volume measure on Cso that the constant function 1 has norm 1 in L.Here we are abusing the term“norm”for 0

Let Fdenote the space of holomorphic functions in L.When m=0,the space Fis called the Fock space or the Segal-Bargmann space(see[1–7]).For a multi-index α=(α,···,α),where each α(1≤k≤n)is a non-negative integer,we write

where?denotes partial differentiation with respect to the k-th component.An equivalent characterization for the space Fis as follows(see[4]):f∈Fif and only if?f belongs to the Fock space for each multi-index α with|α|≤m.In this sense we call Fthe Fock-Sobolev space.The space Fis a closed subspace of the Hilbert space Lwith inner product

The orthogonal projection P :L→Fis given by

where K(z,w) is the reproducing kernel of the Fock-Sobolev space F.It is well known that

for all 0

In this article,we prefer to use the integral form of hto express the reproducing kernel of Fock-Sobolev spaces F.

Let X be a space of holomorphic functions on a domain ? in C.Gleason’s problem for X is the following:if a ∈? and f ∈X,do there exist functions f,···,fin X such that

In this article,we solve Gleason’s problem on Fock-Sobolev spaces Fin a stronger form for the full range of p with 0

for all z ∈C(see Theorem 2.9 and 2.10).Because the form of the Bergman kernel of F(especially for m ≥1) is a bit complicated,some techniques are used for dealing with many integrals.

2 Gleason’s Problem on Fock-Sobolev Spaces

In this section,we begin with several useful lemmas,which are needed in the proof of the solvability of Gleason’s problem on Fock-Sobolev spaces F.

Lemma 2.1

Let 0

0.There exists a constant C only depending on p,α and β such that

for all holomorphic functions f and anti-holomorphic functions g on C.

Proof

It is known that g is anti-holomorphic if and only if g is holomorphic.By Lemma 4 in [4],we have that

Lemma 2.2

For fixed a in C,we have that

Remark 2.5

If we replace the quantity |z|(resp.|w|) by (1+|z|)(resp.(1+|w|)) in Lemma 2.4,then the inequality is also valid.

An important tool for tackling the boundedness of integral operators on L(1

Lemma 2.6

([15]) Let (X,μ) be a measure space and H be a non-negative measurable function on the product space X ×X.Let 1

Now we state our main results.We first solve Gleason’s problem on the Fock space,then we turn to generalized Fock-Sobolev spaces.

Theorem 2.9

For fixed a in Cand any 0

for all z in Cand f in F.

主站蜘蛛池模板: 成人国内精品久久久久影院| a在线亚洲男人的天堂试看| 呦女精品网站| 午夜精品一区二区蜜桃| 热久久综合这里只有精品电影| 欧美黑人欧美精品刺激| 久久精品人妻中文视频| 精品一区二区三区视频免费观看| 91免费在线看| 亚洲日本中文字幕乱码中文| 午夜日b视频| 性欧美在线| 亚洲综合色婷婷| 香蕉伊思人视频| 国产在线小视频| 巨熟乳波霸若妻中文观看免费| 欧美一区二区福利视频| 大学生久久香蕉国产线观看| 四虎影视永久在线精品| 激情国产精品一区| 亚洲无码免费黄色网址| 国产精品一区二区久久精品无码| 男女性午夜福利网站| 欧美一级高清片欧美国产欧美| 国产波多野结衣中文在线播放| 免费又爽又刺激高潮网址 | 亚洲中久无码永久在线观看软件| 丰满的少妇人妻无码区| 欧洲欧美人成免费全部视频| 华人在线亚洲欧美精品| 国产成人你懂的在线观看| 久久夜夜视频| 亚洲精品天堂在线观看| 欧美v在线| 四虎国产精品永久一区| 色综合网址| 99精品热视频这里只有精品7| 国产成人精品免费视频大全五级| 欧美精品啪啪一区二区三区| 麻豆国产在线观看一区二区 | 国产精品妖精视频| 国内精品视频| 精品午夜国产福利观看| 成年人久久黄色网站| 99久久精品久久久久久婷婷| 精品一区二区久久久久网站| 亚洲人人视频| 久久久久久午夜精品| 天天干天天色综合网| 在线欧美a| 日本久久网站| 国产97公开成人免费视频| 国产视频a| 国产草草影院18成年视频| 久久这里只有精品66| 精品一区二区三区自慰喷水| 欧美色香蕉| 国产91高跟丝袜| www.99在线观看| 精品剧情v国产在线观看| 国产成人免费视频精品一区二区| 搞黄网站免费观看| 五月婷婷精品| 国产毛片不卡| 亚洲无码日韩一区| 国产女人综合久久精品视| 亚洲精品第一在线观看视频| 国产一区成人| 日韩精品成人网页视频在线 | 国产性生交xxxxx免费| a级毛片免费在线观看| 18禁高潮出水呻吟娇喘蜜芽| 国产一级在线观看www色| 日韩视频精品在线| 国产精品视频白浆免费视频| 久久伊人久久亚洲综合| 91免费观看视频| 日韩欧美在线观看| 国产在线一区二区视频| 久久香蕉国产线看精品| 71pao成人国产永久免费视频| 久久午夜夜伦鲁鲁片不卡|