曾子修 申偉 魏競(jìng)競(jìng) 王敏 王瑩 張昕洋 金香蘭 張?jiān)蕩X










摘要 目的:采用網(wǎng)絡(luò)藥理學(xué)方法探討健脾益腎化濁方治療卒中后認(rèn)知障礙(PSCI)的作用機(jī)制。方法:利用中藥系統(tǒng)藥理學(xué)數(shù)據(jù)庫(kù)與分析平臺(tái)(TCMSP)、中醫(yī)藥綜合數(shù)據(jù)庫(kù)(TCMID)及ETCM數(shù)據(jù)庫(kù)篩選健脾益腎化濁方的活性成分,運(yùn)用Swiss Target Prediction數(shù)據(jù)庫(kù)對(duì)活性成分進(jìn)行靶點(diǎn)預(yù)測(cè);運(yùn)用GeneCards數(shù)據(jù)庫(kù)篩選PSCI相關(guān)疾病靶點(diǎn);運(yùn)用RStudio軟件對(duì)健脾益腎化濁方及PSCI共同靶點(diǎn)繪制韋恩圖;將二者共同靶點(diǎn)通過(guò)STRING及Metascape數(shù)據(jù)庫(kù)分別進(jìn)行PPI分析,基因本體(GO)富集分析和京都基因和基因組百科全書(shū)(KEGG)富集分析;運(yùn)用Cytoscape 3.6.0繪制“健脾益腎化濁方-靶點(diǎn)-PSCI-通路”網(wǎng)絡(luò)圖;采用AutoDock對(duì)核心成分及核心靶點(diǎn)進(jìn)行分子對(duì)接驗(yàn)證。結(jié)果:篩選出健脾益腎化濁方39種活性成分和553個(gè)靶點(diǎn),篩選出PSCI潛在靶點(diǎn)2 305個(gè),二者共同靶點(diǎn)為254個(gè)。通過(guò)GO及KEGG富集分析,發(fā)現(xiàn)健脾益腎化濁方可能通過(guò)突觸可塑性、抗細(xì)胞凋亡、抗炎等多靶點(diǎn)、多途徑發(fā)揮對(duì)PSCI的治療作用。分子對(duì)接結(jié)果提示活性成分Stigmasterol與核心靶點(diǎn)(MAPK1、SRC、MAPK3、TP53、HSP90AA1),Palmatine與核心靶點(diǎn)(AKT1)具有較好的結(jié)合活性。結(jié)論:健脾益腎化濁方治療PSCI可能通過(guò)調(diào)節(jié)突觸可塑性、抗細(xì)胞凋亡、抗炎等生物學(xué)過(guò)程發(fā)揮作用。
關(guān)鍵詞 健脾益腎化濁方;卒中后認(rèn)知障礙;網(wǎng)絡(luò)藥理學(xué);作用機(jī)制;中藥;靶點(diǎn);信號(hào)通路;分子對(duì)接
Mechanism of Jianpi Yishen Huazhuo Formula in Treatment of Post Stroke Cognitive Impairment Based on Network Pharmacology
ZENG Zixiu1,SHEN Wei2,WEI Jingjing1,WANG Min1,WANG Ying1,ZHANG Xinyang1,JIN Xianglan3,ZHANG Yunling2
(1 Graduate School of Beijing University of Chinese Medicine,Beijing 100029,China; 2 Xiyuan Hospital,China Academy of Chinese Medical Sciences,Beijing 100091,China; 3 Dongfang Hospital,Beijing University of Chinese Medicine,Beijing 100078,China)
Abstract Objective:To explore the mechanism of the Jianpi Yishen Huazhuo Prescription in treatment of post stroke cognitive impairment (PSCI) by using network pharmacology method.Methods:TCMSP,TCMID and ETCM databases were used to screen the active ingredients of the Jianpi Yishen Huazhuo Prescription,and the Swiss Target Prediction database was used to predict the target of the active ingredients.The GeneCards database was used to screen PSCI related disease targets.RStudio software was used to draw the Wien diagram for the common targets of the Jianpi Yishen Huazhuo Formula and PSCI.The PPI analysis,GO enrichment analysis and KEGG enrichment analysis were performed on the 2 common targets through the String and Metascape databases.Cytoscape 3.6.0 was used to draw the network diagram of the Jianpi Yishen Huazhuo Prescription-target point-PSCI-pathway.The AutoDock was used for molecular docking verification of core components and core targets.Results:A total of 39 active ingredients and 553 targets of the Jianpi Yishen Huazhuo Formula were screened out,and the 2305 potential targets of PSCI were screened out,among which the common targets were 254.Through the GO and KEGG enrichment analysis,it was found that the Jianpi Yishen Huazhuo Formula might play a therapeutic effect on PSCI through multiple targets and pathways such as synaptic plasticity,anti-apoptosis and anti-inflammation.The molecular docking results indicated that the active component Stigmasterol had good binding activity with the core target (MAPK1,Src,MAPK3,TP53,HSP90Aa1) and Palmatine had good binding activity with the core target (AKT1).Conclusion:The Jianpi Yishen Huazhuo Formula may play an important role in the treatment of PSCI by regulating synaptic plasticity,anti-apoptosis and anti-inflammation.
Keywords Jianpi Yishen Huazhuo Formula; Post stroke cognitive impairment; Network pharmacology; Mechanism; Chinese medicinals; Target; Signaling pathway; Molecular docking
中圖分類(lèi)號(hào):R285文獻(xiàn)標(biāo)識(shí)碼:Adoi:10.3969/j.issn.1673-7202.2021.23.009
卒中后認(rèn)知障礙(Post Stroke Cognitive Impairment,PSCI)特指卒中后發(fā)生的認(rèn)知功能下降,是血管性認(rèn)知障礙(Vascular Cognitive Impairment,VCI)的一個(gè)重要亞型。基于我國(guó)的一項(xiàng)流調(diào)研究顯示,PSCI的總體患病率高達(dá)80.97%,嚴(yán)重影響患者生命質(zhì)量及生存時(shí)間[1]。目前研究顯示,PSCI的病理機(jī)制可涉及神經(jīng)炎癥、氧化應(yīng)激、血管內(nèi)皮功能失調(diào)、神經(jīng)退行性及神經(jīng)傳遞等多種不同分子信號(hào)途徑[2]。當(dāng)前尚無(wú)針對(duì)PSCI病理干預(yù)的藥物應(yīng)用于臨床,注重PSCI的早期篩查和預(yù)防兼以積極控制血管危險(xiǎn)因素、加強(qiáng)認(rèn)知康復(fù)訓(xùn)練等是當(dāng)前管理PSCI的重要策略[3]。
PSCI屬于中醫(yī)學(xué)“中風(fēng)”合并“健忘”“呆病”范疇。其發(fā)病基本病機(jī)以脾腎虧虛為本,痰濁瘀血之實(shí)痹阻腦脈為標(biāo)[4]。由此,治療強(qiáng)調(diào)以補(bǔ)腎填精為主,化痰祛瘀為輔[5]。健脾益腎化濁方由肉蓯蓉、益智仁、遠(yuǎn)志、紅景天及黃連5藥組成,具有健脾益腎,祛痰化濁之功。本團(tuán)隊(duì)在前期開(kāi)展的多中心、隨機(jī)、雙盲、安慰劑對(duì)照的臨床研究中已證實(shí)健脾益腎化濁方能有效改善缺血性卒中患者認(rèn)知功能,然其起效機(jī)制尚缺乏探究。現(xiàn)運(yùn)用經(jīng)典的網(wǎng)絡(luò)藥理學(xué)研究方法對(duì)健脾益腎化濁方治療PSCI的潛在藥理學(xué)機(jī)制進(jìn)行預(yù)測(cè)分析,以期為進(jìn)一步實(shí)驗(yàn)研究提供前期依據(jù)。研究流程見(jiàn)圖1。
1 資料與方法
1.1 健脾益腎化濁方化合物查找及活性成分篩選? 健脾益腎化濁方中肉蓯蓉、益智仁及黃連三藥所含的化合物在中藥系統(tǒng)藥理數(shù)據(jù)庫(kù)與分析平臺(tái)(Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform,TCMSP,https://tcmspw.Com/tcmsp.php)中查找,并運(yùn)用TCMSP中自帶的藥物ADME(Absorption,Distribution,Metabolism,Excretion)篩選功能,以口服生物利用度(Oral Bioavailability,OB)、類(lèi)藥性(Drug Likeness,DL)和血腦屏障(Blood Brain Barrier,BBB)透過(guò)率作為篩選指標(biāo),根據(jù)文獻(xiàn)[6]以O(shè)B30%、DL0.8、BBB-0.3為篩選標(biāo)準(zhǔn),獲取上述3種藥物的活性成分;因遠(yuǎn)志和紅景天含有的化合物在TCMSP中檢索不到,故在中藥綜合數(shù)據(jù)庫(kù)(Traditional Chinese Medicine Integrated Database,TCMID,http://119.3.41.228:8000/tcmid/)及中醫(yī)藥百科全書(shū)數(shù)據(jù)庫(kù)(The Encyclopedia of Traditional Chinese Medicine,ETCM,http://www.tcmip.Cn/ETCM/index.php/Home/Index/)中查找,并運(yùn)用SwissADME數(shù)據(jù)庫(kù)[7](http://www.swissadme.ch/)對(duì)所查到的化合物進(jìn)行ADME篩選,選取胃腸道吸收高、類(lèi)藥性好并能通過(guò)血腦屏障的化合物為遠(yuǎn)志及紅景天二藥的活性成分。
1.2 健脾益腎化濁方潛在靶點(diǎn)篩選
運(yùn)用PubChem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/)先對(duì)查找到的活性成分進(jìn)行確證,得到活性成分相對(duì)應(yīng)的2D結(jié)構(gòu),再通過(guò)Swiss Target Prediction數(shù)據(jù)庫(kù)(http://www.swisstarget-prediction.ch/)對(duì)活性成分進(jìn)行靶點(diǎn)預(yù)測(cè)。并以物種屬性為Homo Sapiens,靶點(diǎn)可靠性>10%作為篩選條件,以此收集符合要求的靶點(diǎn)。
1.3 卒中后認(rèn)知障礙相關(guān)靶點(diǎn)的檢索及篩選
在GeneCards數(shù)據(jù)庫(kù)(https://www.genecards.org/)中,以“Post Stroke Cognitive Impairment”為關(guān)鍵詞,尋找PSCI相關(guān)的治療靶點(diǎn)。參照同類(lèi)研究[8],以Score值大于中位數(shù)為篩選條件,篩選與PSCI聯(lián)系密切的潛在靶點(diǎn)。而后通過(guò)RStudio軟件中的VennDiagram R包繪制PSCI和健脾益腎化濁方共同靶點(diǎn)的韋恩圖[9]。
1.4 蛋白質(zhì)-蛋白質(zhì)相互作用(PPI)網(wǎng)絡(luò)的構(gòu)建及對(duì)核心靶點(diǎn)的篩選
在STRING 11.0數(shù)據(jù)庫(kù)(https://string-db.org/)中,以生物種類(lèi)為“Homo Sapiens”及最小相互作用閾值為“Highest Confidence”(>0.9)為設(shè)置條件,對(duì)健脾益腎化濁方和PSCI的共同靶點(diǎn)進(jìn)行蛋白質(zhì)-蛋白質(zhì)相互作用(Protein-Protein Interaction,PPI)網(wǎng)絡(luò)圖的構(gòu)建。后運(yùn)用可視化軟件CytoScape 3.6.0中內(nèi)置插件“Network Analyzer”對(duì)PPI網(wǎng)絡(luò)進(jìn)行拓?fù)浞治觯远葦?shù)(Degree)作為主要的拓?fù)渲笜?biāo),Degree值越大,說(shuō)明該節(jié)點(diǎn)在網(wǎng)絡(luò)中越重要。選擇Degree值排名靠前的基因作為健脾益腎化濁方治療PSCI的核心靶點(diǎn)。
1.5 GO功能與KEGG通路富集分析及可視化
將健脾益腎化濁方與PSCI的共同靶點(diǎn)導(dǎo)入Metascape數(shù)據(jù)庫(kù)(https://metascape.org/gp/index.html),并設(shè)置生物物種為Homo Sapiens,P<0.01,然后分別進(jìn)行GO及KEGG通路富集分析。運(yùn)用imageGP在線(xiàn)作圖網(wǎng)站(http://www.ehbio.com/ImageGP/index.php/home/index/boxplot.html)對(duì)數(shù)據(jù)進(jìn)行可視化。
1.6 “健脾益腎化濁方-靶點(diǎn)-PSCI-通路”網(wǎng)絡(luò)圖的構(gòu)建
運(yùn)用Cytoscape 3.6.0軟件繪制健脾益腎化濁方-靶點(diǎn)-PSCI-通路網(wǎng)絡(luò)圖,并對(duì)其進(jìn)行網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)的分析,按照Degree值大小篩選排名靠前的活性成分作為健脾益腎化濁方的核心成分。
1.7 健脾益腎化濁方核心成分與其治療PSCI核心靶點(diǎn)的分子對(duì)接
對(duì)健脾益腎化濁方的核心成分與其治療PSCI的核心靶點(diǎn)進(jìn)行分子對(duì)接。首先在PubChem數(shù)據(jù)庫(kù)(https://pubchem.ncbi.nlm.nih.gov/)下載核心成分的3D分子結(jié)構(gòu),并利用Open Babel GUI軟件將其轉(zhuǎn)換成mol2格式。在PDB數(shù)據(jù)庫(kù)(https://www.rcsb.org)檢索靶基因蛋白構(gòu)象,并使用PyMOL軟件對(duì)蛋白進(jìn)行脫水處理,并以.pdb格式導(dǎo)出。利用AutoDock軟件進(jìn)行蛋白-分子對(duì)接,并進(jìn)行結(jié)合能(Binding Energy)評(píng)分。最后使用PyMOL軟件對(duì)具有最佳結(jié)合能的分子對(duì)接情況進(jìn)行可視化呈現(xiàn)。
2 結(jié)果
2.1 健脾益腎化濁方活性成分及潛在靶點(diǎn)
依照上述篩選標(biāo)準(zhǔn),去重后共得出健脾益腎化濁方39種活性成分及553個(gè)靶基因。見(jiàn)表1。利用Cytoscape 3.6.0軟件,將健脾益腎化濁方39種活性成分和553個(gè)有效靶點(diǎn)建立健脾益腎化濁方活性成分-靶點(diǎn)網(wǎng)絡(luò)圖。見(jiàn)圖2。
2.2 卒中后認(rèn)知障礙(PSCI)潛在靶點(diǎn)
從GeneCards數(shù)據(jù)庫(kù)檢索到PSCI已知靶點(diǎn)共4 615個(gè)。通過(guò)GeneCards所得PSCI靶點(diǎn)Score最大值為91.39,最小值為0.27,中位數(shù)為5.69,故設(shè)定Score>5.69的靶點(diǎn)為PSCI的潛在靶點(diǎn)。最終得到2 305個(gè)PSCI潛在靶點(diǎn)。
2.3 健脾益腎化濁方與卒中后認(rèn)知障礙(PSCI)共同靶點(diǎn)的PPI網(wǎng)絡(luò)圖
以取交集的方式,獲得健脾益腎化濁方活性成分-PSCI共同靶點(diǎn)254個(gè),通過(guò)RStudio軟件繪制二者共同靶點(diǎn)的韋恩圖。見(jiàn)圖3。將上述254個(gè)共同靶點(diǎn)導(dǎo)入STRING數(shù)據(jù)庫(kù),構(gòu)建PPI網(wǎng)絡(luò),再運(yùn)用CytoScape 3.6.0軟件對(duì)PPI網(wǎng)絡(luò)進(jìn)行美化及拓?fù)浣Y(jié)構(gòu)分析。見(jiàn)圖4。按照Degree值從大到小,獲取蛋白互作關(guān)系排名前10名的靶點(diǎn),分別為PIK3CA、PIK3R1、MAPK1、SRC、STAT3、MAPK3、AKT1、TP53、HSP90AA1、EP300,以此作為健脾益腎化濁方治療PSCI的核心靶點(diǎn)。見(jiàn)圖5。
2.4 GO功能富集分析情況
運(yùn)用Metascape 數(shù)據(jù)庫(kù)對(duì)254個(gè)藥物成分-疾病共同靶點(diǎn)分別進(jìn)行生物過(guò)程(Biological Process,BP)、細(xì)胞組分(Cellular Component,CC)和分子功能(Molecular Function,MF)的富集分析,并根據(jù)富集基因數(shù)值(Count)大小,分別篩選出排名前10的條目并繪制條形圖。見(jiàn)圖6。通過(guò)GO分析,健脾益腎化濁方主要參與的生物學(xué)過(guò)程主要為細(xì)胞對(duì)氮化合物的反應(yīng)(Cellular Response to Nitrogen Compound)、激酶活性的正調(diào)節(jié)(Positive Regulation of Kinase Activity)、MAPK級(jí)聯(lián)的調(diào)節(jié)(Regulation of MAPK Cascade)、跨突觸信號(hào)(Trans-Synaptic Signaling)、化學(xué)突觸傳遞(Chemical Synaptic Transmission)等;細(xì)胞組分主要富集于樹(shù)突(Dendrite)、軸突(Axon)、神經(jīng)元胞體(Neuronal Cell Body)、細(xì)胞膜區(qū)(Membrane Region)等;分子功能主要富集于激酶活性(Kinase Activity)、磷酸轉(zhuǎn)移酶活性(Phosphotransferase Activity)、轉(zhuǎn)錄因子結(jié)合(Transcription Factor Binding)、氧化還原酶活性(Oxidoreductase Activity)等。
2.5 KEGG通路富集分析情況
運(yùn)用Metascape數(shù)據(jù)庫(kù)對(duì)254個(gè)藥物成分-疾病共同靶點(diǎn)進(jìn)行KEGG通路富集分析,并按照LogP值大小排序,篩選出排名前20的通路,繪制成氣泡圖。見(jiàn)圖7。通過(guò)KEGG分析,發(fā)現(xiàn)富集較顯著的通路大多與突觸可塑性相關(guān),其中包括:神經(jīng)活性配體-受體相互作用通路(Neuroactive Ligand-Receptor Interaction)、Ras信號(hào)通路(Ras Signaling Pathway)、Rap 1信號(hào)通路(Rap 1 Signaling Pathway)、Camp信號(hào)通路(Camp Signaling Pathway)、MAPK信號(hào)通路(MAPK Signaling Pathway)、神經(jīng)營(yíng)養(yǎng)素信號(hào)通路(Neurotrophin Signaling Pathway)、5-羥色胺能突觸信號(hào)通路(Serotonergic Synapse)、磷脂信號(hào)通路(Sphingolipid Signaling Pathway)等。其余較顯著的通路與細(xì)胞自噬及凋亡相關(guān)的有PI3K-AKT信號(hào)通路(PI3K-AKT Signaling Pathway);與炎癥及凋亡相關(guān)的有HIF-1信號(hào)通路(HIF-1 Signaling Pathway);與血管新生相關(guān)的有VEGF信號(hào)通路(VEGF Signaling Pathway)。
2.6 “健脾益腎化濁方-靶點(diǎn)-PSCI-通路”網(wǎng)絡(luò)圖
將KEGG富集分析篩選出的20條信號(hào)通路,運(yùn)用Cytoscape 3.6.0軟件繪制“健脾益腎化濁方-靶點(diǎn)-PSCI-通路”網(wǎng)絡(luò)圖,并進(jìn)行網(wǎng)絡(luò)拓?fù)浣Y(jié)構(gòu)分析,以Degree值調(diào)節(jié)網(wǎng)絡(luò)中的節(jié)點(diǎn)大小程度,從而直觀顯示網(wǎng)絡(luò)中節(jié)點(diǎn)的重要性。見(jiàn)圖8。并按照Degree值大小篩選出排名前7的活性成分作為健脾益腎化濁方的核心成分。見(jiàn)表2。
2.7 分子對(duì)接結(jié)果
將上述7個(gè)健脾益腎化濁方的核心成分與其治療PSCI排名前10的核心靶點(diǎn)進(jìn)行分子對(duì)接,將對(duì)接分值≤-6的分子對(duì)接結(jié)果繪制為表3,結(jié)合能分值越小提示對(duì)接越好,且分值<-7表示具有較好的結(jié)合活性[10]。從表中可發(fā)現(xiàn),益智仁的活性成分Stigmasterol與MAPK1、SRC、MAPK3、TP53、HSP90AA1均具有較好的結(jié)合活性,黃連的活性成分Palmatine與AKT1具有較好的結(jié)合活性。其中Stigmasterol與HSP90AA1結(jié)合活性最高,Stigmasterol與HSP90AA1的分子對(duì)接細(xì)節(jié)模擬。見(jiàn)圖9。Stigmasterol與HSP90AA1活性位點(diǎn)的ASP93形成一個(gè)氫鍵相互作用。
3 討論
認(rèn)知障礙是腦卒中常見(jiàn)的并發(fā)癥,不同于AD等神經(jīng)系統(tǒng)退行性疾病引起的認(rèn)知障礙,PSCI具有可防可治的特點(diǎn)[3]。許多病理研究發(fā)現(xiàn),PSCI通常是“血管”損傷和神經(jīng)退行性病變混合作用的結(jié)果,而非一個(gè)特殊神經(jīng)病理過(guò)程[11],因此PSCI兼?zhèn)渥渲屑罢J(rèn)知障礙的病理機(jī)制。由此,根據(jù)PSCI導(dǎo)致神經(jīng)元損傷的多重復(fù)雜分子機(jī)制,進(jìn)行藥物治療PSCI的潛在靶點(diǎn)亦是多維度多層面的。
研究發(fā)現(xiàn),中藥可通過(guò)減輕神經(jīng)損傷及促進(jìn)神經(jīng)修復(fù)兩大方面來(lái)改善卒中引發(fā)的認(rèn)知功能減退,具體表現(xiàn)在可通過(guò)清除自由基、抗炎、抑制細(xì)胞凋亡、調(diào)節(jié)突觸可塑性、調(diào)節(jié)中樞膽堿能系統(tǒng)及降低淀粉樣蛋白沉積等途徑促進(jìn)卒中后認(rèn)知功能恢復(fù)[12]。本團(tuán)隊(duì)通過(guò)文獻(xiàn)調(diào)研及臨床對(duì)PSCI患者證候要素分布的觀察總結(jié),認(rèn)為腎脾虧虛、痰瘀互結(jié)為其重要病理因素[13]。自擬健脾益腎化濁方由《備急千金要方》中的蓯蓉散加減化裁而來(lái),全方由5位藥(肉蓯蓉,益智仁,遠(yuǎn)志,紅景天,黃連)組成。其中肉蓯蓉為君藥,其性味甘、咸、溫,歸腎、大腸經(jīng),功能補(bǔ)腎陽(yáng)、益精血、潤(rùn)腸通便;益智仁性辛、溫,歸脾、腎二經(jīng),可溫脾止瀉攝唾、暖腎固精縮尿;紅景天性甘、苦、平,歸肺、脾、心經(jīng),可益氣活血,通脈平喘;遠(yuǎn)志歸心、腎、肺經(jīng),《神農(nóng)本草經(jīng)》曰:“……益智慧,耳目聰明,不忘,強(qiáng)志,倍力。”黃連味苦、寒,“久服令人不忘”,可清熱燥濕,瀉火解毒。肉蓯蓉、益智仁、遠(yuǎn)志三藥合用,共奏健脾益腎之效,紅景天益氣活血,通血脈以化痰濁,黃連為佐,清熱化濁,清解瘀熱。5藥相合,能健脾益腎,祛痰化濁,發(fā)揮協(xié)同作用。
本研究采用網(wǎng)絡(luò)藥理學(xué)分析方法,先通過(guò)檢索中藥相關(guān)數(shù)據(jù)庫(kù),初步從健脾益腎化濁方中篩選出39個(gè)化合物。后通過(guò)構(gòu)建“健脾益腎化濁方-靶點(diǎn)-PSCI-通路”網(wǎng)絡(luò)圖,按Degree值大小篩選出排名前7的化合物為健脾益腎化濁方治療PSCI的核心化學(xué)成分。其中蘇齊內(nèi)酯(Suchilactone)、花生四烯酸(Arachidonate)均屬于肉蓯蓉的活性成分,植物甾醇(Stigmasterol)屬于益智仁的活性成分。三者在認(rèn)知障礙類(lèi)相關(guān)疾病的研究較多,體內(nèi)研究發(fā)現(xiàn)Suchilactone可通過(guò)降低Aβ蛋白的沉積來(lái)改善AD小鼠的空間學(xué)習(xí)和記憶能力[14];Arachidonate可通過(guò)抑制神經(jīng)炎癥反應(yīng)[15]、促進(jìn)神經(jīng)遞質(zhì)傳遞[16]等途徑改善認(rèn)知功能;Stigmasterol則可通過(guò)增加抗氧化酶的活性、減輕氧化應(yīng)激反應(yīng)[17]、激活膽堿能神經(jīng)傳遞系統(tǒng)[18]等促進(jìn)小鼠認(rèn)知功能恢復(fù)。在卒中研究方面,黃連成分黃藤素(Palmatine)可通過(guò)增加VEGF、Ang-1及AKT等蛋白的表達(dá)促進(jìn)腦缺血大鼠神經(jīng)新生[19],且研究證實(shí)Palmatine具有較好的抗炎作用[20],其對(duì)ERK1/2、P38、AKT/NF-κB等炎癥信號(hào)通路有一定抑制作用[21]。后期分子對(duì)接證實(shí)Stigmasterol與核心靶點(diǎn)(MAPK1、SRC、MAPK3、TP53、HSP90AA1),Palmatine與核心靶點(diǎn)(AKT1)均具有較好的結(jié)合活性,故推測(cè)健脾益腎化濁方可能主要通過(guò)Stigmasterol、Palmatine等改善PSCI的認(rèn)知功能。
本研究通過(guò)分析“健脾益腎化濁方-PSCI共同靶點(diǎn)PPI網(wǎng)絡(luò)圖”,以Degree值大小篩選出排名前10的靶點(diǎn)基因作為核心靶點(diǎn),其中PIK3CA、PIK3R1[22]、MAPK1、MAPK3[23]、SRC[24]、AKT1[25]、STAT3[26]為當(dāng)前研究認(rèn)知障礙類(lèi)疾病較常見(jiàn)的基因,可通過(guò)激活與細(xì)胞生長(zhǎng)、成活、增殖、活力和形態(tài)有關(guān)的信號(hào)級(jí)聯(lián),介導(dǎo)突觸可塑性、細(xì)胞增殖、血管新生等相關(guān)通路。HSP90AA1是一種非常重要的熱休克蛋白,能影響細(xì)胞凋亡,發(fā)揮免疫作用。其可通過(guò)介入細(xì)胞凋亡信號(hào)通路而直接影響細(xì)胞凋亡,是細(xì)胞凋亡調(diào)控的關(guān)鍵因子。近年來(lái),HSP90AA1逐漸向腦缺血疾病方向研究,且推測(cè)其可與HIF-lα特異性結(jié)合,從而發(fā)揮抗凋亡作用[27]。本研究在分子對(duì)接中發(fā)現(xiàn)活性成分Stigmasterol與HSP90AA1結(jié)合活性最佳,提示健脾益腎化濁方可通過(guò)調(diào)控HSP90AA1表達(dá),影響細(xì)胞凋亡來(lái)改善PSCI的認(rèn)知功能。
本研究通過(guò)KEGG通路富集分析發(fā)現(xiàn),健脾益腎化濁方治療PSCI的信號(hào)通路主要與突觸可塑性、神經(jīng)炎癥、細(xì)胞自噬及凋亡等相關(guān)。主要涉及神經(jīng)活性配體受體相互作用信號(hào)通路、MAPK信號(hào)通路、PI3K-AKT信號(hào)通路、HIF-1信號(hào)通路等。突觸可塑性是多種學(xué)習(xí)形式和記憶的分子基礎(chǔ),卒中可引起突觸信號(hào)轉(zhuǎn)導(dǎo)和結(jié)構(gòu)破壞,從而導(dǎo)致認(rèn)知功能障礙[28]。研究發(fā)現(xiàn),神經(jīng)活性配體受體相互作用信號(hào)通路可參與調(diào)控突觸可塑性,是認(rèn)知障礙類(lèi)疾病最為常見(jiàn)的信號(hào)通路之一[29];MAPK通路是多條通路的下游信號(hào),與神經(jīng)突觸可塑性、細(xì)胞凋亡、神經(jīng)炎癥均有關(guān)系[30],動(dòng)物研究發(fā)現(xiàn),若有效抑制MAPK通路上相關(guān)蛋白的表達(dá),可減輕炎癥反應(yīng),減少細(xì)胞凋亡,從而改善腦缺血損傷大鼠認(rèn)知功能[31];PI3K-AKT信號(hào)通路可調(diào)節(jié)細(xì)胞分裂、分化、遷移等生理過(guò)程,具有促進(jìn)細(xì)胞成活、細(xì)胞自噬及抗凋亡的作用。研究發(fā)現(xiàn),抑制PI3K/AKT/mTOR信號(hào)通路能促進(jìn)腦缺血損傷大鼠海馬CA1區(qū)自噬相關(guān)蛋白Beclin1及LC3表達(dá),從而改善大鼠認(rèn)知功能[32];HIF-1信號(hào)通路可通過(guò)激活多種途徑,參與腦組織缺血缺氧的病理生理過(guò)程[33]。研究發(fā)現(xiàn),HIF-1α可減輕大腦氧化應(yīng)激和炎癥反應(yīng),從而防御腦低灌注損傷引發(fā)的認(rèn)知功能減退[34]。
綜上所述,本研究通過(guò)網(wǎng)絡(luò)藥理學(xué)分析方法預(yù)測(cè)了健脾益腎化濁方治療PSCI的有效成分及潛在靶點(diǎn),并探討了健脾益腎化濁方可通過(guò)多靶點(diǎn)、多通路來(lái)調(diào)節(jié)突觸可塑性、抗細(xì)胞凋亡、抗炎等生物學(xué)過(guò)程,從而發(fā)揮改善PSCI的作用,為后續(xù)進(jìn)行更加深入具體的分子機(jī)制研究提供了參考依據(jù)。
參考文獻(xiàn)
[1]Qu Y,Zhuo L,Li N,et al.Prevalence of post-stroke cognitive impairment in china:a community-based,cross-sectional study[J].PLoS One,2015,10(4):e0122864.
[2]Bordet R,Ihl R,Korczyn AD,et al.Towards the concept of disease-modifier in post-stroke or vascular cognitive impairment:a consensus report[J].BMC Med,2017,15(1):107.
[3]中國(guó)卒中學(xué)會(huì)卒中后認(rèn)知障礙研究圓桌會(huì)議專(zhuān)家組.中國(guó)卒中后認(rèn)知障礙防治研究專(zhuān)家共識(shí)[J].中國(guó)卒中雜志,2020,15(2):158-166.
[4]李亦文.卒中后認(rèn)知障礙病機(jī)探析[J].實(shí)用中醫(yī)內(nèi)科雜志,2011,25(12):31-32.
[5]申偉,曾子修,金香蘭,等.中藥治療卒中后認(rèn)知障礙療效和安全性的系統(tǒng)評(píng)價(jià)[J].中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2020,26(11):185-193.
[6]馬重陽(yáng),徐甜,張雙,等.基于網(wǎng)絡(luò)藥理學(xué)的黃連解毒湯抗缺血性腦卒中機(jī)制研究[J].中醫(yī)雜志,2019,60(20):1772-1777.
[7]Daina A,Michielin O,Zoete V.SwissADME:a free web tool to evaluate pharmacokinetics,drug-likeness and medicinal chemistry friendliness of small molecules[J].Sci Rep,2017,7(1):1-13.
[8]但文超,何慶勇,曲藝,等.基于網(wǎng)絡(luò)藥理學(xué)的枳術(shù)丸調(diào)治血脂異常的分子機(jī)制研究[J].世界科學(xué)技術(shù)-中醫(yī)藥現(xiàn)代化,2019,21(11):2396-2405.
[9]藍(lán)洋,何秀,朱誠(chéng)勖,等.R語(yǔ)言在生物科學(xué)研究繪圖中的應(yīng)用[J].華東師范大學(xué)學(xué)報(bào):自然科學(xué)版,2019,65(1):124-135,143.
[10]Trott O,Olson AJ.AutoDock Vina:improving the speed and accuracy of docking with a new scoring function,efficie nt optimization,and multithreading[J].J Comput Chem,2010,31(2):455-461.
[11]Nguyen TV,Hayes M,Zbesko JC,et al.Alzheimer′s associated amyloid and tau deposition co-localizes with a homeostatic myelin repair pathway in two mouse models of post-stroke mixed dementia[J].Acta Neuropathol Commun,2018,6(1):100.
[12]王瑞瑞,毛忠南,王瑞仙.腦卒中后認(rèn)知障礙中藥治療機(jī)制的研究進(jìn)展[J].現(xiàn)代臨床醫(yī)學(xué),2020,46(2):146-149.
[13]申偉,金香蘭,黎明全,等.基于因子分析探討急性缺血性腦卒中后認(rèn)知障礙患者331例證候要素分布特點(diǎn)[J].中醫(yī)雜志,2020,61(11):978-983.
[14]Chun YS,Kim J,Chung S,et al.Protective Roles of Monsonia angustifolia and Its Active Compounds in Experimental Models of Alzheimer′s Disease[J].J Agric Food Chem,2017,65(15):3133-3140.
[15]Simonetto M,Infante M,Sacco RL,et al.A Novel Anti-Inflammatory Role of Omega-3 PUFAs in Prevention and Treatment of Atherosclerosis and Vascular Cognitive Impairment and Dementia[J].Nutrients,2019,11(10):2279.
[16]Sharifi KA,Rezayof A,Torkaman-Boutorabi A,et al.The major neurotransmitter systems in the basolateral amygdala and the ventral tegmental area mediate morphine-induced memory consolidation impairment[J].Neuroscience,2017,353:7-16.
[17]Adebiyi OE,Olopade JO,Olayemi FO.Sodium metavanadate induced cognitive decline,behavioral impairments,oxidative stress and down regulation of myelin basic protein in mice hippocampus:Ameliorative roles of β-spinasterol,and stigmasterol[J].Brain Behav,2018,8(7):e01014.
[18]Janickova H,Rudajev V,Dolejsi E,et al.Lipid-Based Diets Improve Muscarinic Neurotransmission in the Hippocampus of Transgenic APPswe/PS1dE9 Mice[J].Curr Alzheimer Res,2015,12(10):923-931.
[19]Zou H,Long J,Zhang Q,et al.Induced cortical neurogenesis after focal cerebral ischemia--Three active components from Huang-Lian-Jie-Du Decoction[J].J Ethnopharmacol,2016,178:115-124.
[20]Tarabasz D,Kukula-Koch W.Palmatine:A review of pharmacological properties and pharmacokinetics[J].Phytother Res,2020,34(1):33-50.
[21]Ma H,Zhang Y,Wang J,et al.Palmatine attenuates LPS-induced inflammatory response in mouse mammary epithelial cells through inhibiting ERK1/2,P38 and Akt/NF-кB signalling pathways[J].J Anim Physiol Anim Nutr(Berl),2021,105(1):183-190.
[22]Xu H,Jia J.Immune-Related Hub Genes and the Competitive Endogenous RNA Network in Alzheimer′s Disease[J].J Alzheimers Dis,2020,77(3):1255-1265.
[23]Yadav R,Srivastava P.Clustering,Pathway Enrichment,and Protein-Protein Interaction Analysis of Gene Expression in Neurodevelopmental Disorders[J].Adv Pharmacol Sci,2018,2018:3632159.
[24]Mota SI,F(xiàn)erreira IL,Valero J,et al.Impaired Src signaling and post-synaptic actin polymerization in Alzheimer′s disease mice hippocampus--linking NMDA receptors and the reelin pathway[J].Exp Neurol,2014,261:698-709.
[25]Singh AK,Kashyap MP,Tripathi VK,et al.Neuroprotection Through Rapamycin-Induced Activation of Autophagy and PI3K/Akt1/mTOR/CREB Signaling Against Amyloid-β-Induced Oxidative Stress,Synaptic/Neurotransmission Dysfunction,and Neurodegeneration in Adult Rats[J].Mol Neurobiol,2017,54(8):5815-5828.
[26]Wang W,Hu W.Salvianolic acid B recovers cognitive deficits and angiogenesis in a cerebral small vessel disease rat model via the STAT3/VEGF signaling pathway[J].Mol Med Rep,2018,17(2):3146-3151.
[27]惠志蓉,陶陶,徐堅(jiān).缺氧誘導(dǎo)因子1α對(duì)腦缺血再灌注損傷后熱休克蛋白90及半胱氨酸天冬氨酸蛋白酶3和9表達(dá)的影響[J].中華老年醫(yī)學(xué)雜志,2016,35(3):334-337.
[28]金岳心子,徐運(yùn).缺血性卒中后認(rèn)知損害:病理生理學(xué)機(jī)制和預(yù)測(cè)因素[J].國(guó)際腦血管病雜志,2017,25(3):263-267.
[29]Gu C,Shen T.cDNA microarray and bioinformatic analysis for the identification of key genes in Alzheimer′s disease[J].Int J Mol Med,2014,33(2):457-461.
[30]Lee JK,Kim NJ.Recent Advances in the Inhibition of p38 MAPK as a Potential Strategy for the Treatment of Alzheimer′s Disease[J].Molecules,2017,22(8):1287.
[31]Guo LL,Wang DS,Xu YY,et al.Effects of IL-1β on hippocampus cell apoptosis and learning ability of vascular dementia rats[J].Eur Rev Med Pharmacol Sci,2018,22(18):6042-6048.
[32]王一超,劉斌,毛文靜,等.抑制PI3K/Akt/mTOR信號(hào)通路對(duì)血管性癡呆大鼠海馬CA1區(qū)自噬相關(guān)蛋白表達(dá)的影響[J].中華神經(jīng)醫(yī)學(xué)雜志,2017,16(2):127-132.
[33]Shibata T,Yamagata H,Uchida S,et al.The alteration of hypoxia inducible factor-1(HIF-1) and its target genes in mood disorder patients[J].Prog Neuropsychopharmacol Biol Psychiatry,2013,43:222-229.
[34]Yang Y,Ju J,Deng M,et al.Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion[J].Int J Mol Sci,2017,18(1):3.
(2021-01-20收稿 責(zé)任編輯:魏慶雙)