楊果林,黎 勇,譚文杰,周伏良
(1.中南大學(xué) 土木工程學(xué)院,湖南 長沙 410075;2.中建五局 土木工程有限公司,湖南 長沙 410004)
隨著我國經(jīng)濟(jì)社會(huì)的飛速發(fā)展,以及西部大開發(fā)、一帶一路戰(zhàn)略的提出,基礎(chǔ)設(shè)施建設(shè)不可避免地會(huì)向高原和山地等地方延伸。但是在高原或山地進(jìn)行橋梁建設(shè)時(shí),因路、橋交叉的原因,需要實(shí)現(xiàn)三維跨界工程,而采用曲線連續(xù)剛構(gòu)橋是實(shí)現(xiàn)三維跨界工程的主要橋型之一。
在橋梁工程中,曲線連續(xù)剛構(gòu)橋有著可以避免占用土地和節(jié)約建筑費(fèi)用的優(yōu)點(diǎn)[1-2]。但是曲線連續(xù)剛構(gòu)橋的受力要比直線型橋的受力復(fù)雜得多,因其存在“彎扭耦合”作用,主梁截面拉應(yīng)力會(huì)比直線型橋大得多,同時(shí)會(huì)受扭矩的作用而產(chǎn)生扭轉(zhuǎn)變形。非對(duì)稱曲線連續(xù)剛構(gòu)橋?qū)儆谇€連續(xù)剛構(gòu)橋的一種,因結(jié)構(gòu)的非對(duì)稱性,會(huì)使其主梁的受力更為復(fù)雜,因此分析曲線梁的空間受力對(duì)于非對(duì)稱曲線連續(xù)剛構(gòu)橋在施工過程中的應(yīng)力控制非常重要。
目前,對(duì)于曲線連續(xù)剛構(gòu)橋的受力特性,許多學(xué)者進(jìn)行了研究[3-12]。如田雪峰[3]對(duì)曲線連續(xù)剛構(gòu)橋在恒載作用下的受力進(jìn)行了分析,得出了主梁上側(cè)處于受拉狀態(tài),下側(cè)處于受壓狀態(tài)的結(jié)論;黃斌等[5]對(duì)曲線連續(xù)剛構(gòu)橋施工階段的結(jié)構(gòu)受力進(jìn)行了分析,得出了主梁全截面均受壓的結(jié)論。但目前對(duì)非對(duì)稱曲線連續(xù)剛構(gòu)橋的受力研究相對(duì)較少,因此本文以湖南省長沙市桐溪路景觀橋?yàn)橐劳泄こ蹋芯糠菍?duì)稱曲線連續(xù)剛構(gòu)橋在不同施工階段的應(yīng)力變化規(guī)律,以期為非對(duì)稱曲線連續(xù)剛構(gòu)橋梁的施工控制提供理論依據(jù)。
湖南省長沙市桐溪路景觀橋位于大王山旅游度假中心桐溪路,為長沙市坪塘工礦棚戶區(qū)改造暨旅游產(chǎn)業(yè)中心區(qū)項(xiàng)目基礎(chǔ)設(shè)施重點(diǎn)工程,屬于坪塘大道—瀟湘大道東線道路工程中的一段,橋梁起點(diǎn)樁號(hào)為K0+413.793,終點(diǎn)樁號(hào)為K0+706.793。桐溪路景觀橋?yàn)?5.0 m+55.5 m+145.0 m+55.5 m +15.0 m 的預(yù)應(yīng)力混凝土連續(xù)剛結(jié)構(gòu),其主線寬22.6 m,景觀平臺(tái)寬5.3 m,屬于新建橋梁。桐溪路景觀橋的主橋布置見圖1,圖中橋結(jié)構(gòu)數(shù)據(jù)單位為cm。因?yàn)樵摴こ涛挥趲r溶發(fā)育地區(qū),所以在設(shè)計(jì)中采用曲線橋穿越礦坑,橋梁平面曲線半徑為600 m,主橋平面圖見圖2,應(yīng)力測試關(guān)鍵截面見圖3,圖中數(shù)據(jù)單位為cm。

圖1 主橋布置圖Fig.1 Layout of the main bridge

圖2 主橋平面圖Fig.2 Planar graph of the main bridge

圖3 應(yīng)力測試關(guān)鍵截面圖Fig.3 Key sections of stress tests
桐溪路景觀橋上部結(jié)構(gòu)采用145 m 連續(xù)剛構(gòu)橋,主梁為混凝土箱梁結(jié)構(gòu),箱梁類型為單箱雙室,橋面設(shè)置為雙向坡,坡度為1.5%。箱梁底板寬度為14.6 m,懸臂端寬度為4.0 m,頂板寬度為22.6 m,中跨跨中箱梁高度為3.2 m,邊跨等截面箱梁高度為3.75 m,梁高均按1.8 次拋物線變化。
桐溪路景觀橋采用掛籃懸臂現(xiàn)澆法進(jìn)行對(duì)稱及非對(duì)稱施工,0#梁段采用托架現(xiàn)澆完成,其余各梁段采用掛籃懸臂澆筑,主梁合攏順序?yàn)橄冗吙绾笾锌绾蠑n。中跨懸臂澆筑的分塊編號(hào)如圖4 所示,圖中數(shù)據(jù)單位為cm;邊跨懸臂澆筑段的分塊編號(hào)如圖5 所示,圖中數(shù)據(jù)單位為cm。

圖4 中跨梁段分塊編號(hào)Fig.4 Mid span beam segment block numbers

圖5 邊跨梁段分塊編號(hào)Fig.5 Block number of side span beam section
采用有限元軟件Midas/civil 建立曲線連續(xù)剛構(gòu)橋模型,全橋共有110 個(gè)單元和122 個(gè)節(jié)點(diǎn),具體如圖6 所示。該橋的整體坐標(biāo)系以跨中梁段對(duì)稱面為坐標(biāo)系的yoz 平面;原點(diǎn)取對(duì)稱面與道路中心線的交點(diǎn),即對(duì)稱面的中點(diǎn);x 軸取對(duì)稱面的法線方向,從2#主墩指向3#主墩;y 軸指向背離曲線圓心的方向;z 軸指向上方。

圖6 曲線連續(xù)剛構(gòu)橋橋梁模型Fig.6 Curved continuous rigid frame bridge model
建模時(shí),2#、3#主墩底部采用固結(jié)約束,邊跨橋頭端部0#、1#、4#、5#橋墩處設(shè)置橫向雙支座,除水平軸向位移和豎向角位移外,對(duì)其他所有自由度進(jìn)行約束。為了更好地模擬不同施工階段的變形狀態(tài),本橋模擬遵循現(xiàn)場施工階段進(jìn)行,對(duì)各個(gè)階段的應(yīng)力進(jìn)行計(jì)算及分析。施工階段劃分見表1。

表1 施工階段劃分Table 1 Construction stage division
本研究中橋梁以主墩為界,則邊跨側(cè)的橋梁長度為0.5×1 300 cm+5×300 cm+5×400 cm+2×500 cm+200 cm+1 684 cm =7 034 cm,而中跨側(cè)的橋梁長度為0.5×1 300 cm+5×300 cm+5×400 cm+6×500 cm+0.5×200 cm=7 250 cm,兩者相差216 cm,因此中跨16#梁段和中跨合攏段在邊跨側(cè)沒有對(duì)應(yīng)梁段,稱為非對(duì)稱梁段。
實(shí)際施工過程中,中跨和邊跨各自0#~11#梁段的長度、截面、張拉縱向預(yù)應(yīng)力束相同,但是邊跨側(cè)12#梁段混凝土用量為98.6 m3,而中跨側(cè)12#梁段僅用73.3 m3,這導(dǎo)致兩個(gè)梁段質(zhì)量存在差異。邊跨13#合攏時(shí),中跨對(duì)應(yīng)部分還未開始施工,邊跨現(xiàn)澆部分和掛籃施工部分通過邊跨后期束連為一體,共同受到邊跨支座的約束。
邊跨支座設(shè)置后,中跨13#梁段繼續(xù)使用掛籃施工,此時(shí)主墩兩側(cè)橋長度不同,所受約束條件不同,梁段之中施加的縱向預(yù)應(yīng)力鋼束也不同,因此此階段在約束條件上也是不對(duì)稱的。
此外,2#主墩和3#主墩的墩高分別為24 m 和18 m,墩高不同可能會(huì)造成橋梁對(duì)稱位置的計(jì)算結(jié)果出現(xiàn)差異。
2 號(hào)墩2 號(hào)截面、3 號(hào)截面和4 號(hào)截面為桐溪路景觀橋的關(guān)鍵截面,故選取2 號(hào)墩2 號(hào)截面、3 號(hào)截面和4 號(hào)截面在施工過程中的應(yīng)力進(jìn)行分析,所得結(jié)果如圖7~9 所示。圖中負(fù)數(shù)表示壓應(yīng)力,正數(shù)表示拉應(yīng)力。
2 號(hào)截面位于2 號(hào)墩邊跨,2 號(hào)墩邊跨屬于對(duì)稱施工階段,其應(yīng)力分析結(jié)果見圖7。

圖7 2 號(hào)截面應(yīng)力結(jié)果分析圖Fig.7 Stress result analysis of section 2
如圖7 所示,在對(duì)稱施工階段,箱梁頂板的應(yīng)力隨著懸臂長度的增加而增大,預(yù)應(yīng)力鋼筋張拉會(huì)引起箱梁頂板的應(yīng)力增大,箱梁頂板最大壓應(yīng)力為12.8 MPa;箱梁底板應(yīng)力在0#梁段至邊跨8#梁段施工時(shí),箱梁底板承受的應(yīng)力為拉應(yīng)力,且拉應(yīng)力會(huì)隨著懸臂長度的增加而增大。在9#梁段至12#梁段施工時(shí),箱梁底板的應(yīng)力由拉應(yīng)力轉(zhuǎn)換為壓應(yīng)力,且壓應(yīng)力隨著懸臂長度的增加而增大;預(yù)應(yīng)力鋼束張拉會(huì)引起箱梁底板應(yīng)力的增大,2 號(hào)截面箱梁底板的最大拉應(yīng)力為0.545 MPa,最大壓應(yīng)力為3.52 MPa。
3 號(hào)截面位于2 號(hào)墩中跨,2 號(hào)墩中跨包含對(duì)稱施工階段及非對(duì)稱施工階段,其應(yīng)力分析結(jié)果見圖8。

圖8 3 號(hào)截面應(yīng)力結(jié)果分析圖Fig.8 Stress result analysis of section 3
由圖8 可知,3 號(hào)截面箱梁頂板承受的應(yīng)力多為壓應(yīng)力,在對(duì)稱施工階段中箱梁頂板應(yīng)力會(huì)隨著懸臂長度的增加而增大,進(jìn)入非對(duì)稱施工階段后,箱梁頂板應(yīng)力隨著懸臂長度的增加而減小,箱梁頂板最大壓應(yīng)力為6.99 MPa;對(duì)比圖7 和8,可知箱梁底板的應(yīng)力變化規(guī)律與2 號(hào)截面底板的應(yīng)力變化規(guī)律基本一致,箱梁底板的最大拉應(yīng)力為0.477 MPa,最大壓應(yīng)力為5.2 MPa。
4 號(hào)截面位于2 號(hào)墩中跨1/2 處,包含對(duì)稱施工階段及非對(duì)稱施工階段,其應(yīng)力分析結(jié)果見圖9。


圖9 4 號(hào)截面應(yīng)力結(jié)果分析圖Fig.9 Stress result analysis of section 4
觀察圖8 和圖9 可以發(fā)現(xiàn),4 號(hào)截面箱梁的頂板應(yīng)力變化規(guī)律和3 號(hào)截面箱梁的頂板應(yīng)力變化規(guī)律基本相同。由圖9a 可以得知,箱梁頂板應(yīng)力在對(duì)稱施工階段中,隨著施工節(jié)段的增加而增大,而進(jìn)入非對(duì)稱施工階段后,箱梁頂板應(yīng)力開始減小,最大壓應(yīng)力為7.68 MPa。4 號(hào)截面位于中跨1/2 處,由圖9b 可知,箱梁底板應(yīng)力基本上都為壓應(yīng)力,并且可得知最大的壓應(yīng)力為9.18 MPa。
對(duì)比分析圖7~9 可以得知,各截面箱梁頂板的壓應(yīng)力會(huì)隨著下一梁段澆筑后減小,而在預(yù)應(yīng)力鋼束張拉后增大。箱梁底板應(yīng)力的變化趨勢與頂板應(yīng)力的變化趨勢相反;在對(duì)稱施工階段中,各截面箱梁頂板和底板的壓應(yīng)力均呈現(xiàn)出總體上升的變化趨勢,在非對(duì)稱施工階段中,各截面箱梁頂板的壓應(yīng)力呈現(xiàn)出總體下降的變化趨勢;本橋箱梁采用C55 混凝土進(jìn)行澆筑,其混凝土抗壓強(qiáng)度標(biāo)準(zhǔn)值和抗拉強(qiáng)度標(biāo)準(zhǔn)值分別為35.5 MPa 和1.96 MPa。在模型計(jì)算值中,3 個(gè)截面中最大的壓應(yīng)力為12.8 MPa,最大的拉應(yīng)力為0.545 MPa,均在安全值范圍之內(nèi),表明其有著良好的安全使用條件。
1 號(hào)截面(2 號(hào)墩邊跨合攏段)、9 號(hào)截面(3 號(hào)墩邊跨合攏段)、5 號(hào)截面(中跨合攏段)現(xiàn)場應(yīng)力數(shù)據(jù)如表2 所示。

表2 合攏段截面應(yīng)力數(shù)據(jù)分析表Table 2 Stress data analysis of closure section MPa
分析表2 中的數(shù)據(jù)可以得知,合攏段澆筑后,截面應(yīng)力較小,這可能是由于合攏段截面較小,橋身自身質(zhì)量較小,故澆筑后所產(chǎn)生的應(yīng)力較小。合攏段截面應(yīng)力在預(yù)應(yīng)力筋張拉后,合攏段截面應(yīng)力增大很多,2 號(hào)墩邊跨合攏段截面應(yīng)力在張拉后,應(yīng)力增加了約134%,3 號(hào)墩邊跨合攏段截面的應(yīng)力在張拉后,應(yīng)力約增加了135%,中跨合攏段截面應(yīng)力約增加了352%。雖然3 個(gè)合攏段截面中的最大應(yīng)力為5.56 MPa,但是張拉后截面應(yīng)力增加了2~4 倍,合攏段施工是橋梁施工中的關(guān)鍵工序,因此在進(jìn)行合攏段張拉時(shí),需要重點(diǎn)注意合攏段截面的應(yīng)力變化,以避免不利情況的出現(xiàn)。
通過分析仿真模型計(jì)算值可以得知,箱梁頂板應(yīng)力在不同施工階段均處于受壓狀態(tài),而箱梁底板隨著施工的進(jìn)行會(huì)出現(xiàn)不同的受力狀態(tài),即底板應(yīng)力隨著施工的進(jìn)行會(huì)由拉應(yīng)力轉(zhuǎn)換為壓應(yīng)力。這一結(jié)論與黃斌等[5]經(jīng)過研究得出的“曲線連續(xù)剛構(gòu)橋在施工過程全截面受壓”的結(jié)論有些差異,該差異可能是因?yàn)闃蛐偷牟煌?,布置的預(yù)應(yīng)力鋼束不同所引起的;而此結(jié)論跟陳備備[6]得出的研究結(jié)論基本一致,但是本研究中橋箱梁底板應(yīng)力在施工過程中產(chǎn)生的拉應(yīng)力有所偏大,這可能是在模型計(jì)算過程中由于預(yù)應(yīng)力損失所導(dǎo)致的。
為了能更好地了解混凝土澆筑、預(yù)應(yīng)力張拉和箱梁應(yīng)力的相關(guān)性,下面對(duì)混凝土澆筑后和預(yù)應(yīng)力張拉后與應(yīng)力隨梁段增加的相關(guān)性進(jìn)行分析,所得結(jié)果如圖10~13 所示。

圖10 2 號(hào)截面張拉后頂板相對(duì)應(yīng)力值變化圖Fig.10 Change diagram of the relative stress value of the roof after the tension of section 2
分析2 號(hào)截面頂板應(yīng)力變化情況可以得知,前一梁段澆筑后至下一梁段澆筑張拉后的截面頂板應(yīng)力會(huì)相對(duì)增加。從圖10 可以看出,前一梁段澆筑后至下一梁段澆筑張拉后的截面頂板應(yīng)力相對(duì)增加值隨著梁段數(shù)的增加,即順橋向梁段長度的增加,而呈現(xiàn)出在一定應(yīng)力值范圍的震蕩變化規(guī)律,其震蕩變化區(qū)間的上限值和下限值分別為2.60 MPa 和0.50 MPa。本橋1#梁段至5#梁段的長度為3 m,6#梁段至10#梁段的長度為4 m,從圖中可以看出,混凝土澆筑后和預(yù)應(yīng)力張拉后,其相對(duì)應(yīng)力值與梁段長度呈現(xiàn)出一定的相關(guān)性。

圖11 2 號(hào)截面張拉后底板相對(duì)應(yīng)力值變化圖Fig.11 Change diagram of relative stress value of base plate after tension of section 2
分析2 號(hào)截面底板應(yīng)力變化情況可以得知,在1#梁段至6#梁段施工階段,2 號(hào)截面底板承受的應(yīng)力為拉應(yīng)力,在6#梁段至12#梁段施工階段,2 號(hào)截面底板承受的應(yīng)力為壓應(yīng)力,預(yù)應(yīng)力張拉會(huì)引起箱梁底板拉應(yīng)力增大。從圖11 可以看出,在1#梁段至6#梁段施工階段,前一梁段澆筑后至下一梁段澆筑張拉后的截面底板應(yīng)力相對(duì)增加值隨著梁段數(shù)的增加,即順橋向梁段長度,呈現(xiàn)出平行趨勢,在6#梁段至12#梁段施工階段,前一梁段澆筑后至下一梁段澆筑張拉后的截面底板應(yīng)力相對(duì)增加值隨著梁段數(shù)的增加,即順橋向梁段長度,呈現(xiàn)出在一定應(yīng)力值范圍的震蕩變化規(guī)律,其震蕩變化區(qū)間的上限值和下限值分別為0.62 MPa 和-0.60 MPa,由此可以得知,預(yù)應(yīng)力張拉后對(duì)箱梁底板拉應(yīng)力相對(duì)增加值隨梁段數(shù)增加的相關(guān)性較小,箱梁的壓應(yīng)力相對(duì)增加值隨梁段的增加相關(guān)性較大。

圖12 2 號(hào)截面澆筑后頂板相對(duì)應(yīng)力值變化圖Fig.12 Change diagram of relative stress value of roof after pouring of section 2
分析2 號(hào)截面的頂板應(yīng)力可以得知,前一梁段張拉后至下一梁段澆筑張拉后的截面頂板應(yīng)力會(huì)相對(duì)增加。從圖12 所示2 號(hào)截面澆筑后頂板相對(duì)應(yīng)力值變化圖中可以看出,前一梁段張拉后至下一梁段澆筑后張拉前的截面頂板應(yīng)力相對(duì)減小值隨梁段數(shù)的增加,即順橋向梁段長度的增加,而呈現(xiàn)出在一定應(yīng)力值范圍的震蕩上行變化規(guī)律,其震蕩變化區(qū)間的上限值和下限值分別為1.9 MPa 和-1.0 MPa,且震蕩上行幅度隨梁段數(shù)的增加而增加。

圖13 2 號(hào)截面澆筑后底板相對(duì)應(yīng)力值變化圖Fig.13 Change diagram of relative stress value of base plate after pouring of section 2
分析2 號(hào)截面的底板應(yīng)力變化可知,前一梁段張拉后至下一梁段澆筑后的截面底板應(yīng)力會(huì)相對(duì)減小。從圖13 所示2 號(hào)截面澆筑后的底板相對(duì)應(yīng)力值變化圖中可以看出,前一梁段張拉后至下一梁段澆筑后張拉前的截面底板應(yīng)力相對(duì)減小值,隨著梁段數(shù)的增加,即隨著順橋向梁段長度的增加,而呈現(xiàn)出在一定應(yīng)力值范圍的震蕩下行變化規(guī)律,其震蕩變化區(qū)間的上限值和下限值分別為0.10 MPa 和-1.02 MPa,且震蕩下行幅度隨著梁段數(shù)的增加而增加;本橋1#梁段至5#梁段的長度為3 m,6#梁段至10#梁段的長度為4 m,相對(duì)應(yīng)力值與梁段長度呈現(xiàn)出一定的相關(guān)性。由此可以得知,澆筑后引起的箱梁頂板相對(duì)應(yīng)力值隨梁段數(shù)增加的變化規(guī)律與箱梁底板相對(duì)應(yīng)力值隨梁段數(shù)增加的規(guī)律完全相反。同時(shí),箱梁承受的壓應(yīng)力和拉應(yīng)力,在張拉后,相對(duì)應(yīng)力減小值隨梁段數(shù)的增加都有著一定的相關(guān)性。
本研究通過對(duì)湖南省長沙市桐溪路景觀橋在不同施工階段的應(yīng)力變化規(guī)律進(jìn)行分析,可以得出如下結(jié)論:
1)在對(duì)稱施工階段中,箱梁頂板應(yīng)力隨著懸臂長度的增加而增長,在預(yù)應(yīng)力鋼筋張拉后,會(huì)引起箱梁頂板應(yīng)力增大;箱梁底板會(huì)出現(xiàn)拉應(yīng)力和壓應(yīng)力,隨著施工的進(jìn)行,箱梁底板會(huì)由拉應(yīng)力轉(zhuǎn)換為壓應(yīng)力,拉應(yīng)力與壓應(yīng)力都隨著懸臂長度的增加而增大。當(dāng)進(jìn)入到非對(duì)稱施工階段中,箱梁頂板應(yīng)力隨著懸臂長度的增加而減小,而箱梁底板應(yīng)力會(huì)隨著懸臂長度的增加而增大。
2)在對(duì)稱施工階段中,各截面箱梁頂板和底板的壓應(yīng)力呈現(xiàn)出總體上升的變化趨勢,而在非對(duì)稱施工階段中,各截面箱梁頂板的壓應(yīng)力呈現(xiàn)出總體下降的變化趨勢,箱梁底板應(yīng)力變化規(guī)律與頂板應(yīng)力變化規(guī)律相反。
3)合攏段在預(yù)應(yīng)力鋼束張拉完成后,截面應(yīng)力約增加了2~4 倍,故在合攏段進(jìn)行張拉時(shí),應(yīng)重點(diǎn)注意合攏段的截面應(yīng)力變化情況,以避免不利情況的出現(xiàn)。
4)分析混凝土澆筑、預(yù)應(yīng)力張拉時(shí),箱梁應(yīng)力隨梁段數(shù)增加的相關(guān)性可知,前一梁段澆筑后至下一梁段澆筑張拉后的截面頂板壓應(yīng)力相對(duì)增加值隨梁段數(shù)的增加呈現(xiàn)出在一定應(yīng)力值范圍的震蕩變化規(guī)律;前一梁段張拉后至下一梁段澆筑后張拉前的截面頂板應(yīng)力相對(duì)減小值,隨著梁段數(shù)的增加,呈現(xiàn)出在一定應(yīng)力值范圍的震蕩上行變化規(guī)律,截面底板應(yīng)力相對(duì)減小值隨梁段的增加呈現(xiàn)出在一定應(yīng)力值范圍的震蕩下行變化規(guī)律。