999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

PARAMETRIC REPRESENTATIONS OF QUASICONFORMAL MAOOINGS*

2021-01-07 06:45:08ZhenlianLIN林珍連

Zhenlian LIN (林珍連)

School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China E-mail : zhenlian@hqu.edu.cn

Qingtian SHI (石擎天)

School of Mathematics and Computer Science, Quanzhou Normal University,Quanzhou 362000, China E-mail : shiqingtian2013@gmail.com

2 Two Counterexamples of the Parametric Representations

3 Parametric Representation of

Given a measurable functionμ(z),letfμbe the normal solution of the Beltrami equation?zf=μ?zf.Ifμhas compact support on?,thenfμcan be represented as follows:

Theorem 3.1([2])Letμ(z)be a measurable function which has compact support on??C.If‖μ‖∞≤k<1,then there exists a unique solutionf=fμsuch thatf(0)=0 andfz?1∈Lpforp>2.Moreover,fcan be expressed in the following form:

4 Auxiliary Application of Parametric Representation

Using the parametric representation ofin Theorem 1.1,Eremenko and Hamilton derive the formula(1.6)to prove the area distortion theorem[6].This method is relatively simple compared to others,and the sharp constants in the area distortion inequality are obtained from it,but we find that the parametric representation theorem is false and the area distortion formula(1.6)can not be derived from the equalities(1.3)–(1.5).In this section,by applying Theorem 3.4,we get that the formula(1.6)still holds true for allf∈;that is,the method used by Eremenko and Hamilton in[6]can still be used to prove the area distortion theorem.

In fact,because

we have that

Astis a real variable,then,by applying the parametric representation in(3.3),

Therefore,from(4.2),the relation(4.1)can be simplified to

by the fact that(Pρ)ω=Tρ,which implies that the relation(1.6)holds true for the parametric representation in(3.3).

主站蜘蛛池模板: 日韩av资源在线| 国产男人的天堂| 精品国产中文一级毛片在线看| 亚洲成人动漫在线| 国产理论精品| 国产人免费人成免费视频| 麻豆国产精品视频| 欧美成人一级| 先锋资源久久| 中国黄色一级视频| 久久久久久久97| 国产欧美精品午夜在线播放| 免费欧美一级| 色综合久久久久8天国| 日韩美女福利视频| 国产一级做美女做受视频| 538国产视频| 青青草欧美| 色偷偷一区二区三区| 免费观看精品视频999| 久久这里只精品国产99热8| 欧美精品v欧洲精品| 欧美日韩国产系列在线观看| 亚洲狠狠婷婷综合久久久久| …亚洲 欧洲 另类 春色| 午夜欧美理论2019理论| 欧美成人a∨视频免费观看| 小说区 亚洲 自拍 另类| 免费看一级毛片波多结衣| 亚洲精品不卡午夜精品| 国产亚洲精品自在久久不卡| 五月婷婷亚洲综合| 日韩欧美国产精品| 美女视频黄又黄又免费高清| 午夜免费小视频| 亚洲欧美综合精品久久成人网| 午夜视频在线观看区二区| 国产精品v欧美| 色哟哟国产精品一区二区| 国产在线观看一区精品| 在线免费观看AV| 日韩国产高清无码| 在线永久免费观看的毛片| 成人在线观看一区| 国产网站一区二区三区| 国产超薄肉色丝袜网站| 午夜三级在线| 无码综合天天久久综合网| 这里只有精品在线播放| 国产资源免费观看| 日韩天堂视频| 亚洲综合色婷婷中文字幕| a毛片在线| 国产午夜无码片在线观看网站| 色综合a怡红院怡红院首页| 精品无码人妻一区二区| 亚洲精品无码在线播放网站| 韩日免费小视频| 就去吻亚洲精品国产欧美| 婷婷99视频精品全部在线观看 | 狠狠色丁婷婷综合久久| 婷婷亚洲综合五月天在线| 日韩国产一区二区三区无码| 又黄又爽视频好爽视频| 五月婷婷丁香综合| 日韩高清成人| 亚洲,国产,日韩,综合一区| 欧洲亚洲一区| 五月激情婷婷综合| 久久亚洲美女精品国产精品| 精品少妇人妻av无码久久| 欧美a在线视频| 亚洲成人高清无码| 91福利国产成人精品导航| 91亚洲精品国产自在现线| 欧美在线精品一区二区三区| 美女高潮全身流白浆福利区| 国产91小视频在线观看| 亚洲免费毛片| 亚洲无码不卡网| 激情视频综合网| 日本欧美在线观看|